

 Game Feel

 Morgan Kaufmann Game Design Books

 Better Game Characters by Design (9781558609211)
 Katherine Isbister

 Game Design Workshop, Second Edition (9780240809748)
 Tracy Fullerton

 The Art of Game Design (9780123694966)
 Jesse Schell

 Game Usability (9780123744470)
 Katherine Isbister & Noah Schaffer (Eds.)

 Game Feel (9780123743282)
 Steve Swink

 Game Feel

 A Game Designer’s Guide to
Virtual Sensation

 Steve Swink

AMSTERDAM • BOSTON • HEIDELBERG • LONDON

NEW YORK • OXFORD • PARIS • SAN DIEGO

SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO

Morgan Kaufmann Publishers is an imprint of Elsevier

 Morgan Kaufmann Publishers is an imprint of Elsevier.
 30 Corporate Drive, Suite 400, Burlington, MA 01803, USA

 This book is printed on acid-free paper.

 © 2009 Elsevier, Inc. All rights reserved.

 Designations used by companies to distinguish their products are often claimed as trademarks or
registered trademarks. In all instances in which Morgan Kaufmann Publishers is aware of a claim, the
product names appear in initial capital or all capital letters. Readers, however, should contact the
appropriate companies for more complete information regarding trademarks and registration.

 No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or
by any means—electronic, mechanical, photocopying, scanning, or otherwise—without prior written
permission of the publisher.

 Permissions may be sought directly from Elsevier’s Science & Technology Rights Department in Oxford,
UK: phone: (�44) 1865 843830, fax: (�44) 1865 853333, E-mail: permissions@elsevier.com.
You may also complete your request online via the Elsevier homepage (http://elsevier.com), by selecting
 “ Support & Contact ” then “ Copyright and Permission ” and then “ Obtaining Permissions. ”

 Library of Congress Cataloging-in-Publication Data
 Swink, Steve.
 Game feel: a game designer’s guide to virtual sensation/Steve Swink.
 p. cm.
 Includes index.

 ISBN 978-0-12-374328-2 (pbk. : alk. paper) 1. Computer games—Programming. 2. Computer
games—Design. 3. Human-computer interaction.
I. Title.
 QA76.9.H85S935 2009
 794.8’1526—dc22 2008035742

 ISBN: 978-0-12-374328-2

 For information on all Morgan Kaufmann publications,
visit our Web site at www.mkp.com or www.books.elsevier.com

 Printed in the United States of America

 08 09 10 11 12 13 10 9 8 7 6 5 4 3 2 1

 Dedication
 For people who struggle and make beautiful things

This page intentionally left blank

vii

 TABLE OF CONTENTS

 Acknowledgments ..ix

 About the Author ..xi

 Introduction ...xiii

 1. Defining Game Feel ..1

 2. Game Feel and Human Perception ...35

 3. The Game Feel Model of Interactivity ..61

 4. Mechanics of Game Feel ...69

 5. Beyond Intuition: Metrics for Game Feel ...81

 6. Input Metrics ..101

 7. Response Metrics ...119

 8. Context Metrics ...139

 9. Polish Metrics ...151

 10. Metaphor Metrics ...171

 11. Rules Metrics ..179

 12. Asteroids ..187

viii

 13. Super Mario Brothers ..201

 14. Bionic Commando ...229

 15. Super Mario 64 ..247

 16. Raptor Safari ...277

 17. Principles of Game Feel ..297

 18. Games I Want to Make ..311

 19. The Future of Game Feel ..321

Index ..345

TABLE OF CONTENTS

ixix

 ACKNOWLEDGMENTS

 I would like to thank the following people.
 Mom & Dad, for their unwavering support of everything I do, ever. It must be

exhausting. Special thanks to Dad for taking on the role of second editor, donating
hours and hours to proofreading, editing, writing first-pass chapter summaries and
helping me wrangle ideas. I love you guys. Thank you so much for being who you
are. It gives me a standard to aspire to.

 Amy Wegner, for unflinching honesty in editing and for putting up with me
throughout the months of craziness. Guess it’s my turn to do the laundry, bake
cookies, do the dishes, take out the dog. Thank you for everything.

 Beth Millett, for being a kickass editor and for being the other person who had to
put up with my craziness.

 Matthew Wegner, for help with the Raptor Safari, for many inspiring ideas about
game feel, and for being the stable foundation of Flashbang. You make everyone
around you better, smarter, faster and happier. We appreciate it, even if we don’t
tell you so as much as we should.

 Mick West, for inspiring me to think about game feel at a deeper level. It was
his article “Pushing Buttons ” for Game Developer magazine that convinced me
this would be a subject worth writing an entire book about, and he has graciously
offered me feedback and guidance when I asked for it. He is the true master of
game feel. If you’re looking for someone to make your game feel better than anyone
else can, ask him. I doubt he’ll say yes, but there it is.

 Allan Blomquist, for building pixel-perfect clones of old games and helping me
understand how they work. Without Allan, the book would be much shorter.

 Derek Daniels, for the brilliant insights about the role of animation in game feel
and the importance of hard metrics for game feel. I hope you write a book someday.

 Shawn White, for helping me with technical details about platformer games. You
truly are the Captain of Rats.

 Matt Mechtley, for additional help with technical stuff and for the fantastic atti-
tude. I hope you someday meet and woo fast women. It must be plural.

 Adam Mechley, for proofreading and helping me to achieve syntactic perfection.
 Kyle Gabler, for being brilliant and inspiring, and for helping me understand the

importance of sound and its role in game feel. I hope I can someday be half as good
a game designer as you are.

 Ben Ruiz, for making me laugh and smile always. You provide a constant
reminder why we do what we do.

ACKNOWLEDGMENTS

x

 Jon Blow, for inspiring everyone to make better games and for teaching me about
proxied embodiment.

 Kellee Santiago and Jenova Chen, for making beautiful things and for taking the
time to talk to me about how.

 Chaim Gingold, for making brilliant things and for taking the time to talk to me
about how.

 Katherine Isbister, for the encouragement and opportunity to write a book.

xixi

 ABOUT THE AUTHOR

 Steve Swink is an independent game developer, author and lecturer currently
based in Tempe, Arizona. As a game designer and partner at Flashbang Studios,
he’s contributed to games such as Off-Road Velociraptor Safari, Splume, Jetpack
Brontosaurus, and Minotaur China Shop. Before joining Flashbang, he toiled in the
retail game mines at Neversoft and the now-defunct Tremor Entertainment. He also
co-chairs the Independent Games Festival, is an IGDA Phoenix chapter coordina-
tor, and teaches the game and level design classes at the Art Institute of Phoenix.
He sometimes forgets the importance of sleeping every night, not just some.

This page intentionally left blank

xiiixiii

 1 William Higinbotham’s Tennis (1958) is also a contender, but Spacewar! was the first to have some-
thing approximating modern game structure—rounds, scoring and so on.

 INTRODUCTION

 Close your eyes for a few seconds and imagine yourself playing Super Mario
Brothers.

 What did you imagine? The visuals? The colors? The iconic sounds of coin collect-
ing and the Mario theme music? How about the sensation of moving Mario left and
right, of jumping, colliding with blocks, stomping Goombas? What does it feel like
to control Mario? Go watch someone unfamiliar with games—your mom, perhaps—
try to play a game like Rad Racer. If it’s a game which requires real-time control,
she’ll be leaning left and right in her chair, pulling the controller, trying to get the
car to move just a bit farther, a bit faster. Ever seen someone do this? Done it your-
self? This feeling of steering—this tactile, visceral sensation—is game feel.

 For the purposes of this book, “ feel ” is meant in a very specific sense relevant to
the experience of playing video games. Feel is not meant in the thematic sense (a
Western feel, a Baroque feel) or in the expressive, emotional or physical sense (I feel
sad, I feel pain, this place feels creepy). Specifically, game feel is the tactile, kines-
thetic sense of manipulating a virtual object. It’s the sensation of control in a game.

 In digital game design, feel is the elephant in the room. Players know it. Designers
know of it. Nobody talks about it, and everybody takes it for granted. It’s not hard
to understand why; if a game designer’s done his or her job correctly, the player will
never notice the feel of a game. It will just seem right. In this sense, game feel is an
“invisible art, ” like cinematography. Feel is the most overlooked aspect of game
creation; a powerful, gripping, tactile sensation that exists somewhere in the space
between player and game. It is a kind of “virtual sensation, ” a blending of the vis-
ual, aural and tactile. In short, it is one of the most powerful properties of human-
computer interaction.

 Recently, I had the opportunity to play Spacewar!, the world’s first video game 1
at the “Game On! ” exhibit at the Tech Museum, in San Jose, California. What struck
me is just how compelling the game still is. It’s easy to imagine the breathless
enthusiasm of the young technicians crowding around their PDP-1 supercomputer,
exhausting hours of valuable computing time on endless rounds of Steve Russell’s
creation. Even today, as a product of a video game culture, having played hundreds
of games, it feels great to me to steer the little rockets, fire off missiles and avoid
black holes. Game feel has been with us since the beginning.

INTRODUCTION

xiv

 It may be easy to bring to mind, but game feel is difficult to understand. Games
are a nascent and complex medium, one which incorporates many previous forms.
A single game might include painting, music, cinematography, writing and animation.

 If that weren’t enough, video games represent an unprecedented collaboration
between creator and consumer. We abdicate authorial control to our players and
get … something. We’re not quite sure what yet, but we know that it has potential.
To many, interactivity seems to be the most important medium of the 21st century.

 It’s surprising, then, that the luminaries of digital game design have devoted lit-
tle ink to the phenomenon of feel. In Rollings and Morris, any mention of feel is
conspicuously absent. Salen and Zimmerman dance tantalizingly close to discuss-
ing feel, but take a more holistic approach, focusing on game state at the higher
intervals where scoring and more traditional strategic considerations occur. Chris
Crawford’s revered work, The Art of Computer Game Design, devotes only a sen-
tence to game feel, saying “The input structure is the player’s tactile contact with
the game; people attach deep significance to touch, so touch must be a rewarding
experience for them. ”

 With due respect to these authors and all the great stuff they have taught us,
what’s missing is an appreciation of just how unique and beautiful an aesthetic
game feel truly is. It exists outside of video games—driving cars, riding bikes and so
on—but nowhere is it so refined, pure and malleable.

 In addition, game feel is moment-to-moment interaction. If we examine the
functional underpinnings of most video games, there is usually game feel at the most
basic level. It has greater importance in certain games but it’s always there. As a per-
centage of activities in the game, it’s what you spend most of your time experienc-
ing. If you break down all the activities of a game, it’s the biggest slice of the pie.

 This book is about examining feel in greater detail. Where does it come from?
How is it created? Does it exist in the computer, the player’s mind or somewhere in
between? What are the different kinds of feel and why do they feel the way they do?
In a clear, non-technical style intended to be accessible to professionals, players and
aspiring designers alike, we will investigate feel as experienced by players, created by
designers and measured by psychologists. The goal is to create a comprehensive guide
to game feel: deconstructing it, classifying it, measuring it and creating it. By book’s
end you will have the tools to measure, master and create exemplary game feel.

 About This Book
 This book is about how to make good-feeling games. In many ways, it’s the book
I wanted when I first started designing games. So many creative ideas rely on a
foundation of good-feeling controls. It should be a given that we can always create
controls that feel good. We shouldn’t have to start from scratch every time.

 This book constructs a foundation of understanding and then builds on it,
addressing at each step a particular gap in the knowledge base about game design.
Figure I.1 shows the structure and flow of the book’s topics.

xv

 www.game-feel.com
 To get the most out of reading Game Feel, I recommend going to www.game-feel.com ,
the companion website to this book. For many of the chapters, I ’ve provided play-
able examples that will allow you to experience first-hand the ideas being discussed.
In addition, the website contains interviews on the subject of game feel with folks
like Kellee Santiago and Jenova Chen of thatgamecompany, Kyle Gabler of 2dBoy,
and Johnathan Blow and Chaim Gingold of Number-None and Maxis, respectively.

 If you’re a student, the definition at the beginning will be interesting and rel-
evant, but the real meat will be the examples. In the examples you can see all the
tiny decisions and particulars of implementation that go into making games feel the
way they do. This is the palette of game feel; if you want to make good-feeling
games, these are the details you need to understand.

 If you’re a game designer, the definition stuff will not be news to you. But some of
the theory bits may be useful and applicable, if only to better understand the deeper
physiological phenomena. The examples will be useful because of the legwork I’ve
already done—you can reverse engineer games yourself, probably, but it takes a lot
of time. The principles of game feel may also be a useful way to think about build-
ing games. It’s one way, at any rate, to which you can compare your own methods. 2

 If you’re an educator, the theory and definition pieces form a solid basis for
understanding game feel at a conceptual level. In addition, the examples provide a
great way to illustrate the complexities of making good-feeling games without forc-
ing students to program the games themselves from scratch. The most useful part,

INTRODUCTION

 2 Which, by the way, I’d love to hear about. Email me at sswink@flashbangstudios.com.

F I G U R E I.1 The structure and flow of the book.

INTRODUCTION

xvi

however, will probably be the principles of game feel chapter, which lays out some
guidelines for creating good-feeling games.

 If you’re someone interested in the medium of games, such as a journalist, the
definition parts may provide a new perspective on genres. In addition, understanding
the physiological thresholds that cause game feel to be sustained or break down
may help explain why frame rate drops and other technical disturbances make
games feel so much worse. But my hope is that in understanding and being able
to measure things like frame rate and response time, you will be able to do a better
job of separating medium from message. Yes, a developer is to blame if a game runs
poorly. But I think this consideration is given too superlative an emphasis when
games are critiqued. The experience of playing a game may still have some things
to offer from a critical standpoint—as Jurassic Park: Trespasser did—even if they are
technically incompetent.

 What Is Game Feel?
 One obstacle to understanding game feel at a deeper level is definition. This section
offers a simple three-part definition of game feel based on the ways players experi-
ence it and game designers design it.

 Each of the three parts of the definition is expanded to make it useful for clas-
sifying games as well as understanding what game feel is. Expanding the definition
requires an exploration of some of the ways people perceive things, including mea-
sures for frame rate, response time and other conditions necessary for game feel to
occur. These physiological thresholds and concepts of perception combine to form
the “game feel model for interactivity ”—a complete picture of the ongoing process
of game feel.

 The section ends by applying the definition to some games specifically chosen
because they are on the fringes of game feel.

 Metrics for Game Feel
 Another problem facing game designers is meaningful comparison. How does the
feel of Halo compare to the feel of Ikaruga? From a designer’s perspective, this is
tied to tuning. Why is one game “ floaty ” while another is “tight and responsive ”? If
a player tells me that my game is floaty, what should I do? How should I change the
variables of my complex system? Is floaty bad? Is it good? What does it mean?

 This section is about measuring the pieces of the game feel process that a
designer can change. By measuring each piece—input, response, context, polish,
metaphor and rules—we can make generalizations about what terms like floaty,
tight, smooth, responsive and loose mean. Not only in a particular game, but across
different games. Once we can measure game feel, we can master it.

xvii

 Practical Examples
 The metrics we developed in Section II are applied to specific games, providing
comprehensive analysis of how the feel of these games function and providing
a template for creating games with similar feel. This section will give you clear,
practical steps for creating a game that feels a particular way. In addition, I have
constructed playable and editable examples for each game (find them at www.
game-feel.com) so you can follow along and experience how the feel of each game
changes and grows.

 Principles of Game Feel
 What principles, if followed, will make all games feel better? This section general-
izes the lessons of the good-feeling examples and measurable pieces of game feel
into a set of best practices for game feel.

 The Future of Game Feel
 This section uses the lessons and definitions of the previous chapters to examine
the input devices, rendering technology and thought problems that will define how
game feel will be used in the future. With deep, expressive interactivity, can we pro-
vide experiences which don’t require the backdrop of skill and challenge? Is it pos-
sible to express things spatially without competition? Could game feel be a form of
deeply personal expression like dance or martial arts?

INTRODUCTION

This page intentionally left blank

1

CHAPTER
 Defining Game Feel

 There is no standard definition of game feel. As players and game designers, we
have some beginnings of common language, but we have never collectively defined
game feel above what’s necessary for discussing a specific game. We can talk about
the feel of a game as being “ floaty ” or “ responsive ” or “ loose, ” and these descrip-
tions may even have meaning across games, as in “We need to make our game feel
more responsive, like Asteroids. ” But if I ask 10 working game designers what game
feel is—as I did in preparation for writing this book—I get 10 different answers. And
here’s the thing: each of these answers is correct. Each answer describes a different
facet, a different area, which is crucial to game feel.

 To many designers, game feel is about intuitive controls. A good-feeling game is
one that lets players do what they want when they want, without having to think too
much about it. Good game feel is about making a game easy to learn but difficult to
master. The enjoyment is in the learning, in the perfect balance between player skill
and the challenge presented. Feelings of mastery bring their own intrinsic rewards.

 Another camp focuses on physical interactions with virtual objects. It’s all about
timing, about making players really feel the impact, about the number of frames
each move takes, or about how polished the interactions are.

 Other designers insist that game feel is all about making the players feel as though
they’re really there, as though they’re in the game. All their efforts go into creating
a feel that seems more “ realistic ” to players, which somehow increases this sense of
immersion, a term that is also loosely defined.

 Finally, to some designers, game feel is all about appeal. It’s all about layering
on effect after careful effect, polishing every interaction—no matter how trivial—
until interacting with the game has a foundation of aesthetic pleasure.

 The problem is unity. How do these experiences become a cohesive whole?
They all tell us something about game feel, but they do not help us define it. St.
Augustine’s comment about defining time comes to mind: “What then is time? If
no one asks me, I know what it is. If I wish to explain it to him who asks, I do not
know. ”

 Game feel is the same way. Without close examination, we know what it is. Try
to define it and the explanation quickly unravels into best practices and personal
experiences.

1

 ONE

CHAPTER ONE • DEFINING GAME FEEL

2

 This book is about how to make good-feeling games. But first we need to be
clear about what game feel is. We need to separate medium from content. We need
a definition that enables us to separate the conditions that are necessary for game
feel from the judgments that make a game feel a certain way.

 What is the underlying phenomenon, apart from our own experiences and
the craft knowledge of building games? What are the building blocks? Just what is
game feel?

 The Three Building Blocks of Game Feel
 Game feel, as experienced by players, is built from three parts: real-time control,
simulated space and polish.

 Real-Time Control
 Real-time control is a specific form of interactivity. Like all interactivity, it includes
at least two participants—in this case the computer and the user—who come
together to form a closed loop, as illustrated in Figure 1.1 , the concept couldn’t be
simpler.

 The user has some intent, which is expressed to the computer in the form of the
user’s input. The computer reconciles this input with its own internal model and
outputs the results. The user then perceives the changes, thinks about how they
compare to the original intent, and formulates a new action, which is expressed to
the computer through another input.

F I G U R E 1.1 Interactivity involves the exchange of information and action between at least
two participants.

3

 In his book, Chris Crawford on Game Design, game designer Chris Crawford
likens this process to a conversation, a “cyclic process in which two active agents
alternately (and metaphorically) listen, think and speak. ”

 The conversation in Figure 1.2 begins when one participant, Bob, speaks. The
other participant, Bill, listens to what was said, thinks about it, formulates a response
and speaks in return. Now it’s Bob’s turn to listen, think and speak, and so on. In
Crawford’s model, a computer replaces one of the participants, “ listening ” to the
player’s input via the input device, thinking by processing that input and changing
system state and “ speaking ” via the screen and speakers (Figure 1.3).

THE THREE BUILDING BLOCKS OF GAME FEEL

F I G U R E 1.2 Interactivity as a conversation.

 However, the metaphor of a conversation between human and computer doesn’t
fit all situations. Real-time control is not like a conversation. It’s more like driv-
ing a car. If a driver wants to turn left, it’s more action than thought. He turns the
wheel in the corresponding direction, using what he sees, hears and feels to make
small corrections until the turn is complete. The process is nearly instantaneous.
The “conversation ” takes place in minute increments, below the level of conscious-
ness, in an uninterrupted flow of command. The result of input feels as though it is

CHAPTER ONE • DEFINING GAME FEEL

4

perceived in the same moment it’s expressed. This is the basis of game feel: precise,
continuous control over a moving avatar.

 This is a starting point for our definition of game feel:

Real-time control of virtual objects.

 The problem with this definition is context. Imagine a ball suspended in a field of
blank whiteness. How would you be able to tell if it were moving? Without the
backdrop of space to move through, there can be no motion. More importantly,
there can be no physical interaction between objects. For the sense of interacting
physically with the game world, there needs to be some kind of simulated space.

F I G U R E 1.3 The conversation between human and computer.

 Playable Example

 If you’re near a computer, open game feel example CH01 - 1 to experience the
necessity of context. This is a first-person shooter game. Use the WASD keys to
move around and the mouse to aim. Can you feel the motion? No? Now press
the “ 1 ” key. With a simulated space, there is feel.

 Simulated Space
 Simulated space refers to simulated physical interactions in virtual space, perceived
actively by the player. This means collision detection and response between a real-
time controlled avatar and objects in a game world. It also means level design—the
construction and spacing of objects relative to the speed of the avatar’s movements.
These interactions give meaning to the motion of an avatar by providing objects

THE THREE BUILDING BLOCKS OF GAME FEEL

5

to move around and between, to bump into, and to use as a frame of reference for
the impression of speed. This gives us the tactile, physical sense of interacting with
virtual environments the same way we interact with our everyday physical spaces.
Using the avatar as a channel for expression and perception, we experience game
worlds at the tactile, physical level of the world around us.

 Playable Example

 Open example CH01 - 2 to experience the difference. Move around and feel the
sensation of control. Now press the “ 1 ” key to enable collisions. Feel how dif-
ferent that is?

 The other necessary component for simulated space is that it must be actively
perceived. Perception happens on a scale of passive to active. The interaction of
objects you see on TV and in films is passively perceived. Exploring a simulated
space using real-time control is active perception. Game feel is active perception.

 The key question is “How does the player interact with the space? ” Some games
have detailed collision/response systems and level design, but the player does not
experience them directly. Starcraft is an example of a game like this, as we’ll see
in a moment. In other games, space is an abstraction. Games with grids, tiles and
hexagonal movement use space abstractly. This is not a simulation of space in the
literal sense, which is the sense we’re after. Game feel as we’re defining it means
active perception of literal space.

 If we add the concept of context to our definition, it becomes:

Real-time control of virtual objects in simulated space.

 This definition is close, but with it we are ignoring the impact of animations,
sounds, particles and camera shake. Without these “ polish ” effects, much of the feel
of a game is missing. There are objects interacting with only simulated responses
giving clues about whether they’re heavy, light, soft, sticky, metallic, rubber and so
on. Polish sells interaction by providing these clues.

 Polish
 Polish refers to any effect that artificially enhances interaction without changing
the underlying simulation. This could mean dust particles at a character’s feet as it
slides, a crashing sound when two cars collide, a “camera shake ” to emphasize a
weighty impact, or a keyframed animation that makes a character seem to squash
and stretch as it moves. Polish effects add appeal and emphasize the physical nature
of interactions, helping designers sell those objects to the player as real. This is
separate from interactions such as collisions, which feed back into the underlying

CHAPTER ONE • DEFINING GAME FEEL

6

simulation. For example, if you take away the animations from Street Fighter II, you
end up with something like Figure 1.4 .

 If all polish were removed, the essential functionality of the game would be unal-
tered, but the player would find the experience less perceptually convincing and
therefore less appealing. This is because—for players—simulation and polish are
indistinguishable. Feel can be just as strongly influenced by polish effects as by a
collision system. For example, a simple squash and stretch animation layered on top
of a moving avatar can radically change the feel of a game, as the creators of the
popular student game De Blob discovered. A post from Joost Van Dongen reported
that “When the ball bounces or moves very fast, it slightly deforms, and while roll-
ing it slightly sags. On screenshots this is quite a subtle effect, but when seen in
action, it really looks fun. An interesting detail is that it changes the feel of the
gameplay entirely. Without the squash-shader, the game feels like playing with a
ball made of stone. Then with no changes to the physics at all, the squash-shader
makes it feel much more like a ball of paint. Nice to see how the player can be
deceived about gameplay using graphics only ” 1 (see Figure 1.5).

 Assembling these three elements—real-time control, simulated space and
polish—into a single experience, we arrive at a basic, workable definition of
game feel:

Real-time control of virtual objects in a simulated space, with interactions
emphasized by polish.

 The player controls the avatar, the avatar interacts with the game environment and
polish effects emphasize those interactions and provide additional appeal.

 Examples
 The question that naturally follows is “Does game X have game feel? ” With our
basic definition, we can classify most games this way. For example, Sonic the
Hedgehog has game feel while Civilization 4 does not. Sonic has real-time control
while Civ 4 is turn based, placing it outside our definition. But to say that Civ 4 has

 1 http://www.gamedev.net/community/forums/topic.asp?topic_id � 401276

F I G U R E 1.4 Street Fighter II without animation: just weird fighting boxes.

THE THREE BUILDING BLOCKS OF GAME FEEL

7

no feel whatsoever seems wrong. It has polish effects—animations, sounds and par-
ticles—and these alter the feel of interacting with the game, especially when things
are clicked and when armies clash.

 What this indicates is that there are different types of game feel (Figure 1.6).

F I G U R E 1.5 Squash and Stretch in De Blob.

 1. In the center, where all three intersect, is true game feel. Games like Half-Life,
Sonic the Hedgehog and Super Mario 64 reside here. These games have all the
components of game feel as we’ve defined it. This type of game feel is the topic
of this book.

 2. This is raw game feel. Even without polish effects, the simulation of collisions
gives the experience of physical interaction between objects. But much of the
appeal and sense of physical interaction is lost. Games are almost never released
without polish effects, but you can play example CH01-3 to get a sense of what
this feels like (press the “ 2 ” key once you’ve opened the game).

 3. This is pure aesthetic sensation of control. There is polished real-time control,
but no substance to the interactions. This feels weird. With sounds and particles

CHAPTER ONE • DEFINING GAME FEEL

8

but no simulated interaction, it’s like seeing behind the curtain. There’s a disso-
nance for the player. The particle effects and sounds convey some impression of
a physical reality, but there’s a mismatch between the motion of the object and
the polish clues. Without simulation, it’s difficult to create a sensation of physi-
cal interaction. There are rarely games that have this combination of real-time
control and polish, but which exclude spatial simulation. (To experience this,
press the “ 3 ” key in example CH01-3.)

 4. This is physical simulation used for vicarious sensation and to drive gameplay.
Games like Peggle, Globulos and Armadillo Run use simulation this way. In
these games, there’s a detailed physical simulation driving interactions between
objects but the resulting sensations are perceived passively because the player
has no real-time control. In the same way, polish effects like sounds and par-
ticles may serve to emphasize the interactions between objects or make them
more appealing, but these sensations are perceived passively, as they would be
in a film or cartoon. (Press the “ 4 ” key to experience this in example CH01-3.)

 5. This is naked real-time control, without polish or simulated space. Again, I can’t
think of an example of a game that uses only real-time control without any kind
of polish or simulation effects. (To experience this you can press the “ 5 ” key in
example CH01-3. It’s interesting to noodle around, but the motion doesn’t have
a lot of meaning or appeal without simulation and polish.)

 6. This is naked spatial simulation. The best example of this I’m aware of is the
freeware game Bridge Builder. There is a physical simulation driving the motion
of the objects, but is perceived passively.

 F I G U R E 1.6 The intersection of the building blocks creates a wide range of levels of game feel.

THE THREE BUILDING BLOCKS OF GAME FEEL

9

 7. Finally, there is naked polish. Games like Civilization 4 and Bejeweled use polish
effects this way, without real-time control or spatial simulation. 2 In these games,
polish effects sell the nature of the interactions, giving objects a weight, pres-
ence, volume and so on, but these perceptions are indirect.

 Now let’s apply. Where does, say, Starcraft sit on the diagram?
 At first glance, Starcraft appears to have real-time control. You can click at any

time to specify new orders for your units. While moving units, you can update their
destination as quickly as you can spam clicks onto the screen. But control over the
units is not an uninterrupted flow from player to game. Each click is a momentary
impulse of control that ends as quickly as it starts. You set the destination but don’t
guide the journey. This is not quite real-time control in the sense we’re after.

 There also appears to be a simulated space Starcraft. Units can run into cliffs,
structures and rocks. But precisely those things that would lend a physical, tactile
sensation—steering around objects, aiming and choosing when to fire—are handled
by the computer. This is a simulated space with collisions and interactions, but per-
ceived indirectly by the player.

 The one thing Starcraft has in abundance is polish. The units have detailed ani-
mations, sounds and particles that sell their interaction with the game world and
each other. The feel of Starcraft comes from these polish effects, and it is solid.
Zerglings scamper, Marines trudge and everything explodes spectacularly when
destroyed. This puts Starcraft on the Venn diagram in 4, the intersection of spatial
simulation and polish.

 This is not true game feel. The control of units is not real time, and the player
cannot interact with the simulated space directly. Because it has only one of the
three criteria, Starcraft falls outside our definition for game feel. Okay, okay. Breathe.
Be calm.

 Before you get your Zerglings in a bunch, remember that definition is not value
judgment. We’re defining the medium of game feel, not saying anything about good
or bad game feel or about whether a game is good or bad generally. The anima-
tions, sounds and particle effects in Starcraft are excellent, and as a game it’s unri-
valed in terms of balance and system design.

 For the purposes of this book, “game feel ” means true game feel, the point at the
center of our diagram. That is, games that includes real-time control, spatial simulation
and polish. This book is about creating good-feeling games of that particular type.
The other kinds of feel are important, but we have to draw the line somewhere.

 But what about a game like Diablo? This is where our definition gets a little
murky. Does Diablo have real-time control or not? It seems real time, but the inter-
face is lots of clicking. What’s the threshold for real-time control? And what about
simulated space? The character in Diablo walks around and bumps into things, but
is this actively perceived by the player? Does it feel like navigating an everyday

 2 Actually, both of these games make use of a mouse cursor, which is a form of real-time control. In
these cases, though, the cursor is intended to be a transparent interface to the interesting choices in the
game. The usage is more like using Web page than playing Cursor Attack.

CHAPTER ONE • DEFINING GAME FEEL

10

physical space? We’ll delve deeper into real-time control and simulated space in
Chapter 2 to answer these questions.

 So what can we do with this definition and the three building blocks of game
feel? To answer that question, let’s now shift focus back to content, to expression
and to the experience of game feel itself. Specifically, let’s go through some of the
different experiences of game feel and examine how game designers can craft them
using real-time control, simulated space and polish.

 Experiences of Game Feel
 Game feel is comprised of many different experiences. For example, the simple
pleasure of control, feelings of mastery and clumsiness, and the tactile sensation of
interacting with virtual objects might all happen within a few seconds of picking up
the controller. What we call game feel is the sum of all these experiences blended
together, coming to the surface at different times. To understand game feel we need
to understand the different experiences that comprise it; what they are, how they
are crafted and how they interrelate.

 The five most common experiences of game feel are:

 ● The aesthetic sensation of control

 ● The pleasure of learning, practicing and mastering a skill

 ● Extension of the senses

 ● Extension of identity

 ● Interaction with a unique physical reality within the game

 The Aesthetic Sensation of Control
 When I was young, playing Frogger and Rastan on my dad’s Commodore 64, game
feel was a toy. It was the delightful sense of puppetry I got when I controlled some-
thing in a game. But it felt like the game was controlling me, too. I’d start lean-
ing left and right in my chair, trying to move just a bit faster or more accurately.
I’d pull my head a little to one side to try to see around something on the screen.
Most of all, it just felt great to see something on a screen move and react to my
button presses. I wasn’t coordinated enough to really engage with the challenge of
the game, but there was a pure, aesthetic beauty to control. I loved this sensation
and played with it for hours. This was the experience of game feel as an aesthetic
sensation of control.

 The Pleasure of Learning, Practicing and Mastering a Skill
 A few years later, when I played Super Mario Brothers for the first time, I was super-inept.
I was playing with friends from down the block who were older and more coordinated
and could afford their own Nintendo. My turn was short, blustering and red-faced.

11

However, before I had to hand off the controller, I had the sense that even the smallest
motion could produce a long chain of interesting events and feel intensely rewarding.
Smash a block with your head and it jiggles and makes a silly little noise. Hit an
attractive, flashing question block in the same way and a coin pops out, accompanied
by a shower of sound and animation. All of this rich, low-level interaction served to
cushion the fact that, at first, the game was very challenging for a nine-year-old. It
was OK to suck because it was fun just to noodle around and bump into things.

 There even seemed to be different skills, the same way you practice dribbling,
kicking and heading in soccer. For example, I had to learn to time my jumps, hold-
ing down the button for the right amount time, and to feather my presses of the
d-pad to control speed. Combining small, incremental improvements in these areas,
I started to get better and better, reaching higher levels of the game. Three weeks
later, when Bowser tumbled bug-eyed into the lava, I felt a powerful sense of
accomplishment, like scoring the tie-breaking goal. I’d been playing soccer for two
years, but this game gave me the same feeling of pride in just three weeks. In one
neatly wrapped package, there were skills to master, rewards at every level and a
hyper-accelerated ramp of increasing challenges upon which to test those skills.
Even better, I didn’t have to stop practicing because I was tired or because it was
dark outside. This was the experience of game feel as a skill.

 Extension of the Senses
 I grew up a bit and learned how to drive a car. This learning was very similar to
mastering the controls of a new game, but it seemed to take longer, to be less fun
and to lack built-in milestones against which I could measure my progress. After a
while, I began to develop a sense of how far the car extended around me in each
direction. I could gauge how close I could drive to other cars and whether or not my
car would fit into the parking space in front of Galactican. 3 To do this, I relied on a
weird sort of intuition about how far the car extended around me, which made the
car feel like a large, clumsy appendage. This was also like playing a game in a funny
way. When I drove the car, as when I played Bionic Commando, I had a sense that
thing I was controlling was an extension of my body. This was the experience of
game feel as an extension of the senses.

 Extension of Identity
 After a memorable incident involving my parents ’ Volvo I realized that this sen-
sation could flow in both directions. Late for class, I leapt in the car, threw it in
reverse and slammed the gas, turning as I did. Scraaaaaape! I cringed, flinched and
swore viciously. I pulled my hands off the steering wheel as though it were scald-
ing hot. I had just smeared the car’s side against a concrete pole. I still remember

 3 A now defunct but once totally sweet arcade in Cupertino, Calif. You got eight tokens on the dollar, all
the games were two tokens or less to play, and they had four-player air hockey.

EXPERIENCES OF GAME FEEL

CHAPTER ONE • DEFINING GAME FEEL

12

the feeling as the car ground to a halt. It was as though I’d stubbed my toe in a
big, expensive, metal-rending way. Interestingly, I didn’t think “Oh, darn, the car
in which I’m sitting has come into contact with a concrete pole. ” I thought “ Oh,
crabapple, I hit a pole! ” In that moment, when car hit pole, the car was part of my
identity, both physically and conceptually. Then I thought of my parents ’ reaction,
and I was quickly snapped back to thinking of car and self as separate. One of us
was in big trouble, and it wasn’t the Volvo.

 Around this same time, I was playing Super Mario 64. It occurred to me after
pole-ing the car that a similar process happened as I controlled Mario. My identity
would subsume him when I was in the zone but the moment I hit a Goomba and
was sent flying, I was suddenly pulled out, viewing him once again as a separate
entity. This was the experience of game feel as an extension of identity.

 Interaction with a Unique Physical Reality within the Game
 This also made me more aware of just how physical it felt to pilot Mario around.
As Mario obligingly collided with things in his world, skidding to a halt with puffs
of particle dust or a spray of yellow stars, it felt tactile and physical. These artifacts
gave me a sense of the weight and mass of the things in Mario’s world, as did his
interactions with them. Some things he could pick up and throw easily, like a small
stone block. Some things, like Bowser, 4 required considerably more heft. Sometimes,
things would seem heavier or lighter than I imagined they ought to be. For example,
the eponymous snowman’s head from the Snowman’s Lost His Head goal on Cool,
Cool Mountain. The snowball is small, especially at first, and yet it pummels poor
Mario out of the way every time. This too seemed to have an analogy in the real
world: sometimes I would go to pick something up—a grocery bag, a piece of furni-
ture that was rarely moved—and nearly pull my arm out of socket trying to heft the
thing because it was much heavier than I had expected. This was the experience of
game feel as a unique physical reality.

 The Experiences of Game Feel
 The aesthetic sensation of control is the starting experience of game feel. It is the
pure, aesthetic pleasure of steering something around and feeling it respond to
input. When players say a game is floaty, smooth or loose, this is the experience
they’re describing. An analogy from everyday life might be the feel of different cars;
a 2009 Porsche feels better to drive than a 1996 Ford Windstar.

 Experiencing game feel as skill encompasses the process of learning. This
includes the clumsiness of unfamiliar controls, the triumph of overcoming challenge,
and the joy of mastery. Viewing game feel as a skill explains how and why players
experience the controls of a game differently as their skill level increases, what “ intu-
itive controls ” means, and why some control schemes are easier to learn than others.

 4 When temporarily immobilized and grabbed by the tail, of course.

13

The everyday analogy is learning a new skill, whether it’s driving a car, juggling or
slicing carrots.

 Skillful control can also lead to the feeling of being in the zone, being one with
the game and the loss of self-consciousness. If you’ve played a video game and lost
track of time, you’ve experienced this sensation. You sit down to play a game for
a few minutes and zone out only to emerge hours later, exhausted, elated and ful-
filled. In everyday life, this happens all the time. You can zone out while driving on
the freeway, folding socks or playing basketball.

 When players say “It feels like I’m really there, ” “It’s like I’m in the game ” and
“The world looks and feels realistic, ” they’re experiencing game feel as an exten-
sion of the senses. The game world becomes real because the senses are directly
overwritten by feedback from the game. Instead of seeing a screen, a room and a
controller in their hands, they see Azeroth, the beach at Normandy or Donut Plains.
This is because an avatar is a tool both for acting on the world and for perceiving it.
There’s no real-life example of this experience because the experience is the senses
extending into the game, into a virtual reality.

 One result of this extension of the senses into the game world is the shifting of
identity. Players will say “I am awesome! ” during moments of skillful triumph and
“Why did he do that!? ” when they fail a moment later. With real-time control over
an object, a player’s identity becomes fluid. It can inhabit the avatar. The real-world
analogy is identity subsuming a car. You don’t say, “His automobile hit my automo-
bile. ” You say, “He hit me! ”

 As the player’s senses are transposed into the game world, they can also perceive
virtual things the way they perceive everyday things: through interaction. In perceiving
things in a game this way, objects seem to take on detailed physical characteristics.
Objects can be heavy, sticky, soft, sharp and so on. When a player observes enough of
these interactions, a cohesive picture of a self-contained, unique physical universe
begins to emerge as the various clues are assembled into a mental model. This is the
experience of game feel as a unique physical reality, as a game world with its own
designer-created laws of physics. Figure 1.7 shows the whole thing put together.

F I G U R E 1.7 How building blocks of game feel translate into experiences.

EXPERIENCES OF GAME FEEL

CHAPTER ONE • DEFINING GAME FEEL

14

 Creating Game Feel
 For the remainder of the chapter, let’s explore each of these different experiences in
detail, with focus on how the game designer can shape and build them.

 Game Feel as the Aesthetic Sensation of Control
 There can be a thoughtless joy to controlling something in a game. People experience
this while riding a skateboard, surfing, ice skating or driving a car. It’s the kinetic
pleasure of moving through space, creating flowing arcs of motion and feeling your
body or the thing you’re controlling respond instantly to your impulses. Even without
a specific goal in mind, there is this intrinsic pleasure to control. These sensations of
control have some known aesthetic properties, as in the earlier example of the
Porsche and Ford Windstar. The Porsche is smoother, handles better, has tighter cor-
nering and so on. In a video game, the same aesthetic properties of control are in
play. An avatar in motion can create flowing, organic curves as it moves and enable
a player to feel the aimless joy of control. These sensations are what players mean
when they say a game feels smooth, floaty or stiff. These sensations are a wonder-
ful palette for game designers to draw on and use to engage players (Figure 1.8).

 When a game designer sits down to create a game and has an idea for a particu-
lar feel in mind, the first task is mapping input signals to motion. The expressive
potential is in the relationships. When a button gets pressed, is the response gradual
or immediate? Does the avatar move forward relative to the screen or relative to

F I G U R E 1.8 The aesthetic sensation of control.

15

itself? Or does it rotate rather than move? How fast does it move forward relative to
its rotation? With the right relationships between input and response, controlling
something in a game can achieve a kind of lyric beauty. The flip side is jarring, nau-
seating or otherwise aesthetically unappealing motion resulting from player input.

 This mapping is a form of aesthetic expression. It defines how it will feel to con-
trol the avatar. As with most artistic endeavors, there’s no formula for the “ right ”
feel. It’s up to the designer to make the hundreds of tiny judgments about the intri-
cate relationships between input and response. We’ll explore this palette of mapping
and how it translates to game feel in greater detail in Chapter 7. For now, note that
these are aesthetic judgments, and the resulting feel is an expression of the design-
er’s sensibilities.

 Now imagine all the motions possible with one mapping. Every turn, twist, jump
and run. The sum total of all motions possible with a mapping defines a possibility
space for the player. This is not defining what a player will do; rather, it is defining
what he or she can do. Every movement a player can ever accomplish with an ava-
tar is defined by the designer’s choices about how to correlate input to response.

 Each of the potential motions has an aesthetic character that will be experienced
by the player if he or she steers the avatar through that action. This aesthetic pleas-
ure has its own intrinsic reward and will encourage a player to explore the possibil-
ity space by moving around in whatever way seems most aesthetically pleasing to
them. The problem is, without some kind of focus, even great-feeling controls will
quickly wear thin.

 For a game designer, the solution to this problem is to add some kind of chal-
lenge. With a goal, motions of control take on a new meaning. Now it’s possible to
compare intent to outcome. It’s possible to succeed or fail. The aesthetic pleasure of
control has become a skill.

 Game Feel as Skill
 As I’m defining it here, a skill is a learned pattern of coordinated muscle movement
intended to achieve a specific result. To measure skill is to measure the efficiency
with which intent can be translated, via action, into results.

 If you’re playing soccer, your intent may be to dribble through all the other play-
ers on the soccer field and bend the winning goal past a floundering goalkeeper. In
reality, this is one of many possible outcomes. It is much more likely that your skill
will not be up to this level of challenge, and you will be stripped of the ball before
you can get to the center line. But skills can be improved, and increasing levels of
challenge can be mastered. If your goal is to dribble past one defender and make
a deft pass to an open teammate, your odds of achieving that are relatively good.
While this may not be the glowing level of pleasure you’d get from scoring the goal
yourself, there are great feelings to be had from small, incremental victories. Even a
particularly skillful kick or dribble while practicing in the backyard can feel wonder-
ful because you know it can be later applied in the context of a soccer game. Soccer

CREATING GAME FEEL

CHAPTER ONE • DEFINING GAME FEEL

16

is a set of challenges so compelling that isolating and practicing the skills seems
worthwhile even outside the context of the game.

 This is similar to the experience of playing Counter-Strike. I was so compelled by
the challenges of the game, I would boot up the level “cs_italy ” without other players
and practice three skills: shooting a specific spot on a wall while moving side to side,
quickly moving my aiming cursor from one spot to the next; and keeping the cursor on
a single spot while I moved left, right, forward and back. I would sit in the level, alone,
practicing these three skills for two to three hours before I would ever play the game
online. It seemed worthwhile to push myself into different, higher levels of skill.

 What this indicates is that game skills and real-world skills are essentially the same.
They are learned patterns of coordinated muscle movements. The muscle movements
are smaller, the skills are more focused and the motions are not constrained by
physical reality, but the same process of learning and skill-building occurs. The pri-
mary difference is that a video game designer has control over both challenge and
physics. In the real world, there are a fixed set of properties—gravity, friction, the
physiology of the human body and so on. The designers of soccer, whoever they
were, had to work around these fixed properties to create interesting, meaningful
challenges. Their palette consisted of lines on the ground, the size of the net, the
physical properties of the soccer ball and rules like “you can’t touch the ball with your
hands. ” Minh “ Gooseman ” Le, the designer of Counter-Strike, was able to craft eve-
rything. He not only created the rules and challenges of the game, but also defined
how fast players could move, how high they could jump, how accurate their weap-
ons would be and what the values for gravity and friction would be in the game.

 Tweaking how the player moves and the creation of challenges both alter game
feel. Changing the global values for gravity, friction and speed of character move-
ment defined the basic sensation of control. Adding rules and challenges then
changed this sensation by defining a set of skills to be practiced and mastered. The
question is, how? How is skillful control a different experience from just control?

 The answer is that game feel and skill are related in three ways:

 ● Challenge alters the sensation of control by focusing the player on different areas
of the possibility space of motion, rewarding him or her for exploring it.

 ● The feel of game changes depending on the skill of the player.

 ● Players find controls to be intuitive when they can translate intent to outcome
without ambiguity.

 Challenge Alters the Sensation of Control
 From the point of view of a game designer, there is a problem even with the
best sensations of control. Controlled motion is pleasurable, but that pleasure is
fleeting. Even if the game feels great, aimlessly controlling something gets boring
quickly (Figure 1.9).

 Part of the problem is that if the aesthetic pleasure of control is the only encour-
agement, the player will experience just a small subset of the possible motions. If we

17

again imagine every possible motion of a mapping as a possibility space, the area
explored by a player will be limited, as in Figure 1.10 .

 However, with a specific goal to pursue, control takes on new meaning. Aimless,
pleasurable motion is replaced by focused, purposeful attempts to complete the
challenges presented. This provides an incentive for players to find new areas of the
possibility space, introducing them to sensations of control they would have missed
otherwise. Challenge provides landmarks in the distance, encouraging the player to
explore the aesthetic frontiers of the game.

 For example, a first-time player of Super Mario World will not experience all the
sensations of the flying mechanic. It takes a lot of practice to learn the timing of
feathering the button at the right moment, sustaining Mario in his sine wave pat-
tern of flight. And yet this is one of the most pleasurable sensations of control in the
entire game. Having access to this sensation—even just being aware of it—makes
the game more appealing and engaging (Figure 1.11).

F I G U R E 1.9 Without focus, the joy of control can become boring.

F I G U R E 1.10 Players only experience as much of a game’s feel as the area of this space they
feel inclined to explore.

CREATING GAME FEEL

CHAPTER ONE • DEFINING GAME FEEL

18

 Challenges not only encourage exploration of all possible motions, but assign
new meaning to them. This changes the feel of control. For example, think of a
mouse cursor. This is a form of real-time control so engrained that we rarely notice
ourselves exercising it. But against the backdrop of a different challenge, mouse con-
trol can take on a different feel, as in the Web game Cursor Attack. Cursor Attack
requires the player to move the cursor in a very precise path as quickly as possible
to reach a goal point. Normally, the goal of using a mouse is to navigate a Web
page effectively and buy things like a good consumer, or to click, drag or otherwise
manipulate the programs on your computer. In Cursor Attack there is an explicit
goal (reach the end of the maze by touching the goal point) and an implicit goal
(go as fast as you can.) The constraint is touching the wall of the maze, which
causes an immediate game over. The result is a feeling of complete focus on the
tiniest motions of the mouse. This feels very different from navigating a Web page.
It makes the mouse cursor’s movement feel very twitchy and much less precise.
The cursor’s size and its position in space suddenly become much more important.
The skill requires a great deal of concentration, like threading a needle or try-
ing to draw a perfect circle on a chalkboard. Just by changing two goals and one
constraint, the feel of controlling a mouse cursor is new, fresh and interesting.
Fortunately for game designers, real-time control lends itself to the creation of these
kinds of challenges (Figure 1.12).

 Challenges consist of two parts: goals and constraints. Goals affect feel by giving
the player a way to measure his or her performance. With a goal, it’s possible to
fail or succeed. It’s also possible to fail partially, and to do better or worse than the
last attempt. This creates players’ nebulous perception of their own skill, their own
ability to translate intent into reality. Depending on this perception, the feel of the
game will fluctuate between clumsy and intuitive. In addition, the nature of the goal
shapes the players’ focus. As in Cursor Attack, the feel of real-time control changes
depending on how the player is tasked with applying it. Does the goal require the
player to make extremely precise, specific motions like Cursor Attack, or is it more
wide open like Banjo Kazooie? How fast do the characters move, how far apart are

F I G U R E 1.11 With challenges, there is a reason to explore more of the possible sensations
of a particular mapping.

19

the objects they’re being asked to move in reference to, and are they meant to avoid
them, collect them or touch them lightly? This is much of the art of game design as
it pertains to game feel: what the players are supposed to do is as important as the
controls that enable them to do it.

 A single goal can create multiple layers of intentions. For example, a high-level
goal like “reach the top of the mountain ” may require many steps to execute. But
eventually it all trickles down to the level of real-time control. Reaching the top of the
mountain means swinging to the next pole, and the next and so on (Figure 1.13).

 Constraints affect game feel by explicitly limiting motion. Instead of emphasizing
a motion, a constraint selectively removes some motions from the possibility space.
For example, the sidelines on a football field eliminate some possible motions,
rewarding players who can quickly change directions side to side and who are good
at exploiting gaps in the opposing team’s defense. If there were no sidelines in foot-
ball, a player could run endlessly in a direction to evade defenders and the essential
skills would change. The same is true when we say that hitting an asteroid causes
you to lose a life in Asteroids. By limiting motion, the player is again focused on
particular motions, which changes the feel of control.

F I G U R E 1.12 Challenges give meaning to motion, enabling sensations of control to sustain
engagement across a whole game.

CREATING GAME FEEL

CHAPTER ONE • DEFINING GAME FEEL

20

 These two tools, constraints and goals, enable game designers to shape real-time
control into a specific feel. Goals emphasize certain parts of the possible motion
while constraints specifically eliminate others. The result is the feel as the game
designer wanted it to be.

 But what should the game designer’s desired feel be? This is up to the designer,
of course, but I find this question often answers itself through experimentation. With
a prototype of real-time control featuring an avatar moving around an explora-
tory space with lots of different shapes, sizes and types of objects to interact with,
control organically evolves into skills and challenges. Can I get up to the top of
that mountain? Can I fly between these buildings without hitting them? Can I
jump across this gap? What I’m looking for in such a prototype are the best-feeling
motions and interactions. In this way, the job of a game designer in crafting game
feel is to explore the possibility space of a new mapping, emphasizing the good
with goals and pruning the bad with constraints.

 Game Feel Changes Depending on the Skill of the Player
 When picking up the controls of an unfamiliar game, a player will feel inept, clumsy
and disoriented. To an expert player, the same game will feel smooth, crisp and
responsive. The game’s controls will always be the same from an objective stand-
point—the cold precision of programmed bits allows no other reality—but feel will
change for the players depending on how well they can translate their intention
into game reality. Each player will start at a slightly different skill level depending
on past experience and natural aptitude, will learn at a different rate and will attain
different heights of skill depending on how much her or she practices. This means

F I G U R E 1.13 A goal trickles down to become different layers of intent.

21

that even for a single player, the feel of a game will change over time. This variabil-
ity makes the feel of even a single game controversial. The argument goes like this:

Internet Denizen 1: “Whenever I think of what the perfect ‘ feel ’ for a game is,
I think of Super Mario 64. Other than the camera, the controls were perfect. ”

Internet Denizen 2: “ God, I hated Mario 64, the controls were terrible! ”

Internet Denizen 1: “ You don’t like the controls because you suck at it, n00b! ”

 Because both parties are correct, this argument will never be resolved. For Denizen
2, who was unable or unwilling to master the controls of the game, the feel was
clumsy and unresponsive. Denizen 1’s point of view is equally valid. For him, con-
trolling Mario felt like extending himself into the game world, every movement
becoming as accurate an expression of his intent as turning a steering wheel or
swinging a baseball bat in real life. The point he’s making—that without reaching
a certain level of skill a player cannot appreciate the feel of a game—is valid. This
is true both for soft, emergent skills like rocket jumping in Quake and for deeply
nested controls such as the blue sparks in Mario Kart DS. When you’re new, you
don’t use all the moves. In this sense, skill is the price of admission for game feel.

 But there are also instances when players learn to play a game at a very high
level and will still say it feels bad to control. For me, the arcade classic Pac-Man
embodies this paradox. I enjoy the game, but from an aesthetic point of view, the
feel of moving Pac-Man around the maze is stiff, rigid and unappealing. For the
opposite reason, a friend of mine never enjoyed Asteroids. The looping grace of
the ship is aesthetically pleasing to control, but the skills of avoiding asteroids and
shooting alien spacecraft were too unappealing to be worth learning. This implies
a relationship between these two different experiences of game feel: the base, aes-
thetic pleasure of control and the sensations of learning, practicing and mastering
a skill. This relationship is cyclical, extends across the entire time a player plays a
game and changes game feel constantly. The cycle looks something like Figure 1.14 .

 When players first pick up a game, they suck. Players know this and accept
it—skill is the price of admission—and they trust in the game designer. “If I take
the time to learn this and agree to suffer through some frustration, ” the player says,
“you agree to give me some great experiences later. ” The feel at this point is clumsy,
disorienting and bad. It takes a great deal of conscious effort to perform the most
basic tasks in the game. The pure aesthetic pleasure of control can be used as a
tonic here, soothing frustration until the first success, but every game starts this way
for a new player. Every new player feels clumsy, disoriented and frustrated during
the initial learning phase.

 Over time, skills are mastered and get pushed down below the level of conscious
processing. The player gradually improves relative to the challenges presented, and
the feel gets better and better. Eventually, the player learns the skills well enough
and breaks through, completing the current goal. Without the oppressive feeling
of clumsiness, the aesthetic sensations of control come to the forefront, combining
with the satisfaction of a challenge overcome to provide a reward for reaching this

CREATING GAME FEEL

CHAPTER ONE • DEFINING GAME FEEL

22

level of skill. Then the next challenge is introduced and the cycle starts again. The
clumsy feel of being unskilled relative to the challenges provided once again over-
whelms the aesthetic pleasure of control.

 Objectively, skill always improves over time. Subjectively, players will feel that
the controls are alternately clumsy and intuitive depending on how their skill relates
to the challenges the game is currently throwing at them.

 The best game designers create feel at different levels of skill. By knowing the
skill of the player and what he or she is thinking about and focusing on, a clever
designer can tune game feel differently at each level of skill. This insight into a
player’s skill might come from knowing which level the player is currently on, from
which items are currently in the player’s inventory or from extensive play testing in
a multi-player game. For example, if a player is on level 12 and the progression of
levels is linear, you can assume he or she has mastered the skills necessary to com-
plete the first 11 levels. You know the skill that was learned last (what the player
will be focused on), which skills are completely reflexive (those already mastered)
and which skills have not yet been encountered. With this knowledge, it’s possible
to shape the feel of a game across time. Guiding the player this way, a designer can
leave breadcrumbs strewn across the possibility space of motion, emphasizing the
best possible sensations of control while maintaining a balance of skill and chal-
lenge. When the player has achieved the highest level of mastery, the game will
have fulfilled the designer’s goal for the best possible game feel.

F I G U R E 1.14 The cycle of skill and game feel. As the player’s perceieved level of skill
changes, so does the feel of control.

23

 For this to work, however, players must never get so bored or frustrated that they
stop playing. If this delicate balance between player skill and game challenge is per-
fectly maintained, players will enter the flow state.

 Flow theory says that when a challenge you undertake is very close in difficulty
to your current level of ability, you will enter the flow state, which is character-
ized by a loss of self-consciousness, a distorted perception of time and a host of
pleasurable sensations. Researcher Mihayli Csikszentmihalyi (pronounced “chicks-
sent-me-high ”) correlated these sensations with athletes, dancers and world-class
chess players being “in the zone ” and having things “just flow. ” The gist is that
when your ability matches really well to a particular challenge you can enter the
flow state. If your skill is much greater than the challenge offered by a given activ-
ity, you’ll be bored. If your skill is far below the level of the challenge provided,
you’ll be frustrated. (See Figure 1.15 .) Or, as in the case of rock climbing and other
dangerous activities, you’ll be anxious. Csikszentmihalyi says that “Games are the
flow experience par excellence, ” and for good reason. Video games especially have
numerous advantages in creating and maintaining flow, such as providing clear
goals; a limited stimulus field; and direct, immediate feedback. 5

 From the perspective of game feel, flow is one of the ideal experiences. When
players refer to being immersed in the game, part of what they’re experiencing is
flow. As the original researchers of flow discovered, entering the flow state and stay-
ing there is one of the most rewarding experiences it is possible for people to have.
From surgeons to painters to rock climbers, everyone who experienced flow regu-
larly was happier, healthier, more relaxed and more energetic. And they knew it,
loved it and sought out flow-producing activities because of it. In a video game or
in real life, fueling this addiction requires taking on ever-greater challenges to match
ever-increasing skills. As these higher levels of skill and challenge are reached, the

 5 For a detailed description of the flow state, how you can tell if someone is entering or exiting it, how it
enriches people’s lives, and the conditions necessary to achieve it, reference Csikszentmihalyi’s original
work on flow, Beyond Boredom and Anxiety .

F I G U R E 1.15 The flow state: when challenge and skill are balanced for maximum player
engagement.

CREATING GAME FEEL

CHAPTER ONE • DEFINING GAME FEEL

24

sensations of control change. A professional Counter-Strike player, like a profes-
sional soccer player, feels the game differently.

 Intuitive Controls
 Unlike real life, players may begin to feel that the controls are not accurately translat-
ing their intentions into the game. This is another place where game skills are slightly
different from real-world skills. In real life, if you try to kick a ball and completely
whiff it, you’ve no one to blame but yourself. In a game, the blame can actually lie
with the game designer.

 What’s important is the player’s perception: is the inability to translate intent into
desired reality because of his or her lack of skill or some problem with the game?
Players often blame the controls when they don’t get the result they intended and
sometimes this blame is justified. A game designer is unlikely to map an input to a
random result, but there are many instances when unintentional control ambiguities
disrupt the sensation of control by making the player feel as though the game is not
accurately responding to their input.

 When this happens, when the player feels the game is not accurately translating
his or her intention into the game world, it’s one of the worst feelings possible. It’s
game feel anathema. This sensation is the opposite of what players mean when they
say “ intuitive controls. ”

 Intuitive controls mean near-perfect translation of intent into game reality.
Players will be able to translate their intent into reality with varied degrees of effi-
ciency, based on their skill. If the thing you’re controlling does what you want and
expect, accurately translating your impulses into the game, the controls are intui-
tive. Control over the avatar feels like an extension of your own body into the game.

 There is a distinction between challenge (which makes the game more difficult
in the dimension of skill) and interference (which obfuscates intent arbitrarily). Put
another way, as long as the result of an action is predictable, the goals clear and the
feedback immediate, it will fall on the scale of challenge. If not, it’s interference,
noise in the channel between the player’s intent and the game’s reality.

 When constructing a game mechanic, designers seek the ever-elusive worthwhile
skill. It’s intuitive and easily learned, but deep. It has a lyric, expressive quality, but
you can hang a game’s worth of challenges on it and it never gets stale.

 Game Feel as an Extension of the Senses
 To play a video game is often to focus intently on a screen, to the exclusion of
all else. While this may cause consternation among parents, educators and career-
minded politicians, what’s happening is not a trance, but a transposition of senses.
The screen becomes the player’s surrogate visual sense. Instead of looking around
and seeing a TV, a couch and their hands on a controller, players look through the
screen into the game world. When players sit and stare, they are not catatonic.

25

Rather, they’ve substituted their visual sense for one in the game world, extending it
outward to a new place. They’re looking around, keenly aware of their surroundings
in the game. This is because an avatar in a video game is a kind of tool; it provides
both a potential for action and a channel for perception.

 Consider a hammer. When you hit a nail with hammer, you can see the nail
head get lower and you can hear the pitch change with each strike, driving the nail
downward. These are direct perceptions. But you can also feel the nail through the
hammer. With each strike, you can feel the nail driving deeper, whether you’ve hit
it square on, whether the nail is beginning to bend and so on. Tactile feedback is
coming back to you through the hammer. The hammer has become an extension of
the sense of touch.

 Now consider the avatar in Katamari Damacy. Controlling the Prince of all
Cosmos is an extension of three senses: sight, hearing and touch. As a player, I have
a goal: to build my Katamari to a certain size. The first step in this goal is to pick up
some thumbtacks I can see off to the left of my current position. Once that intent
is formed, I begin to take action, pressing forward on the thumbsticks to move the
avatar in the direction I want to go. To know whether I’m turning the right amount,
and when to stop turning and straighten out, I’ll use visual feedback from the
screen. I’ll estimate the distance between avatar and thumbtacks. Each moment I’ll
look at how much the Prince is turning relative to the pressure I’m exerting on the
thumbsticks and make constant, tiny adjustments to maintain the proper course.
This happens in a continuous cycle until I see that I’ve turned and hear the satisfy-
ing “collect ” sound. If I run into something that’s too large for my Katamari, I see
the Katamari stop, see pieces fly off it, hear a crashing sound, see the screen shake
and feel the rumble motors in the controller go off.

 In each case, a device overwrites one of my senses. The screen becomes vision,
speakers hearing and rumble motors the sense of touch. The feedback from these
devices enables me to experience things in a game as if they were objects in my
immediate physical reality. I have the sense of moving around a physical space,
touching and interacting with objects. The screen, speakers and controller have
become an extension of my senses into the game world. The game world becomes
real because the senses are directly overwritten by feedback from the game. By
hooking into the various senses, a screen, a speaker or a joystick can make the vir-
tual feel real.

 When game designers create camera behavior, implement sound effects or trig-
ger rumble motors, they’re not defining what players see, hear and feel. Rather, they
are defining how players will be able to see, feel and hear in the game. The task is
to overwrite real senses with virtual ones. In defining game feel, we must acknowl-
edge this fact and embrace it. To experience game feel is to see through different
eyes, hear through different ears and touch with a different body.

 From the perspective of the game designer, the most important part is defining cam-
era behavior. The camera is the player’s point of view, the point in the game’s world
that represents his or her eyes, determining what view of the game world will be dis-
played on the screen. If the first task of a game designer creating a particular feel is

CREATING GAME FEEL

CHAPTER ONE • DEFINING GAME FEEL

26

mapping input signals to motion, and the second task is to create a space and
objects to give that motion a frame of reference, the third task is defining the
behavior of the camera. There are no games I’m aware of that use sound or control-
ler rumble as a primary feedback for real-time control. It’s interesting to think about
how real-time control could be achieved using mostly aural or tactile feedback,
but most games are built using visual feedback only, with sounds and controller
rumble added as polish effects. This is why creating the camera and its behavior is
the third necessary component of a game feel prototype. Without any of these three—
mapping, a basic-level layout and camera behavior—the feel of a game is not reli-
ably testable. For a designer, these are the three foundations of game feel.

 The two important decisions to make about a camera are where it will be and
how it will move relative to the avatar. The combination of where the camera is and
how it moves defines the player’s impression of speed.

 Because the camera is not just an object being controlled but is also an organ of
player perception, its motion requires some special treatment. Usually, these prob-
lems handle themselves. If the camera’s movement is too jarring or disorienting,
or if the player can’t see what they need to see to engage with the challenge of the
game, the designer simply iterates until these problems are reduced or mitigated.
The most common choices are: don’t move the camera more than you have to, move
it smoothly when you do and give the player control when you can’t get a good result
from programmed behavior. Otherwise, the camera causes interference between
intent and result, making the controls less intuitive for the player. Worse than that,
the motion of a camera can actually cause physical nausea. This is an interesting
confirmation that feedback from the screen is truly overwriting visual perception.
Motion sickness happens when the signals received by the inner ear don’t agree
with the signals received by the eyes. For a player who’s sitting stationary in a room,
playing a game on an unmoving screen to experience motion, visual perception
must be extended into the game via the screen. It’s no wonder, then, that things like
sudden drops in frame rate are so jarring and feel awful to the player. It’s as if you
were walking to the grocery store and your vision suddenly started to stutter and
break down. This is also how it’s possible for motion sickness to occur when a player
is sitting stationary in a room playing a game on an unmoving screen. If the player’s
eyes in the game are the camera, the flow of feedback from that sense needs to be
smooth and uninterrupted.

 Game Feel and Proprioception
 One sense that we might not consider part of game feel is kinesthesia. Kinesthesia is
the sense that detects body position; weight; or movement of the muscles, tendons
and joints. To get fancier, we can talk about “ proprioception, ” which is often used
interchangeably with kinesthesia. Proprioception has the slightly more precise con-
notation of being a person’s subconscious awareness of the position of his or her
own body in space. To understand what proprioception is, close your eyes, extend

27

your arm directly out in front of you and touch the ring finger of your right hand
with your left hand. The sense that enables you to figure out where your finger is in
space is without using visual or aural feedback is the proprioceptive sense. When a
police officer has you walk a straight line, this is the sense he or she is testing.

 So how does game feel relate to proprioception? Proprioception comes from a
complex and not especially well-understood bit of physiology that has to do with
the movement of fluids in veins and the sensation of gravity pulling against ten-
dons and muscles. Somehow this all gets assembled into a sense of the position of
your own body in space. This is why most astronauts experience “space sickness ”
their first few days in zero gravity and sporadically thereafter. Even though they are
highly resilient under extreme gravitational forces, as all astronauts must be, the
body becomes disoriented by the lack of proprioceptive feedback. When gravity is
taken away, the body loses its sense of “ up ” and reacts unpredictably, often in ways
which involve a great deal of vomiting. In space. Gross.

 When controlling something in a video game, there is no “ real ” proprioceptive
sense; there can’t be. As much as you feel your character has become an exten-
sion of your body, you will never receive the same kind of proprioceptive, muscle-
stretching feedback from pressing a button as you get from swinging a tennis
racket.

 So where does that leave us? It seems like proprioception is an important clue,
because the feeling of controlling a game is clearly something more than visuals
and sound alone would indicate. If we can’t actually experience the G-force of a
hairpin turn when playing a game, how can we explain why it feels so similar?
Why do we lean in our chairs? As an interesting example, consider the case of Ian
Waterman. 6 At the age of 19, a viral infection destroyed the nerves in his skin and
muscles. He can still sense temperature, deep pressure and muscle fatigue, but his
proprioceptive sense is entirely gone. He is able to piece together the location of
his body in space only by observing it visually or through other subtle cues. If he’s
standing in his kitchen and the power goes out, he crumples to the floor, helpless
until the lights come back on. What’s fascinating is that, apparently, his movement
now looks mostly normal. With supreme mental effort, he uses whatever clues his
senses will give him (he can also use sound and temperature as feedback about the
position of his body) to gauge the position of his body in space.

 On the surface, this seems in many ways to be similar to the experience of steer-
ing a virtual object around a virtual space. Based on limited feedback, we experi-
ence a kind of proprioception. We get a sense of the position, size and weight of a
virtual object in virtual space. It would be a significant disservice to Mr. Waterman
to end our assessment there, though. Even when manipulating something in purely
invented, digital space, we have a significant advantage: we still use our sense of
the position of our bodies to guide us. What a bunch of cheaters!

 6 For more information, see http://www.apa.org/monitor/jun98/touch.html

CREATING GAME FEEL

CHAPTER ONE • DEFINING GAME FEEL

28

 When you move a mouse, thumbstick or Wiimote, your proprioceptive sense
is still active. Your thumbs, though their movements are small, are still giving you
feedback about their position in space and about how much the buttons or thumb-
stick on the controller is pushing back on them. You have a sense of where your
body is in space, even if your primary feedback is coming from virtual objects in
virtual space. In this way, controlling something in a game is a kind of amplifica-
tion of your sense of space because you get a huge amount of reactive mileage out
of very little real-world motion. It’s like a megaphone for your thumbs. You’re now
concerned with how your real-world motion affects virtual objects; the process of
motion and feedback is transposed. When we’re controlling something in a game
we’re using not a debilitated proprioceptive sense, but an amplified one.

 Part of the experience of game feel, then, is amplified impression of prop-
rioception generated from visual, aural and tactile feedback. It’s an impression
created through illusory means, but is experienced as real by the senses. The sen-
sation of game feel is more than the sum of its parts: visuals, sound, motion and
effects combine to form another sensation altogether, one we might term “ virtual
proprioception. ”

 Game Feel as an Extension of the Player’s Identity
 When perception extends into the game world, so does identity. It’s the same thing
that happens when you drive a car. As you drive, you have a sense of the position
of the car in space and how far it extends around you. This enables you to parallel
park, drive in a lane next to other cars and pull into your garage without crashing.
Your senses extend outward, encompassing the car and receiving feedback. As this
happens, the car becomes part of you, an extension of both body and self. This is
why people who’ve crashed say “You hit me! ” rather than “His car hit me! ” or “ His
car hit my car! ”

 When an avatar in a game feels like an extension of your own body and senses,
identity flows outward to encompass it in the same way. Game designer Jonathan
Blow calls this “proxied embodiment ”—identity extends to some kind of proxy,
inhabiting it and making it part of one’s own body. “My guy ” becomes “ me. ”
What’s interesting is just how capricious this transfer of identity can be. It can
flow outward, encompassing something we’re controlling and a moment later be
withdrawn. We can say “Yes, I am amazing! ” as we effortlessly wipe out a room
full of Marines in Half-Life and moments later scream “No, Gordon Freeman, you
stupid sumbitch! That’s a bad Gordon Freeman! ” as we accidentally fall off a cliff
to grisly virtual death. For game designers, this flow of identity is great. It miti-
gates the frustration that comes from challenging the player. A little cursing at the
avatar is always preferable to the player becoming bored or frustrated and putting
the game down. It provides a nice release for the player, who avoids blame and
maintains engagement, getting back to the pleasurable sensations of control more
quickly.

29

 The extending of identity also gives a player the sensation of direct physical con-
tact. It’s a muted sensation—getting hit with a rocket in Quake is, one assumes, not
the sensation of being hit with one in real life—but intimate nonetheless. When I’m
bumped, jostled, flung or impaled, it feels bad because it’s as though it’s happening
to me physically. It’s the same sensation I had hitting a pole in my parents ’ Volvo;
it’s not literally painful, but it feels like a personal injury. Likewise, when I’m grab-
bing, throwing, slashing or hitting, it feels good because I’m reaching into the game
and affecting things directly with a part of my extended virtual body. This is where
impression of physical interaction becomes really powerful. Through a combination
of polish and simulation, the designer can have players feeling they’ve hit or been
hit, shaping those interactions with great precision.

 Extension of identity isn’t something you can design for directly. It grows natu-
rally out of real-time control, and it can be disrupted by too much frustration, bore-
dom or ambiguity between intent and outcome. It can also happen to greater or
lesser degrees depending on the sensitivity of control. For example, I don’t feel par-
ticularly attached to each falling piece in Tetris. Our time together is fleeting, and
I have a very low-sensitivity control over the block’s movement. The blocks them-
selves are not anthropomorphic, but this fact is less important than the expressivity
of the controls. In Asteroids, which also has a very simplistic avatar, the transfer
of identity is much more pronounced because there is more sensitivity inherent in
the controls. It twirls and curves, narrowly missing asteroids. You really feel the
extents of the ship, focusing on its size and position in space as you steer it around.
Even Pong, which itself used only blocks as representation, had a greater poten-
tial for identity transfer. The sensitivity of the paddle controller was high enough
to feel like an extension of the senses and the identity. This is taken to an extreme
in a game such as Quake; there’s no barrier between identity and avatar. Tetris
has a very low sensitivity of control, allowing only left-right movement and rota-
tion in a grid. Quake maps a highly sensitive input device, the mouse, directly to
rotation of the avatar. As long as it’s not too frustrating and doesn’t suffer from crip-
pling control ambiguity, more sensitive controls will more readily accept a transfer
of identity.

 Game Feel as a Unique Physical Reality
 Now I’d like you to help me in a little experiment. First, picture in your mind what
would happen if you were to throw this book across the room and into a wall. Got
it? Now please throw this book across the room and into a wall. Come on, no one’s
watching. Throw it .

 I’ll assume you’ve thrown or not thrown according to your personal code of
Book Ethics and have returned to reading. How did your expectations compare to
the actual outcome of the book being thrown? Now noodle the book around in your
hands, feel its weight and heft and thumb quickly through the pages, listening to
the pleasing sound it makes. What do you notice? A paperback book, like this one,

CREATING GAME FEEL

CHAPTER ONE • DEFINING GAME FEEL

30

is heavy, floppy and will generally go where you throw it, landing in a heap as the
pages fan out in the air. Based on your previous experiences with paperback books,
this was probably what you assumed would happen when you threw it. But how
did you know that would happen? If you see a strange book lying on your coffee
table, how can you be sure this object you see and recognize as a book is truly an
object made of sheaves of pulped, pressed wood bound together into a flimsy brick?
The answer is action. You had to throw it to find out.

 Based on your previous experiences with paperback books, you could make a
reasonable guess about what would happen, but the only way to truly experience
the physical properties of an object is to observe that object in motion. As an object
interacts with other objects, including your hands, you quickly parse out its physi-
cal properties. In a game, this same process of physical perception happens. In this
sense, the experience of game feel is a kind of faked Newtonian physics.

 People are good at figuring out the physics of a virtual space because they’re
subconsciously familiar with the way things work in the real world. As soon as
we encounter a virtual space, we piece together whatever clues we have about
the physical laws that govern it into a mental model. We can’t help it. It happens
quickly and effectively and is based on what can be gleaned from the limited stim-
ulus available: visuals, sounds, tactile feedback and motion. When all these har-
monize, the fake physics are seamless; every tiny clue serves to support the same
impression of physicality, from the simulated collisions through animations, sounds,
screen shake and particle effects. Sometimes a piece of feedback will contradict the
others, however, and this causes inconsistencies in the player’s mental model of
the virtual space. Even in the games that do a fantastic job of conveying the solid
physics of their world, such as Gears of War, there are usually inconsistencies to be
found (the characters ’ feet still clip through stairs, for example).

 In a video game, you don’t sit in the thing you’re steering and manipulating.
You can’t—the object you’re controlling has no physical form. Objects in a video
game are a digital construct in virtual space. However successfully they attempt
to mimic the real world, they can only ever convey an impression of physicality.
Creating a good-feeling game is in one sense the process of building this impression.
Using sound and motion, we give players an entire universe worth of physical laws
to reconstruct in their heads, a mental model of the virtual space. This happens
in the same way we map the physical space we experience every day. The thrown
book makes noise, thuds when it hits the ground, flops in the air, takes a certain
trajectory, falls in a certain way, takes a certain amount of heft to launch. But the
impression, the generalization, comes from the combination of sound, touch and
motion.

 Consider the two bowling balls in Figure 1.16 . You’d expect that if they roll into
one another, they will make a satisfying clacking noise and roll away slowly. If, on
the other hand, one ball deforms, makes a dull thud like a beach ball being kicked,
and is flung violently in the other direction at the moment of impact, what can
you surmise about the ball that was punted? At this point, you must assume that
one ball is a clever visual forgery of a bowling ball, a beach ball in a bowling ball’s

31

clothing. Even though it looks like a bowling ball, the evidence offered by at least
two other types of feedback, aural and motion, indicate overwhelmingly that it is
not a true bowling ball.

 Now look at the balls in Figure 1.17 . What would you expect if these two balls
rolled into one another at speed? What if the Ping-Pong ball made a low, ominous
humming noise and proceeded to split the bowling ball in half with its crushing
power? What would you assume about its physical properties then? There would be
no real-world analogy for what you’ve just perceived.

 Mentally you try to uncover the underlying physical reality. Clearly, even
though it looks like a lightweight Ping-Pong ball, if it can destroy a bowling ball,

F I G U R E 1.16 Bowling balls collide and behave normally.

F I G U R E 1.17 Bowling ball and Ping-Pong ball: who will win?

CREATING GAME FEEL

CHAPTER ONE • DEFINING GAME FEEL

32

it must be made of something solid and heavy. We strive to resolve the dissonance
by abandoning the visual cue because motion and sound outweigh it, evidence-
wise. Likewise, a bowling ball, even if we can’t hear the sound of it, still conveys
heaviness by the way it moves and interacts with other objects. Even if visuals and
sound are not congruent, motion will always trump them in creating the sense of
impression.

 This is why things like interpenetrating objects or bizarre, unpredictable motion
are disturbing to the player. For example, the visuals in id Software’s Doom 3 were
exemplary. Each creature was rendered at a high, normal-mapped level of detail
much greater than the games that preceded it, and it was the first major commer-
cial game to use a true lighting model as part of gameplay. Corners could actu-
ally be dark, and the critters lurking there had to be illuminated with a flashlight.
Unfortunately, these impressive visuals were belied by thin, tinny sounds (espe-
cially the shotgun and machine gun effects) and the implausible, jerky motion
of the everyday objects scattered throughout the game. Some props would fly and
spin like helicopters, taking on a life of their own, while others would not react or
move at all. There seemed to be no logic to the motion or lack of motion, and it cre-
ated a powerful dissonance between visuals and motion. The impression of physi-
cality was shattered. As game designer Brian Moriarty puts it, “… One reference
to anything outside the imaginary world you’ve created is enough to destroy that
world. ” 7

 Compare this to the more recent, great-feeling Gears of War. Gears of War had
a great use of particle effects (especially sprays of dust as the characters slammed
against walls), cinematic tricks such as lens distortion and screen shake, and
extremely well-produced sound effects. This gave rise to a powerful and compel-
ling impression of physicality. As independent game designer Derek Yu puts it,
“… In Gears it’s like you’re this giant wrecking ball with a gun attached to it, which
is pretty sweet. ”

 Summary
 To answer the question of what game feel is, we started with a basic definition of
game feel:

Real-time control of virtual objects in a simulated space, with interactions
emphasized by polish.

 Using the three building blocks encompassed in this definition—real-time control of
virtual objects, simulated space and polish effects—it’s possible to create great-feel-
ing games.

 We further defined great-feeling games as games that convey five different types
of experience to the player:

 7 “Andrew Rollings and Ernest Adams on Game Design ” (page 59).

33

 ● The aesthetic sensation of control

 ● The pleasure of learning, practicing and mastering a skill

 ● Extension of the senses

 ● Extension of identity

 ● Interaction with a unique physical reality within the game

 Of these five experiences, no single experience encompasses game feel. Rather,
game feel is all of these experiences simultaneously. During play, one experi-
ence might come to the forefront. The player might feel supremely frustrated, be
enthralled for a few moments by a beautiful sensation of control or feel the gory
satisfaction of gibbing an opponent with a well-timed rocket. These experiences are
not mutually exclusive and, at any time, each is present to some degree.

 These five experiences of game feel tell us a lot of interesting things about
the way players experience game feel and the ways game designers utilize
game feel. What they don’t tell us about are the processes—physiological and
psychological—that give rise to these experiences. To understand what game feel
is at these levels, let us now take a slight detour away from human experience and
into human perception.

SUMMARY

This page intentionally left blank

35

CHAPTER
 Game Feel and
Human Perception

 Understanding exactly how humans perceive the video game worlds we create is key
to designing good game feel. We’ll begin by examining our feedback loop model of
interactivity from Chapter 1 in greater detail. By deconstructing each piece of this
system and incorporating the concept of the Model Human Processor, we’ll be able
to define real-time control at the level of specific, measurable properties of human
perception. This will tell us exactly when and how real-time control can exist and
what will cause it to break down. We’ll also look at the computer’s side of things:
what, exactly, are the parameters of machine illusion? Finally, we’ll look at some of
the implications of perception for game feel.

 When and How Does Real-Time Control Exist?
 In Chapter 1, we defined real-time control as the uninterrupted flow of command
from player to game resulting in precise, continuous control over a moving avatar.
It’s more like driving a car than having a conversation, as we said. The part of the
definition that needs clarifying is “ uninterrupted. ” What if the player can offer new
input at any time, but the game can only receive it at set intervals? Or what if the
player gets locked out for a certain amount of time, unable to add new input until
an animation has finished playing? In other words, what is real-time control and
how do we know when it’s happening and when it’s not?

 Let’s again look at interactivity, this time with more specificity. There are two
halves to this process, the player and the computer (Figure 2.1). On the player’s
side of things, there are unchanging properties of human perception. For example,
there is a minimum amount of time in which a player can perceive the state of the
game, think about how to act and pass that impulse along to his or her muscles.

 On the computer’s side, this creates boundaries. To sustain real-time control,
the computer must display images at a rate greater than 10 per second, the lower
boundary for the illusion of motion. The computer must also respond to input

35

 TWO

CHAPTER TWO • GAME FEEL AND HUMAN PERCEPTION

36

within 240 milliseconds (ms), the upper boundary for response time. There’s also
a threshold for continuity; the game must be ready to accept input and provide
response at a consistent, ongoing rate of 100 ms or less. If the game responds to
input sporadically, the flow of control is broken. The onus for maintaining real-time
control, then, is on the computer. The computer’s half of the process is changeable.
The player’s perception is not.

 On the player’s side, the minimum amount of time it takes for a person to per-
ceive the state of the world, think about what to do and act on that impulse is
around 240 milliseconds. This is a very short amount of time.

 This correction cycle is the increment at which people make the tiny adjustments
necessary to assemble a sandwich, drive a car or exercise real-time control over
objects in video games. The measure comes from Card, Moran and Newell’s “ Model
Human Processor, ” the collected result of many different studies about human
reaction and response time. The figure of 240 ms is an amalgam of three different
measurements, one for perceiving, one for thinking and one for acting. They break
down as ranges, like so:

 ● Perceptual Processor: �100 ms [50–200 ms]

 ● Cognitive Processor: �70 ms [30–100 ms]

 ● Motor Processor: �70 ms [25–170 ms]

F I G U R E 2.1 Interactivity in detail.

37

 What’s being measured here is the cycle time of each processor, the time it takes to
accept one input and produce one output. The variation comes from physiology and
circumstance. Some people have the capacity to process things more quickly than
others and everyone tends to process things more quickly under intense circum-
stances, displaying a heightened sense of awareness. Likewise, processing speed
goes down under relaxed or sub-optimal circumstances such as reading in the dark.
In the model, each of these steps is defined as its own separate processor and has
its own little cycle time (see Figure 2.2).

WHEN AND HOW DOES REAL-TIME CONTROL EXIST?

F I G U R E 2.2 The three processors: perceptual, cognitive and motor.

 Try It Yourself

 To appreciate the speed at which your processing functions, I highly recom-
mend checking out humanbenchmark.com’s Reaction Time Test (http://www
.humanbenchmark.com/tests/reactiontime/index.php .) This will give you a
clear sense of just how small the increments of time we’re talking about seem
when you’re able to measure them against the computer. My best reaction time
is around 170 ms. If you’re like me, it will feel a bit weird to actually butt up
against the limits of your own perception. But there it is: you can’t argue with
the precision of the computer measuring your reaction time. It’s neat that we
can measure this!

 The idea is that perception, cognition and action are processed separately but
feed into one another, enabling a person to see the state of things, think about how
to change them and then act on that impulse. Note that this is an abstraction of
human cognition—nowhere in the anatomy of the brain is there a structure called
the perceptual processor—but it is a useful one because it lets us put hard numbers
to components of our diagram.

 The perceptual processor takes the input from the senses and makes sense of it,
looking for patterns, relationships and generalizations. From all the sensory data, it
creates recognizable state of the world for the cognitive processor.

 The cognitive processor does the thinking. It compares intended result to the cur-
rent state of things and decides what to do next.

 The motor processor receives the intended action and instructs the muscles to
execute it. After the impulses leave the body as muscle movements, they’re out into
wild, wooly reality, and the process starts again with sensory perception.

CHAPTER TWO • GAME FEEL AND HUMAN PERCEPTION

38

 All of this is happening at step 2 on our chart of interactivity, in the player’s
mind (Figure 2.3).

 Correction Cycles and Game Feel
 When all three processors (perceptual, cognitive and motor) work together in a
closed feedback loop, the result is an ongoing correction cycle. A correction cycle
happens any time you do something requiring precise coordination of muscles over
time, whether it’s picking up a book, driving a car or controlling something in a
video game. Robert Miller of MIT’s User Interface Design Group describes the pro-
cess: “There’s an implicit feedback loop here: the effect of the action (either on the
position of your body or on the state of the world) can be observed by your senses
and used to correct the motion in a continuous process. ” 1

 For example, imagine you want to reach out and grab a muffin that’s sitting on
your desk. You formulate intent: to grab the muffin (Figure 2.4). As soon as this
intent is formulated, it is translated into action of your muscles—twist trunk in chair,
activate arm muscles, open hand into “muffin claw ” and so on. The moment this
action starts, you perceive the position of your hand in space and see it start to move,
responding to your impulses. The perceptual processor looks at where the hand is in
space, passing that information on to the cognitive processor. The cognitive processor

 1 http://ocw.mit.edu/NR/rdonlyres/Electrical-Engineering-and-Computer-Science/6-170Fall
-2005/8B87E671-1B67-4FEF-A655-0ABDF89F4F5A/0/lec16.pdf

F I G U R E 2.3 The three human processors in the interactivity diagram.

39

thinks about where the hand is relative to where it should be and formulates a new
plan to correct that motion. The motor processor then takes the new plan and trans-
lates it into action. From the moment movement starts to when you have the muffin
in hand, you run this continuous process of action, perception and thought, increas-
ing precision each time as a factor of distance and size of target (Figure 2.5).

WHEN AND HOW DOES REAL-TIME CONTROL EXIST?

F I G U R E 2.4 Intent: grab the delicious muffin.

F I G U R E 2.5 Grabbing a muffin: an ongoing correction cycle.

CHAPTER TWO • GAME FEEL AND HUMAN PERCEPTION

40

F I G U R E 2.6 Correction cycle time: 240 ms.

 Because we know the cycle time of each processor (perceptual � 100 ms,
cognitive � 70 ms, motor � 70 ms) we know the time for each one of these correc-
tion cycles, 240 ms (Figure 2.6).

 Correction cycles are how people are able to track and hit targets with precision,
steer things, point at things and navigate the physical world successfully. To experi-
ence this first hand, check out example CH02-1. Try putting your cursor directly
over the dots as quickly as possible. You can see the correction cycle in action as
you overshoot, undershoot and then hone in, eventually coming to rest on your
target.

 Now imagine you’re hungry, and you’re out of muffins. You get in your car and
begin to drive to the muffin store. The overall goal for this trip is to get a sweet, deli-
cious banana muffin. This goal trickles down to different layers of intention, such
as “Turn right on Elk Street. ” At the lowest level, it’s about the moment-to-moment
adjustments of the motion of the car to keep it in the lane, stop it at red lights and
so on. As before, you perceive the state of the world, think about what corrections
you need to make to the current motion and make the adjustments happen once
every 240 ms (Figure 2.7).

 The process is the same as when you were reaching across the desk except that this
correction cycle goes on longer. The muffin on the desk was static and represented

41

WHEN AND HOW DOES REAL-TIME CONTROL EXIST?

a single target, a single intent. Driving to the store might take 20 minutes, fulfilling
20 different sub-goals.

 In a video game, real-time control is an ongoing correction cycle of this type.
As with driving a car, control is an ongoing process where higher-order intentions
trickle down and become individual, moment-to-moment actions. These actions are
a part of an ongoing correction cycle, where the player perceives the state of the
game world, contemplates it in some way, and formulates an action intended to
bring the game state closer to an internalized ideal (Figure 2.8). This happens at the
same cycle time of �240 ms.

 The difference is, at the point where action normally goes out to physical reality, a
video game substitutes a game world for the real world. It hooks right in there. The
inputs to the perceptual processor come from the screen, the speakers and the feel
of the controller. The output, instead of acting on objects in the real world directly,
acts on the controller, which translates to movements of objects in the game world.

F I G U R E 2.7 The correction cycle of driving.

CHAPTER TWO • GAME FEEL AND HUMAN PERCEPTION

42

 Fitt’s Law

 There is a well - known formula, Fitt’s Law, which can accurately predict how
quickly you can move your hand to a target of a particular size at a certain
distance. Fitt’s Law is an unusually successful and well - studied HCI model that
has been reproduced and verified across numerous studies. For reference, the
formula is this:

F I G U R E 2.8 The correction cycle of real-time control in a video game.

43

 where:
 MT � movement time

 a � start/stop time of the device
 b � speed of the device
 D � distance from starting point to target
 W � width of target measured along the axis of motion

 The original formula predicted how long it would take to reach out and touch
something of a certain size a certain distance away, as long as it was within
arm’s length. It was later discovered to be equally applicable to the time it
takes to move a mouse cursor to an object of a particular size and shape on a
computer screen, so it is applied and studied by user interface designers. For
example, the menu bar in the Macintosh OS is always present and takes up the
entire top edge of the screen. This means that the “ size ” of the menu bar is
functionally infinite, enabling the user to get the cursor onto it quickly and eas-
ily, with very few correction cycles. Compare this to a tiny checkbox button or
a hierarchical submenu.

 The Computer Side of Things
 Real-time control relies on the computer sustaining three thresholds over time:

 1. The impression of motion (display above 10 fps). The frames displayed on the
screen must be above 10 per second to maintain the impression of motion. The
impression will be better and smoother at 20 or 30 frames per second.

 2. Instantaneous response (input to display happens in 240 ms or less). The com-
puter’s half of the process must take less than correction cycle for the player.
At 50 ms, response feels instantaneous. Above 100 ms, the lag is noticeable but
ignorable. At 200 ms, the response feels sluggish.

 3. Continuity of response (cycle time for the computer’s half of the process stays at
a consistent 100 ms or fewer).

 The Impression of Motion
 Similar to film and animation, the way that computers create and sustain the
impression of motion is well understood. Think of each cycle of the player’s percep-
tual processor as a snapshot of reality, incorporating visual, aural, tactile and prop-
rioceptive sensations. Each 100 ms cycle, the perceptual processor grabs a frame of
all these stimuli. If two events happen in the same frame—Mario in one position,
then Mario slightly to the left—they will appear fused, as a single object in motion
rather than a series of static images (Figure 2.9). This is perceptual fusion.

THE COMPUTER SIDE OF THINGS

CHAPTER TWO • GAME FEEL AND HUMAN PERCEPTION

44

 From the computer’s side of things, perceptual fusion explains how objects in a
game appear to move. If the display is updated 10 times per second (100 ms cycle
time � 10 frames per second) this is sufficient for the illusion of motion. This is
right at the border, though, and won’t feel very good—20 frames per second (fps) is
better, and 30 fps is where motion begins to be pleasingly smooth. Most games run
at 30 fps or higher for this reason. As game developers know, with frame rates that
vary based on processing power used it’s better to be safe than sorry. There’s no
such thing as a frame rate too high.

 Instantaneous Response
 Perceptual fusion also influences the impression of causality. If I flip a light switch
and the light comes on within the same perceptual cycle, I will register this as a
cause-and-effect relationship. My action caused the light to turn on. The same thing
is true for computer response: if I move a mouse and the cursor seems to react
immediately, I tend to assume that effect was caused by my action. An extension
of this is the impression of responsiveness. Professor Miller describes the process:
“Perceptual fusion also gives an upper bound on good computer response time. If
a computer responds to a user’s action within [�100 ms], its response feels instan-
taneous with the action itself. Systems with that kind of response time tend to feel
like extensions of the user’s body. ”

 With reality, there’s never a problem of lag. Response will always be instanta-
neous. In a game, response will never be instantaneous. Even a game running at
60 frames per second, a three-frame delay is all but inevitable. Three frames at 60
frames per second means 50 ms. (You can convert frames per second (fps) to mil-
liseconds if you divide by 60 and multiply by 1000. So 3 frames at 60 fps is 3/6 *
1000 � 50 ms.)

 Mick West, programmer-designer of the original Tony Hawk mechanic, defines
this as response lag. “Response lag is the delay between the player triggering an
event and the player getting feedback (usually visual) that the event has occurred.
If the delay is too long, then the game will feel unresponsive. ” 2

 2 http://cowboyprogramming.com/2008/05/27/programming-responsiveness/

F I G U R E 2.9 Ten frames per second is the threshold for the illusion of motion.

45

 Mick notes that games with a response time of 50 to 100 ms typically feel “ tight ”
and “ responsive ” to players. This is because 50 to 100 ms is within one cycle of the
human perceptual processor. Above this level, a game’s controls begin to feel slug-
gish. The progression, from responsive to unresponsive, is gradual (Figure 2.10).

F I G U R E 2.10 Response time and player perception.

 Mick West on Responsiveness

 Check out Mick’s articles about programming for responsiveness at www
.cowboyprogramming.com . He offers an awesome technical grounding for
avoiding response lag as well as an engagingly practical way to measure
response time in any game using an inexpensive digital camera (recording both
screen and controller at 60 fps).

 There’s no exact point at which a game’s response lag can be said definitively
to have gone from tight to sluggish, because other factors, such as mapping and
polish effects, can shape this impression of responsiveness. But there is a threshold
above which the sensation of real-time control is broken: 240 ms. Past this response
time, the player can perceive, think and act before the computer is ready to accept a
new input.

 Continuity
 If it takes a player 240 ms to perceive, think and act, how is it that the computer has
to finish its tasks and offer feedback within 100 ms for the response to seem instan-
taneous? This is because all the human processors run concurrently (Figure 2.11).

 The perceptual processor passes information along to the cognitive proces-
sor, then starts cycling again. By the time the instructions from that original cycle
have been sent out into the world as movements of the muscles, three perceptual
frames have passed. In real life, this never matters because the response is always

THE COMPUTER SIDE OF THINGS

CHAPTER TWO • GAME FEEL AND HUMAN PERCEPTION

46

instantaneous. When the motor impulse passes to a game, though, there will always
be some lag (Figure 2.12).

 What this means is that the game needs to update faster than the player’s per-
ceptual processor is running. If it doesn’t, the feedback from the game will skip per-
ceptual frames, and the player will be aware of the lag. The game has to enable
input at any time even though the player won’t be giving it all the time. This enables

F I G U R E 2.11 The three processors running concurrently, passing into reality and back with
zero lag.

F I G U R E 2.12 The three processors running concurrently, passing into a game and back.
This time, there is some delay.

47

the player to modulate an input over time, adjusting it incrementally. The steering
wheel will remain pulled to the left and the car will continue steering to the left
even though the player adjusts how much it’s turning at 240 ms intervals. This is the
threshold of continuity: the computer half of the process must update consistently at
or below 100 ms for real-time control to be sustained.

 Continuity is tricky to measure. Many games respond to input at some times and
not at others. This can be a frame rate drop, a delay between the computer and the
display or a problem with the processor being overloaded by too much awesome-
ness in the game (not being able to pass frames along to the display in a timely
manner). Any time the computer’s half of the process takes more than a cycle of the
perceptual processor, the player will notice. If it takes more than a correction cycle,
real-time control is broken.

 Other times, however, the delay is part of the game. For example, if I execute a
fierce punch with Zangief in Street Fighter II, I lose control of the character for about
750 ms. This is longer than the threshold needed for an ongoing correction cycle by
510 ms. This temporary loss of control is ignorable, though, because I chose when to
trigger that move. It becomes a risk-reward tradeoff rather than a disruption. It also
makes sense in the context of the game’s unique world. Big dude, heavy punch,
does lots of damage. It should take a long time to execute. I knew what I was get-
ting into. This shows that the continuity of real-time control can be broken without
interrupting the player’s feeling of being in control.

 This makes interruption more than simply a response time too long or broken
continuity. It means interruption can be smoothed over by other factors, such as
metaphorical representation. Real-time control, then, is a gestalt. It primarily relies
on the computer sustaining three thresholds over time, the impression of motion,
instantaneous response, and continuity of response.

 But the ultimate judge is the player. The designer may have done something
clever with input mappings or animations to mask any interruption to the flow of
control. The end result is an impression in the player’s mind. If it feels like real-time
control, it is.

 Now let’s explore perception and game feel implications for game design from a
more general point of view.

 Some Implications of Perception for Game Feel
 To examine game feel is to see perception in a particular way. First, game feel
includes many senses. Visual, tactile, aural, proprioceptive—experiencing game feel,
these senses combine into one sensation. Second, the notion of proxied embodiment
should be addressed. Game feel enables objects external to the body to be subsumed
into body image and feel like extensions of the body. Third, game feel is an ongo-
ing process of skill building and practice. It is part of the larger realm of human skill
building and relates to skills like driving and playing tennis because it requires the
same kind of repetitive practice to master. From n00b to l33 t, as it were. Lastly, a
model for perception for game feel needs to encompass the physical nature of game

SOME IMPLICATIONS OF PERCEPTION FOR GAME FEEL

CHAPTER TWO • GAME FEEL AND HUMAN PERCEPTION

48

feel. Experiencing game feel is like interacting with a surrogate reality which obeys
its own rules and which must be understood through interaction and observation.

 Expanding on the experiences in Chapter 1, here are five interesting ideas about
perception that support our definition of game feel:

 1. Perception requires action.

 2. Perception is skill.

 3. Perception includes thoughts, dreams, generalizations and misconceptions.

 4. Perception is a whole-body experience.

 5. Tools become extensions of our bodies.

 Perception Requires Action
 In order to perceive something, you have to see it in action. This has been verified
experimentally with kittens and blind people.

 The kitten study (Held and Hein, 1963) involved two groups of kittens, each
raised in the dark. The first group was allowed to roam freely, while the second
group was “kept passive ” which we can only reasonably assume meant a Clockwork
Orange style tie-down. The experimenters controlled the conditions such that both
groups of kittens were exposed to the same limited stimulus: flickering lights, sounds
and so on. Then, they released the kittens into a normal, lit environment. The ones
who had been allowed to move around in the dark were able to function just fine,
while the ones who were tied down helplessly staggered around as though blind.
What this seems to indicate is that perception is an active rather than passive pro-
cess. The lights and images used to stimulate the kittens didn’t make much differ-
ence; being able to explore their surroundings and perceive things in motion relative
to their own bodies did. To perceive, you need to interact.

 Another study (Bach y. Rita, 1972) did something similar with a bunch of blind
folks. The researchers created a special video-camera-driven matrix of stimula-
tion points, shown in Figure 2.13 . A TV camera (mounted on spectacle frames)
sends signals through electronic circuitry to an array of small vibrators (left hand)
strapped to the subject’s skin. The pattern of tactile stimulation corresponds roughly
to an enlarged visual image.

 Each vibrator was mapped to a particular pixel of the image that the video cam-
era was receiving, giving a sort of tactile image of what the video camera saw. When
the participants were allowed to move the camera themselves, they were able to
learn to “ see ” in a limited way. If they were not allowed to control what they were
“ looking ” at, the image stimulus device was just a gentle, if unskilled, masseuse.

 The concept that perception requires action has relevance to game feel because it
accurately describes the sensation of exploring and learning your way around an unfa-
miliar game space. And it correlates physical reality with virtual reality in a meaning-
ful way: the thing you’re controlling in the game becomes your surrogate body, your
hands. Humans are adept at learning the physical properties of a new and unfamiliar

49

object and do it very quickly. Noodle it around in your hands and you soak up a
wealth of detail: weight, density, material, texture, color and so on. This same ability
extends to virtual objects and, interestingly, to virtual worlds governed by different
rules, laws and physics. For some reason, it’s immensely pleasurable to suss out a
new and unfamiliar world by probing around in it using a virtual instrument. The
thing being controlled becomes both expressive and perceptual: as you control it and
move it around, feedback flows back through it to your eyes, ears and fingers.

 Perception Is Skill
 If perception requires action, that action must be learned. We don’t usually think of
it this way, but perception is in some ways just a set of skills, honed across one’s
lifetime. From the moment we’re born, we learn new distinctions, forge new neural
pathways and generally undertake an ongoing process of becoming better at per-
ceiving. Grab keys. Insert keys in mouth. Rinse, repeat and learn; so it goes until a
fully functional adult emerges. “Perception is to a large extent an acquired bodily
skill that is shaped by all our interactions with the world, ” as Dag Svanaes says.

 Part of this process is making generalizations and learning abstract concepts like
justice, freedom and cheesecake. Another part is bringing with us all experiences
that came before. There’s a concept from two venerable psychologists, Donald Snygg
and Arthur Combs, that vividly portrays the role past experience, ideas, generaliza-
tions and fantasies play in perception: the perceptual field. 3 People have a great deal

SOME IMPLICATIONS OF PERCEPTION FOR GAME FEEL

F I G U R E 2.13 A blind subject with a tactile visual substitution system.

 3 Near as I can tell, the idea started with Snygg and Combs in 1951 as the “phenomenal field. ” Combs
changed phenomenal field to perceptual field in a later work, so we’ll stick with that. I prefer that any-
way, as it’s more descriptive of the concept as it applies to game feel.

CHAPTER TWO • GAME FEEL AND HUMAN PERCEPTION

50

of practice navigating the space around them and developing relationships with the
things in that space. Snygg and Combs capture the phenomenon of memory, percep-
tion and skill building with their concept of the perceptual field.

 The idea of the perceptual field is that perception is carried out against the back-
drop of all previous experience, including our attitudes, thoughts, ideas, fantasies
and even misconceptions. That is, we don’t perceive things separately from what’s
come before. Rather, we experience everything through the filter, against the back-
ground, and within the structure of our own personal vision of the world. Another
way to put it is this: “one’s constructed representation of objective reality; the
meaning given to the profusion of stimuli that bombard the brain and are orga nized
and conceptualized on the basis of individual and personal prior experiences. ” 4
And still one more way: “The perceptual field is our subjective reality, the world we
are aware of, including physical objects and people, and our behaviors, thoughts,
images, fantasies, feelings, and ideas like justice, freedom, equality, and so on. ” 5

 So your perceptual field is your world; your structural understanding of every-
thing you perceive around you and its meaning.

 This is a cool idea because it goes a bit beyond the notion of a simple men-
tal model, which is more about the dry, clinical details of how a person thinks a
thing functions (usually compared to the system image, the way the thing actually
functions).

 In the case of a video game, the brain recognizes that the “ world ” of the game is a
subdomain, a microcosm of the larger perceptual field of reality that it understands.
It’s apportioned, separate and obeys its own rules. At the same time, the mind brings
all its past stored experiences to the table to help it understand this new place.

 The difference is that a game world is not necessarily governed by the rules of
physical reality or bound by them. This is a useful way to think about the creation
of game feel—as the creation of a separate but related physical world. Simplified,
but whole, cohesive and self-contained. Many times, creating and tweaking a game
feel system means literally the construction of a set of generalized laws and rules
that govern all action within the system. It’s like writing your own universe from
scratch: you have your own gravity, your own simple momentum and friction, your
own simplified definition for what collision between two objects means and how it
should be resolved.

 The world around you is objective and immutable. You’re not going to wake up
one morning and discover that gravity has suddenly stopped working as expected.
I throw a grapefruit at a wall, it’s going to hit the wall with a thud and fall to
the ground. This kind of consistency can be frustratingly difficult to achieve in a
game world.

 Because the way we cope with and understand events in a game world is so
similar to the way we interact with the real world, we expect the same consistency.
The tiniest thing can break this perceptual immersion.

 4 http://phenomenalfield.blogspot.com/
 5 Dr. C. George Boeree, http://webspace.ship.edu/cgboer/snygg & combs.html

51

 Unlike a film, which presents one framed perspective on a world and has only to
maintain visual and aural consistency within that frame, a game has to stand up to
active perception. The player can freely explore every possible permutation of every
action and response in the entire world. This is the skill of perception, the one every
human being has been constantly honing since birth.

 Because people are extremely skillful at perceiving the world around them, any
tiny inconsistency becomes glaring and obvious. A character’s foot clipping through
a stair, an invisible wall—these things never happen in the world around us. So this
process of discovery is much closer to our experience of being in the world than the
experience of passively viewing a film or reading a book.

 The same mechanisms we use to cope with the world around us, to understand
it and function within it, come into play when exploring a game world. It is the
same process of expanding the perceptual field into this new world and probing
around to make the generalizations and distinctions needed to interact with and
succeed in the world.

 This is why a consistent abstraction is so much more important than a detailed
one. It’s fine to create a simplified version of reality for players to interact with;
they’ll figure out the parameters of the world—its constraints, rules and laws of
physics—within minutes of picking up the controller. Just don’t violate the rules you
yourself have set. If an object is portrayed as being large, heavy and massive, don’t
let it go flying off into space with the slightest touch, or pass through another object
without interaction. Easier said than done, of course, but this is at some level a
designer’s decision. Better to have a simple, tight, cohesive world like Dig Dug than a
weird, inconsistent world like Jurassic Park: Trespasser. People are going to figure out
everything about your world either way—our physical reality is much more complex
and nuanced than any game world, and we’ve got years of experience at perceiving
it—better to make it simple and self-consistent than a broad inchoate mess.

 Perception as skill is also correlated to the way people get better at things over
time. You practice something, you get better at it. Your perceptual field includes an
ever-growing body of experience about the task, which makes each new try at the
task easier. It’s not just a bank of information to draw on, but affects what happens
at the moment-to-moment level of perception and action. Chris Crawford would say
that the neural pathways are getting pushed farther and farther down, away from
conscious processing and into subconscious, automatic processing.

 Merleau-Ponty defines this distinction as abstract versus concrete movements. If
an action is unpracticed and requires conscious thought and effort, it is an abstract
movement. If it’s so practiced that it happens automatically and without conscious
thought—a pure translation of intent into action—then it’s considered a concrete
movement. By this process, people learn things incrementally over time, turning
what was once difficult and requiring deep, conscious involvement, into an easy
and subconscious action. Clearly, this is what happens with game feel, though the
process is almost always much quicker when learning a game skill.

 However we conceptualize it, it is obvious that humans get better at skills they
practice. And if we consider all perception to be a skill, this handily explains why

SOME IMPLICATIONS OF PERCEPTION FOR GAME FEEL

CHAPTER TWO • GAME FEEL AND HUMAN PERCEPTION

52

game feel seems like such a skill-driven activity, why skill learning is the price of
admission to experience it. Perception in a game world is just a simplified, modified
version of perception in the real world. The rules are different, but the process is the
same.

 Perception Includes Thoughts, Dreams, Generalizations and
Misconceptions
 Another interesting offshoot of the concept of the perceptual field is that it encom-
passes not only physical reality, but attitudes and ideas. Perception of something
is heavily influenced by biases, ideas, generalizations and worldview, all of which
have become incorporated into the perceptual field through a lifetime of experi-
ences. Of course, generalizations about a particular thing may not accurately reflect
the objective reality of that thing.

 For example, I have a central heating and air conditioning system in my apart-
ment. One day I was cold and wanted to adjust the temperature. The wall mounted
control unit displays the current temperature based on a thermometer which is …
somewhere in the apartment. I hope. I think. The current temperature is compared
to a sliding blue control representing the desired temperature. I assume that if
I move the sliding control to a temperature different from the actual temperature,
the air will turn on and will adjust the temperature. The current temperature reads
61°. I move the control from 63 to 75. The cold air turns on briefly and then turns
off. A few minutes later, the air turns on for a longer period, blowing warmer air,
then turns off. Eventually I get fed up and turn the temperature to 90°. Again, the
air turns on for a few minutes, warm, and then turns off. I get a blanket. An hour
and a half later, I walk into my office, the door of which has been closed and I’m
suddenly sweltering hot and realize I’ve left the temperature on at 90°. I toss the
blanket, strip down to a T-shirt, and check the thermostat, which now reads 77°.
I put the thermostat back down to 72. The air turns on for a few minutes, cold, and
turns off. Gah!

 What’s going on here? In my conceptual model of the heating system, there is a
certain threshold between the actual and desired temperature. If that threshold is
exceeded—if the desired temperature is 3° above or below the actual, for example,
the system turns on and applies an amount of heat or cold equal to the change in
temperature that’s necessary to bring actual back in line with desired.

 The reality of the system is that it turns on and blows air, either hot or cold, for
a certain duration. Five minutes of hot or five minutes of cold, depending which
way the temperature is supposed to go. The hot isn’t particularly hot, and the cold
isn’t particularly cold, but applied across a long enough time scale, they get the job
done. In addition, the timer that governs how long each on state should last func-
tions independent of the controls. That is, it’s always counting down five minutes
at a time. If you switch the heat on with 30 seconds remaining on its five minute
cycle, you get 30 seconds of cold air because it takes a while for the heater to warm

53

up and there are only 30 seconds of “ on ” remaining before the system goes back to
the off state. (Oh, and the thermostat, evidently, is in the office.)

 Donald Norman would say that my mental model is out of sync with the “ system
image ” of the heating system. I hold in my mind a logical construct, a picture of
how the system works, but that picture is wrong. This construct frames my interac-
tions with the system and dictates my expectations about what the result will be for
a particular input. If my mental model differs from the system image, the way the
system actually functions, errors occur. Norman would say that this is the design-
er’s fault and go on to point out that the “design model ”—the way the designer
imagined the user would interpret the system—is out of sync with the user’s men-
tal model. This is definitely applicable to game feel as it helps greatly in designing
what players refer to as intuitive controls. Norman suggests seeking out and exploit-
ing “ natural mapping ” between input device and system.

 For example, in Figure 2.14 , Stove C makes more sense than stoves A and B and
is far easier to operate because there is a clear, spatial correlation between the posi-
tion of the knobs and the position of the burners they operate. Finding natural map-
pings in games is a similar process, though not always an obvious one. I like the

SOME IMPLICATIONS OF PERCEPTION FOR GAME FEEL

 F I G U R E 2.14 Three configurations offer three different correlations between stove burners
and controls.

CHAPTER TWO • GAME FEEL AND HUMAN PERCEPTION

54

example of the game Geometry Wars, which tends to be easy for people to pick up
and play effectively—the movement of the thumbstick corresponds very obviously
to the motion of the little ship in the game making this something of a natural map-
ping, albeit one in a virtual space (see Figure 2.15).

 The only problem with Norman’s concept of the mental model is its rigidity. To
say I have a mental model of the world of The Legend of Zelda: The Wind Waker
could be useful to isolate and tune certain mechanics, to eliminate ambiguities and
make the controls more intuitive, but it ignores the fact that I have a relationship to
that world. I feel a certain way about it and think a certain way about it, and break-
ing that down into a dry, clinical, logic diagram seems to ignore some of the most
important parts of that relationship, some of the parts the designers understood and
worked really hard to develop.

 For example, it’s extremely important to the success of the game that I feel a
sense of freedom and adventure while sailing the open seas in the game. I could

F I G U R E 2.15 The motion of the thumbstick in Geometry Wars offers a simple and clear
connection to the action taken by the ship.

55

distill that to a system image of my possible actions while sailing, but that would
miss much of the point; it’s not as important to track exactly how far objects are
spaced apart or how far I can sail in one direction before hitting something or how
long it takes to get from object to object as it is to make the space of that world feel
open, free, but full of possibility. I can sail aimlessly in a particular direction and be
certain of two things: 1) I’ll be free to sail as far as I want in that direction and 2)
eventually I’ll find something new and interesting. The system, speed of the ship,
sharpness of turning, distance between islands and so on, would be interesting to
track, as would a player’s mental model of that system. But it definitely misses one
of the essential experiential qualities of the game. A few small changes to the sys-
tem, making the ship move 20 percent slower for example, could make the oceans
of Wind Waker feel imposingly large, tedious or lonely. The idea of a perceptual
field that incorporates not only the system image, but the thoughts, ideas, feelings
and generalizations about the system that players have brought with them, and
is constantly forming and reforming, is a much more effective for understanding
that experience.

 Another important thing that Norman’s mental model concept ignores is para-
digm shifts. “Aha! ” moments, as master puzzle designer Scott Kim would say. For
example, another Zelda game I’ve been playing recently is The Legend of Zelda:
Phantom Hourglass for the Nintendo DS. In that game, there is a particular puz-
zle that requires players to expand their perceptual field. In one particular part of
one temple, players are told to step up to an altar and “ stamp ” their “ map ” with
the location of a new area to be explored later (see Figure 2.15). At first, this puzzle
threw me for a loop.

 To access new areas in The Legend of Zelda: Phantom Hourglass, you first need
a “sea chart ” for that area. The new location to be stamped is outside of your cur-
rent available areas, but clearly corresponds to the map you’ve had access to and
used throughout the game. I systematically exhausted each possible action I had
ever used in the game, and then some I’d only ever used in other games. I pressed
buttons, I scrubbed the stylus back and forth in every conceivable pattern. I drew
X’s and O’s, I traced the pattern of the Triforce over and over again. Nothing in my
perceptual field equipped me to deal with this puzzle. Clearly, my current under-
standing of this system was inadequate and flawed somehow. I had to take a step
back and reflect on my perceptual field. So I started thinking about other possible
interpretations of stamping, and other possible ways I might stamp this stupid map,
short of putting the DS on the floor and stamping it with my foot. The solution
eventually occurred to me: close and open the DS quickly. It’s sort of a stamping
motion, as you can see in Figure 2.16 .

 The problem was my perceptual field: in my combined understanding of the DS,
how the DS functioned and the possible actions in the game, there was no reference
point for using the functional opening and closing of the DS as an action in the
game. Across all my experiences with playing DS games—which are numerous—I
had never come across a game that used the functional closing and opening of the
DS ’ lid as a button. New Super Mario Brothers says “ Goodbye! ” in Mario’s voice if

SOME IMPLICATIONS OF PERCEPTION FOR GAME FEEL

CHAPTER TWO • GAME FEEL AND HUMAN PERCEPTION

56

you close the lid of the DS while the game is still on, but that was my only point
of reference, my only hint in the entirety of my perceptual field. I solved the puzzle
through a paradigm shift, by seeing the system in a new and different way. I felt a
rush of pleasure and enjoyment as I incorporated this new information about the
very nature of this game’s universe into my perceptual field. I had amended and
changed my mental model not only of this particular game, but of all games I’ll
ever play on my DS in the future. This was not an error or a breakdown in my abil-
ity to interact with this system, but the point of the puzzle and, in some sense, the
whole game.

 So what’s going on here? I was rewarded with pleasure by expanding my percep-
tual field. Norman’s mental model would call this an error, blaming the designer for
misleading the player. Since this is one of the fundamental pleasures of playing this
game, clearly something’s missing. The perceptual field gives us a way to under-
stand that game feel is as much about how players feel about a particular space and
their relationship with it, as it is about the dry clinical details of the mental model of
that space they keep in their minds to help them deal with and understand events in
that game world. The dry details are important—they represent the player’s under-
standing of the physics and rules of the game world and are a great way to find dis-
sonance that causes player confusion—but they are not everything.

 Perception Is a Whole-Body Experience
 Eyes, ears, tactile sense, proprioception—there is no separation when a person
perceives something.

F I G U R E 2.16 Closing the DS as an input � unexpected.

57

 For example, a fork. It’s shiny and it has a pointy end. It’s cold, hard and solid,
but easy to pick up. I can eat food with it. It sinks in water. My ideas and percep-
tions about what that object is, how it behaves and what it means, combine into the
concept of “ fork. ” This is my attitude toward forks and generalizations I can apply
later to other fork-like objects. The subconscious nature of perception masks a com-
plex process, one which involves all the senses and which constantly and rapidly
brings us closer to the world we inhabit.

 The takeaway here is not to think of each kind of stimuli as somehow sepa-
rate, but as an integrated part of perception. This is how a combination of visuals,
sounds, proprioceptive sensations (from the position of the fingers on the control-
ler or whatever) and tactile sensations (from controller rumble or haptic feedback)
become a single experience in a game. A game world substitutes its own stimuli for
those normally created by interacting with the real world, but the experience of per-
ception is much the same. This also indicates why we’re so sensitive to inconsisten-
cies between stimuli. If a large hulking mass of a character steps through a staircase
or has their arm pass through a wall, the brain says, “ Hey, that’s not right! ”

 The experience of perception of real-life phenomenon never has inconsistencies
across stimuli so the brain has a hard time ignoring them when they happen in a
video game.

 Tools Become Extensions of Our Bodies
 As we said in Chapter 1, a tool, once picked up, is an extension of the senses. It is
used for both action and perception. Intent and action can be expressed through the
tool as though it were a part of the body, and feedback flows back through it.

 Another way to visualize this is to think about a blind man’s cane. When the
blind man first starts using a cane, it is unfamiliar and requires a lot of reflection.
The tapping movements are unpracticed, abstract movements to him. As he gradu-
ally builds skill at perceiving the world through the cane, he is able to more accu-
rately and effortlessly tap around, getting a clearer read on his surroundings. His
intent begins to flow effortlessly from the cane, any barrier between himself and the
cane is removed, and the cane becomes an integrated part of his perceptual field.
The cane now acts just as his hand would; it probes around, touching things, inter-
acting with the world around him and returning him crucial orienting feedback. This
helps him establish a much larger personal space (also sometimes called the “ per-
ceptual self ”). Quite literally, his perceptual field has been extended to a much larger
physical area around him. Effectively, he’s made his arm’s reach much greater. We
might say that by integrating the tool of the cane, he’s changed his world.

 So what does the blind man and his Cane of Reaching �3 teach us about game
feel? One interesting distinction is between body space and external space. When
we interact with the world, we perceive our bodies in two ways, as part of our
self and as one object among the many objects of the external, objective world. As
Dag Svanaes puts it: “The bodily space is different from the external space in that

SOME IMPLICATIONS OF PERCEPTION FOR GAME FEEL

CHAPTER TWO • GAME FEEL AND HUMAN PERCEPTION

58

it exists only as long as there are degrees of freedom and a skillful use of this free-
dom. The bodily space is mainly given by the subject’s specific potentials for action.
For a totally paralyzed body with no kinesthetic experiences, there is no bodily
space. Different bodies give rise to different spaces, and so do external factors such
as clothing, tool use and different kinds of prosthesis. It is important to notice that
learning a new skill also changes the body space. ”

 This idea, that bodily space is defined by the potential actions of one’s body
in the world, correlates very clearly to the way players interact with game worlds.
Players tend to think in terms of abilities and constraints within a game world. It is
possible, and often desirable, to create a game where abilities change across time,
where the avatar itself has different tools that change across time. For example, if
I’m playing as Samus Aran my abilities, my “bodily space ” as Samus within the
game world of Metroid, are defined by the abilities currently available to me. I may
or may not have the Morph Ball. If I do, I can transform into a small rolling sphere
and explore tiny corridors. The very nature of the world has changed, as has my
potential to interact with it. The objective world of Metroid is the same as it ever
was—every block is still in the same position it was before. My abilities, my verbs,
my virtual bodily space have changed the world.

 The interesting thing about this thinking is that it does not consider Samus
Aran a tool. To say that we can incorporate a tool into our bodies, that the tool can
become an organ of expression and perception, and that our identity and perceptual
field subsume it is useful, doesn’t quite define what happens when a player takes
control of an avatar in a game. I wouldn’t call Samus Aran a tool. Not just because
she has an “ identity ” as a freestanding character that I’m temporarily inhabiting
and controlling, but also because she has her own bodily space. She has her own
tools which can become a part of her body and extend her own perceptual space.
In this way, a video game world is truly a microworld, and perception within this
microworld is a surrogate for real-world perception. It’s an interesting idea—it
seems to explain why identity in a video game is so very malleable. You can go
from “ being ” Gordon Freeman one moment to cursing his vile clumsiness the next.
This is because the constructed subdomain of a video game reality provides two
other kinds of spaces: virtual bodily space and virtual external space.

 A video game has its own model of reality, internal to itself and separate from
the player’s external reality, the player’s bodily space and the avatar’s bodily space.
The avatar’s bodily space, the potential actions of the avatar in the game world, is
the only way in which the reality of the external reality of the game world can be
perceived. As in the real world, perception requires action. The difference is that
the action in the game world can only be explored through the virtual bodily space
of the avatar. Players extend their perceptual field into the game, encompassing the
available actions of the avatar. The feedback loop of perception and action that ena-
bles you to navigate the world around you is now one step removed: instead of
perceiving primarily through interaction of your own body with the external world,
you’re perceiving the game world through interaction of the avatar. The entire
perceptual apparatus has been extended into the game world.

59

 To wrap back to our earlier discussions of identity and game feel, how does this
concept of avatar as perceptual substitute, rather than extending tool, relate to prox-
ied embodiment? Because a game world represents its own reality external to its ava-
tar’s bodily space in the same way that the physical world is external to our own
bodily space, it seems much more like a substitution than an extension. The same
might be said for identity. We said that objects outside ourselves—and objects in a
game world—can become extensions of identity. Vessels for identity might be more
accurate. The view of tool as extension of body defines the “ self ” is in terms of per-
ception. The perceptual self is the immediate surrounding environment and your
ability to interact with it, your potential for action. To say “he hit me! ” instead of “ he
hit my car ” or “his car hit my car ” is an artifact of the way we perceive the immedi-
ate environment around us and the fact that an inanimate object can become a part
of the perceptual self, part of the perceptual field. You literally perceive the world
through the car as you actively control it. Again, though, the way we perceive game
feel seems to be much more of a substitution than an extension. I perceive the world
of Hyrule as Link, via his virtual body space. My identity intermingles with Link’s as
I take over and make my own his skills and abilities, his bodily space.

 Summary
 Where and when does real-time control exist? On the human side of the
equation, we categorized three types of processors (perceptual, cognitive and
motor), which work together in a closed feedback loop. This feedback loop results
in an ongoing correction cycle. In a video game, at the point where action normally
goes out to physical reality, the designer substitutes a game world for the real world.
This reinforces the idea from Chapter 1 that game feel is an experience of a unique
physical reality.

 On the computer side, real-time control relies on sustaining three time thresh-
olds: the impression of motion, perceived instantaneous response and continuity of
response. Knowing the duration of the human correction cycle and the relationships
between the three human information processors, we can say with certainty that a
particular game has or does not have real-time control. The unknown variable here
is the player’s perception. In the end, game feel is an impression in a player’s mind.
Examining the frame rate, response time and continuity of response in a game and
comparing this to the thresholds of 10 fps for motion, 240 ms for control and 100 ms
for continuity gives us a baseline and is useful for classification. But motion at 10 fps
feels stilted and a 200 ms response time feels sluggish. These impressions can be
smoothed over by the use of gestural input or by playing back animations. In the
end, the player’s perception is what’s important. The ultimate goal for game feel is
to create an impression in the player’s mind.

 Finally, we looked at some of the other implications of human perception:

 1. Perception requires action.

 2. Perception is a whole-body phenomenon.

SUMMARY

CHAPTER TWO • GAME FEEL AND HUMAN PERCEPTION

60

 3. Perception is an effortless fusion of visual, aural, tactile and proprioceptive
stimulus.

 4. Perception is an ongoing process of skill-building.

 5. Perception can be extended to tools.

 These explain, in terms of human perception, the experiences outlined in Chapter 1.
Understanding how human perception works offers us insight about the imperfect
apparatus of human perception that we’re designing for. Knowing this will help us
to develop a palette of game feel that’s separate from the emulation of reality and
doesn’t borrow from film or animation except where applicable. If we understand
how perception works, we can build games that feel good instead of trying to build
games that feel like things that feel good.

61

CHAPTER
 The Game Feel Model
of Interactivity

 Now we are ready to create an overall model of what game feel looks like. If we
take the building blocks of game feel from Chapter 1, plus the five experiences of
game feel we categorized, and add them to the interactivity diagram from Chapter
2, with its three human processors (perceptual, cognitive and motor), we have a
model of game feel that looks like Figure 3.1 .

 The perceptual field is your constructed model of objective reality, of the “ real ”
world around you. It provides the background for perception, whether in the game
or in the real world. Shimmers of former experiences, skills learned, ideas, gener-
alizations, thoughts, concepts, fantasies and misconceptions all form the construct
within which perception occurs. Sometimes, when it’s clear your perceptual field
is inadequate to deal with a particular situation, you consciously reflect on your
understanding of the world around you in an effort to expand your perceptual field.
You try to find the holes in your comprehensive model of objective reality. This can
be a pleasurable process, as when you undergo a paradigm shift to solve a puzzle,
or a stressful one, such as when you lose your keys in the sofa.

 The game world is a simplified subdomain of the real world. Your brain sub-
stitutes the stimuli it’s getting back from the game world for those it normally
gets from the real world. This includes sights, sounds, tactile sensation such as
controller rumble and joystick or button push-back and the proprioceptive feed-
back it gets from the position of your fingers on the input device. All this feed-
back is extrapolated to a mental construct of the microworld represented by the
game. This is an abridged, simplified version of the process by which you experi-
ence, learn about and cope with the physical world around you. As such, it includes
not only the tactile, visual and aural experience of exploring the game world, but
the higher-level implications of those experiences. For example, if my charac-
ter always falls back to the ground after jumping, I assume there is some kind of
gravity. If my character runs into things instead of passing through them, I assume
those things are solid. As in the real world, simple interactions yield a wealth of

61

 THREE

F I G U R E 3.1 The model of interactivity brings together all the elements of the the gamer, the game and the world around him or her.

63

knowledge: generalizations, ideas, concepts and misconceptions about the nature
of the world. All of these things are integrated into the perceptual field as they are
experienced.

 The avatar is the player’s instrument within the game world, both for perception
and for expression. The movement of the avatar provides indirect insight into the
nature of the game world the same way our own hands may touch and probe and
noodle things around in order to experience them while our eyes and ears observe
the results. Perception requires action, as we’ve said, and all perception of a game
world must pass through the avatar.

 With those three elements in mind, let’s step through Figure 3.1 and try to “ bring
alive ” the active process of game feel. Remember, this whole thing is happening at
a cycle time of around 240 ms, four or five times per second. Let’s start with the
human processor—the player.

 The Human Processor
 The human process is marked at “ 1 ” in Figure 3.1 . Stimulus comes in through
the eyes, ears, fingers and proprioceptive senses. It is perceived at a cycle time
between 50 and 200 ms, depending on individual and circumstance. If two stimuli
are perceived within the same perceptual cycle, they appear fused, as with multiple
frames of an animation fusing into a single, moving character. If an action passes
out through the motor processor and the response is perceived in the same percep-
tual frame, there is a strong bias toward experiencing action and response as causal
(“ My action caused this result ”).

 If this is an ongoing process, where perception, action and contemplation of the
same object happen in rapid succession over and over again, the experience is one
of control fusion—through my actions, I feel I am controlling something external to
me. This is what enables us to pick things up and move them, to throw and catch
things, and to generally interact skillfully with our immediate bodily surroundings.

 When this process of ongoing control is able to flow uninterrupted and the
intent being served is more complicated than a single, simple action (grabbing
a muffin, for example) then we have a correction cycle, which happens around
240 ms and which is, at its core, the experience of game feel. As this process is run-
ning, the perceptual field is in the background coloring, ordering and assigning mean-
ing to all new experiences. As soon as the experience happens, it is incorporated into
the perceptual field, expanding it. Skills are built, memories are formed, life is lived.

 Muscles
 Marked at “ 2 ” in Figure 3.1 , the impulses from the human processor flow out
into the real world. The muscles of the hand execute the orders handed down by
the motor process, which has in turn been directed by the cognitive process. In

THE HUMAN PROCESSOR

CHAPTER THREE • THE GAME FEEL MODEL OF INTERACTIVITY

64

addition, the hand provides tactile and proprioceptive feedback to the perceptual
processor, the “megaphone for your thumbs ” mentioned in the Chapter 1 section on
game feel as proprioception.

 Input Device
 The input device is marked at “ 3 ” in Figure 3.1 . The input device is the player’s
organ of expression to the computer. All intent passes through the filter of the input
device before it can be interpreted by the system and used to update the state of the
computer’s model of the game’s reality, which is different from the player’s. The
motivation and experience of the player are more complicated than this in many
ways, but if the goal is to better understand the pieces of game feel that are mal-
leable to the game designer, it’s convenient to think in these simplified terms. The
player has a particular intent at a given moment in time, and he or she expresses
that intent to the system via the input device. Whatever the input device is, it has
affordances and constraints. It will lend itself to controlling certain kinds of motion
more readily than others and has its own physical feel and character which will
ultimately affect the experience of game feel as perceived by the player.

 The Computer
 The computer is “ 4 ” in Figure 3.1 . In one sense, the computer does its own per-
ceptual, cognitive and motor processing. It accepts input at a certain rate, thinks
about it for a certain amount of time, and then responds, sending signals to its out-
put devices. As with the human processors, the computer has a cycle time for this
whole endeavor. In the case of the computer, though, the response needs to happen
quickly enough for the player to perceive the response as instantaneous—within
one perceptual cycle (as little as 50 ms) of receiving input from the player.

 For game feel to occur uninterrupted, input from the player’s muscles needs to
travel through the controller, be processed and come back as changes in pixels and
sounds before one entire cycle of the player’s perceptual processor has finished. The
computer needs to perform its half of the cycle faster than the player can perceive. If
this occurs, the player will see the series of incrementally changed visual frames as
a single moving object and will feel it reacting immediately to the input. The player
will readily interpret a cause and effect relationship, and the impression of control
is complete.

 The Game World
 The game world is marked “ 5 ” Figure 3.1 . For our purposes, the game world exists
primarily in the player’s mind. There is also an internal representation of the game
world that exists in the computer, one which is more precise and mathematical than

65

the rich, expressive world experienced by the player. But a game system is designed
to output to an experience in the mind of the player. For the player, the output
devices are a window into the game world, and the avatar acts as a proxy within
that world. The player perceives the game world actively, through the “ body ” of
the avatar. Experiencing game feel is feeling out the game world, making additional
distinctions, and learning skills, concepts, and generalizations that make coping
with the unique world easier.

 This is essentially the same process we undergo in our everyday lives. A game
world slots itself into the player’s action → perception → cognition cycle, replac-
ing the physical world’s roles of accepting input and returning feedback. A game
world is simpler, easier to understand, and has clear, finite goals. This makes learn-
ing game skills faster, easier to measure, and, in many ways, more appealing than
real-world skills.

 Output Devices
 Marked at “ 6 ” in Figure 3.1 is the output device. The output devices, which may
include a monitor, speakers, controller’s rumble motors, haptic feedback device and
so on, are the player’s window into the game world. The monitor and speakers are
where the processing of the computer reaches reality. They are the computer’s organs
of expression to the player. The completed processes have resulted in an updated
system state for the computer, and it sends visual, aural and tactile feedback out
through its various channels into the world and, as we looked at in Chapter 1, the
position of the hands or other body parts on the input device offers the player pro-
prioceptive feedback which can be reconciled with what’s happening on the screen
or coming through the speakers. Moving my thumb this far moves the character too
fast, so I subconsciously ease off the thumbstick by a millimeter or two.

 The Senses
 The loop is complete at the player’s sense, marked “ 7 ” in Figure 3.1 . The senses
take in the updated state of the game world. The eyes, ears and hands (both tactile
and proprioceptive senses) perceive the new, changed state of the game’s reality
and pass them along to the perceptual processor. The cycle, having taken less than
half a second, is complete. The motions are amplified into the game world but still
have a real-world position that’s being perceived by the hands via the propriocep-
tive sense.

 I’m keeping the Model Human Processor and meshing it with the perceptual
field. In my model, the perceptual field is fused with the perceptual and cognitive
processors, being at once a filter for new perceptual information, a framework in
which to slot it, and an ever-expanding reference library which contains not only
information about the meaning to assign each new stimulus but your schematic
diagrams of your world and everything in it.

THE SENSES

CHAPTER THREE • THE GAME FEEL MODEL OF INTERACTIVITY

66

 The Player’s Intent
 To complete our model, we need to account for intent. On one level, it’s an inter-
esting question: where does intent come from? What motivates us to do what we
do? This question is perhaps more satisfying as applied to game worlds because
it can be answered definitively. Intent in a game world is designed by a game’s
creator; we don’t have to wonder at its origins, divine or otherwise. As for real-world
intention, French Philosopher Maurice Merleau-Ponty thinks that people have an
“in-born intentionality towards the world. ” To say : “we’re born with it, ’” though,
seems like a bit of a cop-out.

 Maslow has some more interesting things to say about the nature of human
motivation with his pyramid of wants (see Figure 3.2). At the bottom are things like
satisfying your basic physical needs for food, shelter and warmth. Moving up, you
find security, love, self-esteem and, finally, self-actualization. The idea is that at any
time, if one of the lower rungs is unsatisfied, consciousness dips down to that base
level until that need is sated. People are constantly trying to reach higher and higher
on the pyramid, striving for creative satisfaction and whatnot. Sims, it seems, have
a hard time getting above the toilet level.

 The pyramid fits with how Snygg and Combs incorporate intentionality and
motivation into their perceptual field. They envision a “perceptual self ”—the vision
of yourself that exists as part of your own perceptual field. This is a cool concept, as
it seems to explain things like those self-immolating Tibetan monks from the Rage
Against the Machine album cover. A person can do things that don’t seem to serve
his or her body very well—lighting oneself on fire being one possible example—
but which enhance the perceptual self. You see yourself as a martyr, dying for a

F I G U R E 3.2 Maslow’s hierarchy of needs starts with the basic physiological needs and
moves upward to self-actualization.

67

cause greater than yourself. Thus your own self-image, the embodied qualities of
yourself as you perceive you, is enhanced. And made more crispy.

 Whatever the origin of human motivation is in reality, though, it is true that
part of game design is crafting goals, implicit or explicit, to motivate action in game
worlds. This is one of the dark arts of game design—creating meaningful, com-
pelling intent from a seemingly arbitrary collection of abstracted variables. Think,
for example, of the coins in Super Mario 64. Ask yourself: if you didn’t get a star
for collecting 100 coins or if they did not restore Mario’s health, would you bother
collecting them? No, of course not. These are the arbitrary relationships between
abstract variables that give coins meaning in the game world of Mario 64. The star
itself is given meaning only by being rare and powerful, one of only 120 in the
whole game, each of which is a clear, measurable step toward unlocking the entirety
of the game’s levels, the (explicit) goal of defeating Bowser or the (implicit) goal of
collecting all the stars.

 This is one of the most appealing aspects of video games for many players.
A game world’s logic is simple, easy to understand, and provides clear incentives,
rewards and feedback for effort invested. It’s safer than the chaotic and arbitrary
nature of everyday life. It’s comforting. In many cases, it rewards mediocrity or
at least makes it ignorable. Whether this is good or bad is a different question, but
it is worth noting that most game worlds do in fact have in-born intentionality, and
it’s the game designer who creates it.

 Summary
 The game feel model of interactivity offers a comprehensive picture of how game
feel occurs as a process. Each element involved in the process—the human proces-
sor, human muscles, input device, the computer, the game world, output devices,
the senses and the player’s intent—is necessary to keep the cycle running.

 1. The human processor—where perception and thinking happen and motor
instructions are created.

 2. Muscles—The motor instructions are executed as muscle movements.

 3. Input device—The muscle movements are translated into a language the compu-
ter understands.

 4. The computer—Where all processing happens, including integration of input
with the current state of the game world.

 5. The game world—The computer’s internal model of the game’s reality.

 6. Output devices—The updated game state is output into a form the player can
understand.

 7. Senses—The player perceives the updated state through sights, sounds, touch,
and proprioception.

SUMMARY

CHAPTER THREE • THE GAME FEEL MODEL OF INTERACTIVITY

68

 The player’s side of things does not change because of the fixed properties of
human perception, which limits the game designer’s area of influence. On the com-
puter side of things, a designer is unlikely to have a role in creating the input device,
the computer or the output devices. The game designer’s palette, then, is contained
within steps 4 through 6.

 Examining all the pieces in a cohesive model, we can finally make a firm deline-
ation between games that have game feel and those that don’t. The model provides
a framework for understanding where things might be improved in a particular
design, and a foundation for creating game feel from scratch.

69

CHAPTER
 Mechanics of
Game Feel

 To wrap up our section on defining game feel, let’s apply all the ideas from Chapters
1, 2 and 3 to some specific games. To do this, we’ll return to our three-part defini-
tion of game feel: real-time control, simulated space and polish. The overall ques-
tion to be answered is where a game fits on the diagram (Figure 4.1).

 This breaks down, once again, into three questions:

 1. Does it have real-time control?

 2. Does it have simulated space?

 3. Does it have polish?

69

 FOUR

F I G U R E 4.1 Types of game feel: we want to put every game somewhere on the diagram.

CHAPTER FOUR • MECHANICS OF GAME FEEL

70

 From our model, we have measurable thresholds for real-time control to test
against:

 ● 10 frames per second. The images are displayed at a rate faster than one cycle of
the human perceptual processor, which will be 50 to 200 ms. Therefore, images
displayed at a rate at or above a rate of 10 frames per second will appear fused
into motion, and 20 frames per second or higher is necessary for a smooth
motion. In the case of a game, this is not a series of linear frames played back in
sequence but a series of states generated in response to input.

 ● Response time of 100 ms or less. The game’s response to input happens within
one perceptual cycle (50 to 200 ms) of the player’s action, fusing into a sense of
causality and instantaneous response.

 ● A continuous feedback loop. The game provides a continuous, unbroken flow of
input and instant response, enabling ongoing correction cycles to occur.

 But these metrics are difficult to apply to an entire game’s interactivity all at once.
To answer the question of real-time control more easily, it’s useful to break down a
game’s interactions into individual mechanics. Then we can check each mechanic
against the various thresholds from our model.

 Mechanics: Game Feel Atoms
 For our purposes, a “game mechanic ” is one complete loop of interaction, such as
a single mouse twitch, button press or foot stomp that can be traced through the
game’s programmed response and back to the player over and over again. Another
way to think about mechanics is as verbs. What are the player’s abilities in the
game? What can the player do? By this definition, examples of individual mechanics
include:

 ● Pressing the A-button to jump in Super Mario Brothers

 ● Steering Mario left and right using the D-Pad in Super Mario Brothers

 ● Strumming a note in Guitar Hero

 ● Using the mouse to steer left and right in flow

 ● Boosting forward by clicking the mouse in flow

 ● Drag-selecting a group of units in Starcraft

 ● Clicking to send a group of selected units to a new location

 ● Pressing a button at the right moment to advance to the next sequence in
Dragon’s Lair

 ● Clicking on a button to select the next technology to research in Civilization 4

 In a typical game, many different mechanics are active at the same time and often
overlap and combine. Running and jumping in Super Mario Brothers are separate

71

mechanics by our definition. But they combine to become a whole greater than the
sum of their parts.

 Mechanics can also change over the course of a game. For example, gaining a
skill point in Tony Hawk’s Underground makes your skater move forward faster.
Mechanics can also come and go over the course of a game. In Half-Life, the player
finds new weapons gradually, but then loses them at the halfway point of the game.
Super Metroid gives the player a bunch of mechanics up front, then takes them
away a short time later, forcing the player to start from scratch.

 The question is whether or not each individual mechanic meets the criteria of
real-time control and whether the system as a whole sustains real-time control.

 Knowing whether a game has real-time control is most of the challenge. From
there, it’s just a matter of asking whether the game has literal simulated space, if
the player perceives that space actively, and if the polish effects are used to empha-
size physical interactions in that space.

 Applying the Criteria
 To put our definition to the final test, we’ll apply it to four games: Street Fighter II,
Prince of Persia, Guitar Hero and Kirby: Canvas Curse. Each game is on the fringes
of our definition in its own way.

 Street Fighter II
 There are three primary types of mechanics in Street Fighter II: walking, attacking
and jumping. The walking mechanic responds within 100 ms when the joystick is
moved left or right, and it allows a sustained correction cycle. Input is constantly
accepted, the game responds within 100 ms, and there is no lockout period. As soon
as I perceive the result of my last action, I can adjust it with a new input. The
movement mechanic has real-time control.

 The “attack ” mechanics—when the player presses one of the six attack buttons—
have interrupted continuity. Pressing a button plays back an animation, which
changes the shape of the avatar. The response time when the button is pressed is
instantaneous, but then the player is locked out of further input until the animation
is complete. For the “ light ” attacks, the duration is very short and will not interrupt
the correction cycle of the walking mechanic. The heavy attacks can take almost
one second to complete, however, disrupting the continuity of control. Either way,
pressing a button to trigger an animation is not a continuous correction cycle. The
attack mechanics do not have real-time control.

 The jump mechanic adds upward force to the player when the joystick is pressed
up. Once the jump has started, the player cannot alter the trajectory of the jump.
This temporarily takes control away from the player, breaking the correction cycle of
the movement mechanic. After leaving the ground, however, the player can still trig-
ger attacks. This mitigates the fact that the player’s correction cycle is temporarily

APPLYING THE CRITERIA

CHAPTER FOUR • MECHANICS OF GAME FEEL

72

broken, as does the fact that the player gets to choose when to start the jump. The
player feels they have real-time control over everything. The whole system, combin-
ing the movement, jumping and attack mechanics, has real-time control.

 Street Fighter II also has simulated space. The characters collide with the ground,
the edge of the screen and with each other. These interactions are perceived actively
by the player, through the correction cycle of the movement mechanic.

 Finally, the polish effects in Street Fighter II—the sounds, particle effects and
animations—emphasize the interactions between objects in the game world.

 Prince of Persia
 The original Prince of Persia (see Figure 4.3) is an interesting edge case because of
the disconnect between animation and control. The character moves fluidly, but the
feel of control is stilted and uneven. A casual observer might assume that because
the movement of the character is smooth and even, that the control must also be.
This is not the case.

 The individual mechanics in Prince of Persia are:

 ● Run

 ● Jump vertically

 ● Jump horizontally

F I G U R E 4.2 Street Fighter II has game feel.

73

 ● Change direction

 ● Lower (down a ledge)

 ● Draw sword

 ● Sheathe sword

 ● Shuffle

 ● Parry

 ● Thrust

 ● Crouch

 ● Crouch-hop

 ● Walk

 ● Grab ledge

 ● Crouch-slide

 Prince of Persia consists entirely of mechanics like the attack mechanic in Street
Fighter II. The player presses a single button, and a single animation is played
back. The response time is less than 100 ms, but further input is locked out until the
animation is over, which often breaks continuity. Examining individual movement
mechanics by this criteria, we can see which ones have real-time control and which
don’t. For example, going from Stand to Run (Figure 4.4) fails one of our threshold
tests:

 It takes almost 900 ms for the prince to go from standing still to a full speed run.
In between, new input from the player is meaningless. There is a branch point of
sorts; having reached the end of the “standing to run ” animation, if the directional

F I G U R E 4.3 In Prince of Persia, animation reigns supreme.

APPLYING THE CRITERIA

CHAPTER FOUR • MECHANICS OF GAME FEEL

74

button is still held down, the prince goes into his full speed run cycle. If the button
is not held down, the “run to standing ” animation is played back, taking another
few hundred milliseconds. This is not an unbroken correction cycle, so this particu-
lar mechanic by itself does not have real-time control.

 Only the crouching mechanic, comprised of the fewest number frames, has real-
time control. Because the user is locked out for a very short amount of time, the
action not only feels instantaneous in response, but it feels as though it’s ready to
accept new input as soon as the player is ready to offer it. It’s no wonder, then, that
this is the mechanic of choice to use when precision timing is necessary. When
navigating through a room full of gnashing blades, you want to use the crouch-hop
mechanic (Figure 4.5). It feels like the most precise and responsive expression of
your input and enables the smallest increments of movement spatially.

 Out of all the mechanics of Prince of Persia, only one passes our threshold tests
for real-time control. But the animation is fluid and appealing and covers up the
lack of control to some degree. The player rarely has a sustained correction cycle
and so rarely experiences true game feel. The fact that there are interactive branch
points in the animations helps to some degree. In this case, unpredictability actu-
ally works in the game’s favor. I don’t know exactly when the jump is going to take
place, so I instinctively just hold the up button when I’m close to where I want to
jump. This makes me feel as though the system is listening to my input more often
than it is.

F I G U R E 4.4 Sixteen frames at 30 fps � 0.53 seconds to complete the animation.

 F I G U R E 4.5 The hopping animation takes only 150 ms to complete, so it feels almost real time.

75

 There is simulated space in Prince of Persia; animations can be interrupted when
the character walks far enough off a ledge, and he can bump into walls. The player
experiences these directly and actively, by pushing the character into them. The
only polish effects that emphasize these interactions are the animations, which have
a good sense of weight and presence against the floor.

 So Prince of Persia has game feel, but just barely. The player is able to cobble
together a correction cycle by imagining control when there is none and by using
the mechanics with the lowest number of frames whenever possible.

 Guitar Hero
 Ahh, Guitar Hero. What a lovely game. It’s rare to see technology infused with
such a sneer, such sense of unabashed glee. In the Game Developer post mortem of
the game, producers Greg LoPiccolo and Daniel Sussman name the one litmus test
for every feature and piece of content in the game: “Does it rock? ” The results of
this simple vision speak for themselves. But does Guitar Hero have game feel as
we’ve defined it? Again, let’s examine the individual mechanics and the system as a
whole.

F I G U R E 4.6 Prince of Persia has game feel, but it’s pretty stilted.

APPLYING THE CRITERIA

CHAPTER FOUR • MECHANICS OF GAME FEEL

76

 In Guitar Hero, there are five things you can do (mechanics):

 ● Strum

 ● Whammy

 ● Hammer On

 ● Hammer Off

 ● Tilt

 The strum is the game’s core mechanic (Figure 4.7). Colored notes scroll down
from the top of the screen. You hold down one or more corresponding buttons on
the neck of the plastic guitar and pull the strum trigger up or down. If you strum
the right combination of notes at the right time (when the note’s position is close
enough to crossing the line) the game records the note as hit. More notes hit means
a better score, and the game tracks streaks of hit notes. Miss too many notes and
you fail the song.

 Impression of motion, check. The notes seem to move down the screen, from top
to bottom, and individual frames are fused into an impression of moving objects.
Instantaneous response, check. The response time to input is within one perceptual
processor cycle (less than 100 ms) so the response from the system seems instanta-
neous with a strum. But there is no continuity. Instead of locking the player out as
in Prince of Persia, it cuts the player off. The whole loop of input and response hap-
pens in less than 100 ms, but once it’s done it’s done. There is no continuous flow
of input and response, no correction cycle.

 The whammy bar mechanic, however, allows a constant stream of both input
and response. The response feels instantaneous and continuity is maintained. The
whammy mechanic has the potential to be an ongoing correction cycle. But there

F I G U R E 4.7 The “ strum ” mechanic in Guitar Hero.

77

is no simulated space. The waveform ripples and notes bend as the whammy bar
is manipulated, but the size of the ripples has no meaning. Bending notes with
the whammy mechanic does not enable the player to actively perceive a simulated
space because there is no simulated space around it to interact with (Figure 4.8).

F I G U R E 4.8 Bending the waveforms with the whammy mechanic is real-time control, but it
lacks spatial simulation.

APPLYING THE CRITERIA

 F I G U R E 4.9 Guitar Hero has polish and (occasional) real-time control, but no simulated space.

CHAPTER FOUR • MECHANICS OF GAME FEEL

78

 Guitar Hero is a relatively simple game. Strumming to hit notes in increasingly dif-
ficult patterns that are synched to songs is the vast majority of the game. Even con-
sidered as a whole system, however, it does not have the property we’ve defined as
game feel. The notes may fly fast and furious, and you can wail on the whammy
and tilt to use your star power, but there is no unbroken flow of action, perception
and contemplation. There is the impression of motion, instantaneous response, but
there no sustained correction cycle and no spatial simulation (Figure 4.9).

 Kirby: Canvas Curse
 Kirby: Canvas Curse (Figure 4.10) takes a very simple idea and executes on it bril-
liantly, enabling the player to indirectly control Kirby’s movement by drawing. In
Canvas Curse, you play as Kirby and as a disembodied paintbrush at the same time.
There are three mechanics:

 ● Drawing (paintbrush)

 ● Tapping (on the avatar)

 ● Holding (enemies)

 Using the paintbrush mechanic, you draw lines on the screen, represented by
flowing rainbows. If Kirby comes into contact with these lines he will follow their
path in the direction they were drawn (see Figure 4.11).

 From the moment the player starts drawing the line, they’re running a correction
cycle to get the line drawn in the shape and direction they want. The response is
instantaneous, but this is not real-time control per our definition. In this case, the
DS stylus and screen are functioning the same way a piece of paper and pencil do.

F I G U R E 4.10 The layout of Canvas Curse.

79

The player is correcting the movement of his or her own hand in space rather than a
virtual object in virtual space.

 The other main mechanic is tapping. The player can tap Kirby directly with
the stylus. This results in a state change and a speed boost. The spinning anima-
tion is accompanied by a burst of speed in the direction Kirby is currently facing.
The response is instantaneous, but, as with Guitar Hero, the input is not sustained.

F I G U R E 4.11 As you draw the rainbow trail, Kirby will follow its path if he makes contact
with any part of the trail.

 F I G U R E 4.12 Canvas Curse has polish and simulated space, but no sustained real-time control.

APPLYING THE CRITERIA

CHAPTER FOUR • MECHANICS OF GAME FEEL

80

One tap equals one input. To express a new input, the player has to lift the stylus
off the screen and tap again. This is not an ongoing correction cycle.

 The ambiguity of Canvas Curse is in its simulation. Kirby moves around a sim-
ulated space, colliding with walls, enemies and other objects. Those interactions
are emphasized with polish effects like sounds and particles. This is where things
become fuzzy; Kirby interacts with simulated space in just the way it should to fall
inside our definition of game feel. The world of Canvas is its own unique physical
world. But the player does not experience the simulated space directly, perceiving
it actively via Kirby’s “ body ” in virtual space. Instead, the player guides Kirby indi-
rectly, observing the results of his interactions and building a model of the game
world from those interactions. Kirby: Canvas Curse falls outside the definition of
game feel (Figure 4.12).

 Summary
 Breaking down game feel into its component mechanics on a game-by-game basis
enables us to better understand which games have game feel and which don’t, and
why. Our definition is now complete: even games that are on the edge can be clas-
sified according to real-time control, simulated space and polish. Games that have
these three properties have game feel. Games that don’t fall outside the scope of
this book.

81

CHAPTER
 Beyond Intuition:
Metrics for Game
Feel

 In this chapter and the next six, we’ll explore the problem of measuring game feel.
The goal is to compare the feel of one game to another meaningfully. This will give
us a generic, working vocabulary for game feel and will offer insight into why some
games feel good and others do not, even if the games appear similar on the surface.
In Chapter 1, we defined the canvas of game feel and looked at some of the finished
“ paintings ” of experience possible on that canvas. Now our goal is to identify the
colors of paint.

 Why Measure Game Feel?
 As with definition, there are no standard measures for game feel. We as players and
designers do not attempt to measure game feel or to compare the feel of one game
to another at a level deeper than is necessary for casual conversation and game
production. From players, we have vague descriptions like floaty, loose, tight and
responsive. Some enlightened game designers measure response lag and move tim-
ings, but to most game feel tuning is intuition. When a game designer sits down to
create a mechanic from scratch, this is a problem. As God of War designer Derek
Daniels says, “One of the worst things about making video games is that you have
to re-invent the wheel with almost every new project you work on. So even though
Mario jumps like a champ, when you go to make your game, it’s very hard to
reverse engineer Mario’s jump and port it into your game. ” 1

 This is frustrating because each new game we design feels just as complex as
the last. If we don’t directly copy what we did before, we’re starting from scratch.

81

 FIVE

 1 http://lowfierce.blogspot.com/2006/05/why-some-games-feel-better-than-others.html

CHAPTER FIVE • BEYOND INTUITION: METRICS FOR GAME FEEL

82

This leads to timid, incremental improvements over previous designs in an effort
to keep things safe and comfy. We copy Mario’s mechanics, or Banjo Kazooie’s, or
Grand Theft Auto’s, trying to recreate, in the context of our own systems, what was
good in those. This is the easy way to design.

 The more difficult way is to ask the following question: Where did the feel of
Mario come from? Or Spacewar! for that matter? Those designers didn’t have some-
thing to clone from, so how did they arrive at good-feeling mechanics? We continue
to use a handful of games as our exemplars of mechanic design and game feel. Yet
we fail to identify what is special about these particular combinations of real-time
control, simulated space and polish. We need to understand the unique relation-
ships between the parts and how these relationships give rise to the experiences we
cherish.

 There are common elements in the physical design of a controller, the relation-
ship between physical and virtual movement, and the design of the virtual worlds
we interact with through game feel. If we can identify and measure these pieces of
game feel, we can avoid constant reinvention. This requires us to wrap our brains
around the game feel system as a whole—including the player, the input device, the
programmed reaction from the game system and all the pieces (i.e., the Game Feel
Model of Interactivity described in Chapter 3)—and identify which elements enable
us to make a meaningful comparison between the feel of two games. Not only the
pieces, but the relationships between the pieces. If we can do that, we can under-
stand how to construct similar systems by insight instead of emulation.

 Soft Metrics vs. Hard Metrics
 Before diving down into specific elements from the Game Feel Model of Interactivity
that we’re going to apply as metrics, a few words on measuring game experiences.
As every designer knows, the only valid way to take the temperature of a design in
progress is to watch players play it. There’s no way around it; the output of a game
system is player experience. To master it, you’ve got to measure it. To measure it,
you need live players.

 Enter the dreaded play test. Nothing is more humbling. You have a vision in your
head of the experience the player should have playing the game. Perhaps this vision
lines up with the experience you as the game designer currently have when playing
your game. Perhaps you feel exceptionally skillful and adept as you play and you
think that playing your own game is pretty fun. Now put the game in front of some
players and watch as your tower of hope gets hit by the oily wrecking ball of player
reality. The players do unexpected things, are hung up on stupid little details or
can’t figure out the controls. They whine, they grunt, they say “this is stupid! ” and
they walk away in disgust. They ignore all instructions, mash their way around, and
display all the insight and cognitive capacity of an indignant end table. They always
tell you, “Oh, it’s fun, but … ” and list a litany of bizarre sounding changes they’d
like to see. Brutal!

83

 And it gets worse: this is not the player’s natural environment. If you weren’t
standing there, if you hadn’t invited or cajoled, or if the playtester weren’t your
friend or sibling or spouse, would they still be playing the game? The answer is
usually no. The closer you can get to seeing players in their natural environment,
displaying their actual, natural behavior, the further from “ done ” your design will
seem to be. But this is what you want. You want a realistic read on how players will
play your game in the wild, even though the closer you get to it, the more brutal
the feedback becomes. It’s horrid. Your game isn’t fun. Players hate it. Maybe you
should scrap the whole thing and start over.

 For many designers, the solution is simply to drink from the fire hose. Put your
head up in the stream and just take the full blast of feedback in the face. Actually,
this works reasonably well. Big, serious issues tend to be very obvious, and the
designer can usually figure out how to modify the system to correct the problems.
Rinse, repeat, iterate. The more times you can iterate on this cycle of playtesting and
modification, the better you game will be. However, there are some things that can
be done to make this cycle take less time and be more effective.

 Figure 5.1 is an example presented by Mick West in his article “Pushing Buttons ”
for Game Developer. “All I did was add a simple ‘ watcher ’ class which would record
the value of a variable (such as a button up/down state or a physics state or flag)
every frame and then display this as a scrolling state graph across the top of the
screen, with a separate line for each variable that was being watched. To this state
graph I added an event recorder which recorded events (jump, land, fall, super
jump, late jump and crouch) and displayed them on the graph as a vertical line,

SOFT METRICS VS. HARD METRICS

F I G U R E 5.1 Measuring inputs over time: an excellent “ hard ” metric.

CHAPTER FIVE • BEYOND INTUITION: METRICS FOR GAME FEEL

84

labeled with the event. Finally I made the graph able to be scrolled and zoomed in
and out by the joypad when the game is paused. So, whenever some control prob-
lem occurs, it’s very easy to pause the game and then scroll over and zoom into the
area on the graph that caused the problems. ”

 This is a sophisticated, data-driven measurement of player experience. West’s
millisecond-precise graphing of player input and system output provides a clear,
quantitative explanation for a soft, wishy-washy, subjective player experience. This
is great stuff. It enabled him to tune his system more quickly and to provide a clear,
unambiguous insight into a very nebulous problem of the controls not feeling right
for the player.

 West’s graphing is an example of a “hard metric. ” Hard metrics are quantifia-
ble, finite measurements. The player pressed the button 57 ms after the computer
thought they were off the cliff. The final score was blue team 10, red team 3. The
player played the game for 27:03. Hard metrics provide specific, measurable data
that can be compared across playtests. Assigning meaning to the data is part of the
art of game design—should every game of Warcraft 3 take 20 minutes to complete?
Or is it okay to have a game that last seven hours? Answering that question depends
on the experience the designer intends to create.

 Contrast hard metrics with “soft metrics ”—things like fun, laughter and requests
for more play. Are your players really having fun? What does fun mean in the con-
text of your game? It could be deep strategic thought, with players sitting in silence,
pondering the ramifications of their next move. Or it could be raucous laughter and
intense interpersonal connections. Or it could just mean a feeling of relief and relax-
ation, a nice escape after a hard day at work. These things are not easy to mea-
sure. Though it is possible to quantify certain aspects of behaviors—such as Nicole
Lazzaro’s excellent Four Fun Keys, which are based on videotaped recording of peo-
ple’s faces and resulting emotional categorization—this is not the norm for game
designers. Usually, soft metrics combine to form a sense, nebulous but always evolv-
ing, about what the experience of playing the game is for all players everywhere.

 It’s important to note that soft metrics are just as useful to game design as
hard metrics. People tend to assume that because hard metrics are fact-based, sci-
entific and objective, they are somehow better. But it’s just as important to keep
track of whether and how people are enjoying themselves while playing the game.
Examining soft metrics is part of the game designer’s intuition, which gets honed as
he or she completes more and more designs. To have an intuitive grasp of what sys-
tem dynamics will create enjoyable, meaningful experience is to be keenly attuned
to soft metrics. In our measurement of the game feel of various games, we will
employ both soft and hard metrics.

 What’s Important to Measure
 In the Game Feel Model of Interactivity, it is the pieces on the computer’s side of
the system that can be changed by the game designer. Out of these, certain aspects

85

are obvious candidates for metrics. The six most useful aspects in this respect—the
most important to measure, in terms of framing principles for designing game feel
and for comparing games—are as follows.

 ● Input—The physical construction of the device through which player intent is
expressed to the system and how this changes game feel.

 ● Response—How the system processes, modulates and responds to player input in
real time.

 ● Context—The effect of simulated space on game feel. How collision code and
level design give meaning to real-time control.

 ● Polish—Effects that artificially enhance impression of a unique physical reality in
the game.

 ● Metaphor—How the game’s representation and treatment change player expecta-
tions about the behavior, movement and interactions of game objects.

 ● Rules—How arbitrary relationships between abstracted variables in the game
change player perception of game objects, define challenges and modify sensa-
tions of control.

 These are summarized in Figure 5.2 . Some enable data-driven “ hard ” metrics,
such as input, and others are on the “ softer ” side, such as metaphor. The rest of
this chapter introduces these six elements as metrics in a general way. Chapters 6
through 11 describe the metrics associated with each element in detail.

 Armed with this information, we can quantify game feel in a way that lets us
design game feel from first principles instead of from a priori knowledge (i.e., by
emulation). We will also have a detailed set of criteria for comparing games.

 Input
 The input device is the instrument of expression for the player into the game world.
Therefore, the physical construction of the input device is important to the feel of
control. The layout of inputs on the device, the tactile feel of the materials it’s made
from, its weight, and the strength of springs in joysticks and other actuators—all
of these things affect the way it feels to hold, touch and use the input device. This
changes game feel. It’s like a musical instrument: while it’s possible to play Fur
Elise on a Playskool piano, there’s a much greater potential inherent in a Steinway
Grand Piano. When I create a prototype of a new control mechanic, it will almost
always feel better to control using my wired Xbox 360 controller than using just
buttons on the keyboard. At the highest level, this is because the Xbox controller
is a well-designed consumer product made of sturdy materials and smooth, porous
plastic.

WHAT’S IMPORTANT TO MEASURE

CHAPTER FIVE • BEYOND INTUITION: METRICS FOR GAME FEEL

86

F I G U R E 5.2 The six most important elements of game feel to measure are input, response,
context, rules, polish and metaphor.

 Playable Example

 If you want to experience the difference and happen to have an Xbox 360 con-
troller hooked up to your PC, try playing example CH05 - 1. You can control the
game with either the Xbox controller or the keyboard (WASD.) Controlling the
object with an Xbox controller feels better, all other factors being equal.

 From the designer’s side of things choices about which parts of the input device
to use and how to use them affect the feel of control over virtual objects. The
designer rarely gets to choose which input device the player will use—this is almost
the same as making the choice about platform—but the designer can always choose
which inputs on the device will be valid and useful for controlling things in their
specific game. If the input device is a Playstation 3 controller, does the player use
the thumbsticks, the buttons or both? These decisions define what sensations of
control are possible in the game.

87

 By choosing which inputs will be used, the designer also makes a choice about
the sensitivity of their input space. Input devices have an inherent sensitivity. The
feel of using an NES controller to control something in a game is different from
a typical computer mouse, for example. The NES controller has more total inputs
than a mouse—eight separate buttons—but is less sensitive overall than a mouse.
Of these eight buttons, six are commonly used for real-time control, and each of
these buttons is a very simple two-state affair. It’s either on or off at any given time,
nowhere in between.

 The mouse has two standard buttons. But it also has a rolling ball or laser mech-
anism that recognizes movement in two directions. This two-axis movement is
much more sensitive than a single button. The signals it sends to the computer are
much more complex than the simple ON or OFF of a button.

 From the designer’s perspective, an input device translates the complex goals
and intentions of the player into a simple language a computer can understand and
interpret. This language is a stream of values that change over time. The move-
ment of a thumbstick to the left, for example, can be interpreted by the computer
as a change in a single “ float ” value—a number between �1.00 and 1.00. As the
player moves the thumbstick, the numbers change. A button is much simpler in
terms of physical activation and in terms of the signals it sends. Having selected a
specific input device, the game designer then chooses which inputs on the device
will be used, and how they will be used. In other words, of the possible input space
inherent in the physical construction of the input device itself, the designer decides
which parts will be valid and applicable to control in his or her specific game.

 To measure the effect these choices have on game feel in completed games, we
want to look at the properties of each individual input and at the input space as a
whole. As a whole, we want to know which inputs on an input device are used for
control, and to keep track of any physical constraints and limitations of the input
device. For example, on an NES controller most of the inputs can be combined with
one another, except for opposing directions on the directional pad. It’s impossible
to press both left and right on the directional pad at the same time. Ditto up and
down. But it is possible to press the A-button and left at the same time. This means
that a game controlled by a directional pad will feel very different than the same
game controlled by four keyboard keys simply because the inputs combine in differ-
ent ways (see Figure 5.3). On a keyboard, it is possible to press left and right at the
same time.

 For each individual input, it’s useful to examine how many possible states the
input has, the degrees of freedom and types of movement it permits, and how, if
at all, it’s bounded. For example, a simple button on my Xbox 360 controller has
two states, on and off. It moves in one axis, up and down, and it is bounded in two
places, at its maximum and minimum. A trigger button on the same controller still
moves along only one axis but has hundreds of discrete states between its bounda-
ries of fully released and fully pressed. The thumbsticks on the same controller have
complete freedom of movement along two axes, X and Y, and are bounded by the
circular plastic casing of the controller, giving them almost unlimited possible states.

WHAT’S IMPORTANT TO MEASURE

CHAPTER FIVE • BEYOND INTUITION: METRICS FOR GAME FEEL

88

F I G U R E 5.3 On a keyboard, it is possible—and likely—for a player to press left and right at
the same time.

F I G U R E 5.4 Differences in sensitivity between input devices.

89

We can say then that a thumbstick is overall a more sensitive and expressive input
than a trigger button, which is in turn more sensitive than a standard button.

 Another metric, though a soft one, is how the input provides proprioceptive feed-
back (spring strength, layout of buttons relative to one another). Joysticks, thumb-
sticks, triggers and buttons can feel very different depending on the strength and
quality of their spring mechanisms. This physical feel of interaction is very difficult
to quantify, but has some effect on the feel of control over virtual objects.

 Response
 Knowing all about the input device is half of real-time control. All inputs eventu-
ally become signals, which are mapped to the modulation of some parameter in the
game. This modulation can be thought of as the game’s response to input.

 The game receives signals from the input device. Signals modify some parameter
in the game in some way, which is defined by the game designer. This is mapping:
hooking specific input signals up to parameters in the game and defining how the
parameters will be modulated over time. As Mick West says, “On the face of it, this
appears a simple problem: you just map buttons to events, [but] getting player con-
trol to work is inevitably a fiddly and complex task. ” 2 This is where most of the feel
of control in a game is created.

 An input signal can modulate any parameter in a game and can do it over time
in many different ways. A button press can move an object a distance in a direction.
Press the button once and a cube moves five units to the right, for example. Or a
game can continuously move that object a small amount each time the feedback
loop is complete, as long as the button is held. Alternately, holding the button could
add a force to a simulation, which indirectly causes the cube to speed up and start
moving. All of these are different mappings of one button to the movement of one
object, and with each, the feel is different. But a press of a single button can also be
mapped to changes in global parameters. Pressing a button might reverse gravity or
holding it might change the friction value for a car’s tires, enabling a different kind
of control.

 To measure the response of a particular game, we want to look at how each
signal coming in from the input device is mapped to a change in the game. What
parameter does it modulate, and how does it change that parameter over time? Or,
more generally, what parameters are changed by what inputs, and what are the
relationships between the parameters? For example, in Id Software’s Quake, rotation
of the avatar in 3D space is very closely translated from the mouse on the desk sur-
face. Changes in the two signals coming in—X and Y for the left/right and up/down
movement of the mouse—rotate the avatar left, right, up and down (Figure 5.5).
There is very little processing of input. The movement of the mouse adds a value to

 2 http://cowboyprogramming.com/2007/01/02/pushhing-buttons/

WHAT’S IMPORTANT TO MEASURE

CHAPTER FIVE • BEYOND INTUITION: METRICS FOR GAME FEEL

90

the current rotation value of the avatar. Move the mouse an inch to the left and you
turn 90 degrees to the left, a fixed steering ratio.

 But in Quake, the steering ratio between horizontal mouse movement and hori-
zontal in-game rotation is different from the one between vertical mouse movement
and horizontal in-game rotation. For your up/down mouse movement, you get
much less vertical rotation in the game. The relationship between these two values
is just as important as the values themselves; in the context of Quake, the players
will want to adjust their horizontal aim more quickly and over a greater distance
than their vertical one.

 Now compare the mapping of Quake with the classic Arkanoid, which maps
rotation of a knob to the left and right movement of the in-game “ paddle ” space-
ship (Figure 5.6). This is again mapped directly, though instead of mapping a linear
movement to a rotation as Quake does, Arkanoid does the opposite, mapping the

F I G U R E 5.5 Moving the mouse in Quake rotates the avatar—input becomes response.

F I G U R E 5.6 In Arkanoid, rotating the input knob maps to the left-right movement of the
spaceship.

91

rotation of the knob to a linear movement of the ship. One degree of rotation of
the wheel input is translated into a certain distance of movement for the Arkanoid
paddle.

 Contrast this with the “ warthog ” driving mechanic in Bungie’s Halo, a more indi-
rect mapping of input to motion. Moving left on the thumbstick changes the posi-
tion of the “ reticule. ” This maps thumbstick displacement to a rate of movement
instead of to a change in position. Moving the thumbstick to the left a small amount
will move the reticule to the left at a slow rate. Pulling the thumbstick as far to the
left as it will go moves the reticule quickly, at a constant, maximum rate.

 The reticule’s position represents a heading in the 3D game world, one which
the warthog vehicle will then attempt to seek on—imperfectly. Depending on the
distance between the reticule and the actual heading of the avatar, it will rotate
more or less per frame to try to return to being in line with the reticule, but it may
overshoot or undershoot. This obfuscation between intent and reaction is pleasur-
able rather than annoying because it defines both an interesting challenge and a
pleasurable sensation of control.

 An input signal can also be mapped to a modulation across time, such as the
jumping mechanic in Super Mario Brothers. When jumping in Mario, holding down
the button longer yields a higher jump. There is a maximum height and an expres-
sive range in between. A tiny tap on the button is a tiny little jump. To get a full
height jump, you must hold down the button longer.

 After looking at what parameter each input modulates in the game and how it
changes it over time, the final thing to examine is the relationships between the

F I G U R E 5.7 In Halo, the degree of change of the thumbstick moves the reticule at varying
degrees of speed.

WHAT’S IMPORTANT TO MEASURE

CHAPTER FIVE • BEYOND INTUITION: METRICS FOR GAME FEEL

92

various parameters. No mechanic is an island. Just as important as how each indi-
vidual mechanic is defined—how each specific input is mapped to a response—is
the relationship between them. For example, the feel of Super Mario Brothers relies
on the relationship between how fast Mario can move on the ground and how fast
he can move in the air. In the air, he moves left and right, but more slowly than on
the ground. You still have some control over Mario’s trajectory in the air, but the
feel is one of precise adjustment, giving you a better shot at landing on that small
platform. The same kinds of relationships between parameters define the feel of
any system of real-time control, from the speed-to-turning-radius relationship in a
driving game to the size/speed tradeoffs present in most fighting games. As much
as the basic mapping values themselves, it is the relationships between parameters
that makes a game feel the way it does.

 Context
 Context includes simulated space and level design. Envision yourself playing
Super Mario 64. Now imagine that instead of being in the middle of Bomb-Omb
Battlefield, Mario is standing in a field of blank whiteness, with no objects around
him. With nothing but a field of blankness, does it matter that Mario can do a long
jump, a triple jump or wall kick?

 If Mario has nothing to interact with, his acrobatic abilities are meaningless.
Without a wall, there can be no wall kick. In this way, the placement of objects in
the world is just another set of variables against which to balance movement speed,
jump height and all the other parameters that define motion. In game feel terms,
constraints define sensation. If objects are packed in, spaced tightly relative to the
avatar’s motion, the game will feel clumsy and oppressive, causing anxiety and

F I G U R E 5.8 Mario is sad because he has no context for all his fancy moves.

93

frustration. As objects get spaced further apart, the mapping of input to response
becomes increasingly unimportant. It doesn’t matter how fast a car moves relative
to its turning speed when it’s driving across a featureless landscape. Of course, the
spacing of objects is irrelevant until two objects can interact. It could look as though
you’re driving in a densely packed forest, but if the car goes through the trees, it
makes no difference how many trees there are or how they’re laid out. In this sense,
collision code is the other part of context.

 Context, then, is the unique physical reality of the game world—the simu-
lated space—including the way that objects interact and the layout of space. Like
the abilities and actions of the avatar, it is designed. The game designer creates a
game space that has its own unique physics, extents and constraints. The designer
simultaneously creates the content that fills that world and defines its spatial
relationships.

 Almost every game has a contextual aspect of some kind, be it tracks in Gran
Turismo or tracks in Guitar Hero. Tracks, puzzles, stages, levels, worlds: most
games have some kind of designed context against the mechanics ’ functions. In
most cases, this is called level design. The objective is to find the most interesting
pieces of the mechanic and emphasize them by trying to provide the most interest-
ing interactions possible with the mechanics.

 The importance of this context will vary depending on the type of game, but
almost every game includes some kind of level design. My favorite example is the dif-
ference between Slim Tetris and regular Tetris, as shown in Figure 5.9 . Level design
isn’t as important in Tetris as it is in, say, a Tony Hawk game, but Alexei Pajitnov still

F I G U R E 5.9 Normal versus Skinny Tetris: if the level design was different, it wouldn’t be the
same game.

WHAT’S IMPORTANT TO MEASURE

CHAPTER FIVE • BEYOND INTUITION: METRICS FOR GAME FEEL

94

had to decide that the Tetris field would be 10 blocks wide by 24 blocks tall. If it
were three blocks wide, Tetris would be a very different game. Change the context,
change the game.

 The default playfield of Tetris provided the right balance between constraint and
openness. It was an artistic choice and reinforces the important aspect of context:
spatial constraints define challenge. The sharpness of turns and spacing of obstacles
in Mario Kart DS defines the challenge of a particular course. The more difficult
courses have sharper turns that happen more frequently and include more obsta-
cles, jumps and other challenge-making context.

 The effect of context on game feel can only be expressed as soft metrics. There is
a change in the sensation of control when the overall landscape of the game world
is huge and open versus when it’s constrained and claustrophobic, but the exact
change is not quantifiable. It’s a general impression of space. The feel of control
also changes when objects are spaced closer together or further apart, and when
objects are sharp, round, organic or blocky. If you bump into things all the time,
the game feels different. At the lowest level, collision code again redefines feel as it
makes interactions feel a certain way. The interaction of objects can be smooth, as
they slide off one another or feel tacky, if they stick when they come into contact.
If an object explodes instantly when it runs into something, this again changes the
feel of the game. Steering around objects becomes much more important, and the
thing you’re controlling seems fragile.

 The best way to measure these effects is to examine the feel of control in differ-
ent contexts within the same game. In Asteroids, there are times when there are as
few as one asteroid on the screen. When that happens, the feel of control is differ-
ent from when the screen is covered in tiny, high-speed asteroid fragments. In these
extremes, we see the way that the feel of Asteroids is changed when the playfield—
the spatial topology—goes from empty to full.

 Polish
 Polish is any effect that enhances the interactions between objects in the game
world, giving clues about the physical properties of objects. If all polish effects were
removed, the functionality of the game would be the same, but the player’s percep-
tion of the physical properties of the objects in the game would change. Perception
is active, and polish effects further define the interactions that occur because of a
game’s collision code.

 Measuring polish is another soft metric. How does the feel of De Blob (the stu-
dent game mentioned in Chapter 1) change when the squash-shader is applied?
This is not quantifiable as a hard metric. What we can measure is the resulting
impression of physicality. Specifically, what the polish effects seem to tell us about
the properties of the objects we’re observing. The blob squashing and stretching
is what makes it seem a blob. As Joost says, without the squash-shader, the game
feels like playing with a ball made of stone.

95

 This principle applies to all polish effects. All effects, even if they’re applied
only with the nebulous goal of making interaction more appealing, send signals
about the physical properties of the objects involved in the interaction. When it’s
passive—when you see two objects in the distance collide—the impression is the
same as in film or animation. When it’s active, the impression is much more power-
ful, like experiencing something with your own senses.

 A violent spray of particles, the screen shaking or a loud noise lend the impres-
sion of weight, heft and solidness to objects. Any interaction that can happen in real
life, that has happened in film, or that can be imagined can be conveyed through
polish effects. The thing that’s interesting to measure is how the polish effects
impact a player’s perception of the objects in the game world.

 Playable Example

 See example CH05 - 2 for some different polish effects applied to the same
system.

 Consider the game Burnout: Revenge, a game with an almost preposterous
amount of polish. A car in Burnout is a solid object traveling at high speed. When
it crashes, the force of the impact is palpable, and the results are catastrophic. The
car is deformed in a hail of glass and sparks. Its mass and high velocity carry it
high into the air, spinning and burning, eventually to crash back down with all the
weight of its two-ton frame. The crunching, shattering and scraping noises are gut-
wrenching. A car in Burnout is a solid object traveling at high speed which has now
been completely obliterated (Figure 5.10).

WHAT’S IMPORTANT TO MEASURE

F I G U R E 5.10 The cars in Burnout can be damaged to an amazing degree. This is some
serious polish.

CHAPTER FIVE • BEYOND INTUITION: METRICS FOR GAME FEEL

96

 But how do you know this? What tells your senses that this is the case? How
can you know the physical nature of this digital object? What clues are you using to
derive this understanding? Well, let’s break it down a bit. First, we have the visuals:
glass is spraying from the windows, pieces of metal and car parts are flying off in
every direction, and dust and smoke are spewing from the engine. These are prob-
ably simple particle effects—two-dimensional images displayed at a particular point
in the 3D scene but which are programmed to always be facing toward the camera.
Often, these are a series of frames which play back linearly with some randomiza-
tion, causing little pieces of glass to spin and puffs of smoke to appear to billow
and froth. The sparks flying from where the car is contacting other pieces of metal
or scraping against the divider or pavement are probably generated the same way,
transitioning in color from white to yellow to red over time as they spray out. The
tires leaving skid marks on the pavement are probably alpha textures, being laid
down with created-on-the-fly geometry that has an alpha-blended tire tread texture
mapped to it. Maybe it has two or three different layers and randomizes the texture
so it’s hard to see the textures repeat.

 And what about the sounds, the screeching, the skidding and the shatter-
ing glass? The sounds of rending metal are all created, blended and triggered in
real time. They even have locations in 3D space, using positional audio to further
emphasize the link between sound and visuals. And then there’s the controller rum-
ble, adding a little bit of tactile sensation to the mix. It may not be especially logical,
but it helps the impact seem more, ah, impactful.

 So where did all these clues come from? Did a game designer simply press a but-
ton that says “insert car ” and knock off down to the pub for a pint or two? Sadly
not. Each tiny piece of interaction, each particle effect and sound, each deforma-
tion and broken piece of car sent flying is a hand-crafted response meant to do
one thing: convey the physical nature of this interaction to you, the player. It must
be a combination of various sights and sounds, too, because perception is a multi-
sensory phenomenon. When you perceive things, you see, hear, touch and feel all
at once. Perceiving something involves your entire body, even when it’s an exten-
sion of your sense into a virtual body. More than that, your perception of something
includes the meaning you assign to it based on past experiences, ideas, feelings and
generalizations. If it looks like a car, you expect it to behave the way things that fit
your idea of car would behave. This might be your experience of a real car crash,
years of watching car crashes in movies, or both. The point is that the clues must
be designed by a designer, created by an artist and programmed by a programmer.
Often, all three will touch a complex effect. Often this is written off as “just polish ”
but as applied to game feel its impact in terms of conveying a convincing, self-
consistent game world can’t be ignored. Polish is important.

 Metaphor
 Metaphor is where a player’s past experiences, ideas, feelings and generalizations
come into play. Not only from playing games, but from their total life experience.

97

What does the thing you’re controlling look like, and how do you expect it to
behave based on your experience with similar things? If it looks like you’re control-
ling a real car, the expectation is that it will handle like a car, sound like a car and
crash like a car. But the expectations come from the idea of what a car is, not from
objective reality. Players bring with them all their life experience—riding in cars,
driving cars and so on—but they also bring their experiences of cars from films
and animations. Convincingly behaving like a car, then, might mean exploding after
being shot with one bullet or it might mean squashing and stretching as in a car-
toon, taking no visible damage. Oftentimes, people will play a game—horse-riding
gameplay is my favorite example—and they’ll say, “This doesn’t feel like a horse. ”
And you’ll ask them, “Well, have you ever ridden a horse before? ” And they’ll say,
“No, but this doesn’t feel like a horse. ” What this illustrates is that players carry
with them preconceived notions about the way certain things move and, by exten-
sion, how it should feel to control them.

 The expectations about how interactions should play out are also influenced by
treatment—how the art is executed. A cartooned, iconic car has much more leeway
when it comes to how it can behave and interact than a photorealistic one.

 Try this as a thought experiment: instead of the car in Burnout, substitute a giant,
balding fat guy running as fast as he possibly can, spraying sweat like a sprinkler
in August. Without altering the structure of the game, the tuning of the game or the
function of the game, the feel of the game has changed. All you’ve done is swap out
a 3D model of a car for a 3D model of a giant fat guy running and you’ve got Run
Fatty Run instead of Gran Turismo. This will change the feel of the game because
you have preconceived notions about the way a car should handle.

F I G U R E 5.11 Run, Fatty, Ruuuuuuun! This avatar sets up different expectations than a car
does, which changes the feel of the game even if the underlying functionality is identical.

WHAT’S IMPORTANT TO MEASURE

CHAPTER FIVE • BEYOND INTUITION: METRICS FOR GAME FEEL

98

 You know how a car should feel and move and turn based on your experience
driving a car and looking at cars. When thinking about a game feel system, it’s
important to understand the palette of preconceptions you’re working with. The
best designers use metaphor and treatment to set up expectations in the player that
can then be exceeded by the game’s interactions.

 Rules
 Returning to Super Mario 64, have you ever asked yourself “Why am I collecting these
coins? ” If it didn’t refill Mario’s health or if 100 coins didn’t get you a star, would
you bother? Would it be worth it? For that matter, why is collecting a star important?
What “ value ” do these things have? Outside the system of the game, none what-
soever. They are abstract variables whose arbitrary relationships give them value
within the cohesive whole of the game system. In other words, the meaning of a
coin, a star or any other such part of a game is given only by its relationship to other
parts of the game. It’s manufactured from nothing. From thin air. Poof. It’s a system
that gives itself meaning. Isn’t that weird? It works, though. You want those coins,
and you want that star, and you’re willing to undergo a lot of frustration, tedium
and learning to get them. The intrinsic pleasure of learning and doing may be the
fundamental appeal, but it’s the carrot of the stars that gets you moving.

 Traditionally, this is the role rules play in both game design and in game feel.
They provide motivation and a structured way to learn, defining for the player the
motions that are worth learning. Indeed, it is the seemingly arbitrary relationships
between variables that give the motion meaning. A gradual ramp of increasingly dif-
ficult challenges matches the player’s growing skill, keeping them in the flow state
(Figure 5.12), introduced in Chapter 1.

 In the context of game feel, rules as we’ve defined them provide motivation,
challenge and meaning for motion. Context provides the immediate, spatial meaning
while rules provide the long-term, sustainable meaning that games are built out of.

F I G U R E 5.12 Csikzentmihayli’s Flow.

99

As in our earlier example, rules provide some, if not all, of the intent in a game sys-
tem, as shown in Figure 5.13 .

 Race from point A to point B, scale this tall mountain, rescue five wayward pup-
pies, escape the compound. These kinds of higher-order goals define game feel at
the level of sustainability. They operate at multiple levels, with multiple goals and
types of goals active at any given time. This promotes a high level of engagement
and gives the player many choices about which activity to pursue at a given time.
The low-level sensation of control and physicality, which we’ve defined as game
feel, is a great foundation for quality game experiences, but it’s the higher-order
rules that provide the girders and scaffolding to build it out.

 To measure the effect of rules have on game feel, we can look at rules in three
different ways. Again, these are soft metrics, as they are not measuring spe-
cific quantities. What we’re interested in is how seemingly arbitrary relationships
between variables can change the meaning players assign to objects in the game
world, changing the feel of control and interaction as they perceive that world.

 At the highest level, goals focus the player on a particular subset of motions.
These high-level goals provide a trickle down effect, giving objects meaning at
various levels. High-level rules can also be things like health and damage systems,
which again trickle down to give meaning to moment-to-moment interactions.

 Separate from but hooked into the high-level rules and goals, mid-level rules can
give meaning to objects in the game world, changing the feel of moving through it.

F I G U R E 5.13 High-level goals trickle down.

WHAT’S IMPORTANT TO MEASURE

CHAPTER FIVE • BEYOND INTUITION: METRICS FOR GAME FEEL

100

The flag in a capture the flag multi-player game is one example; for the player cur-
rently holding the flag, the game feels different.

 At the lowest level, rules can further define the physical properties of objects.
How much damage it takes an avatar to destroy an enemy changes the player’s
perception of how “ tough ” that enemy is. An enemy that takes one hit to destroy
will feel fragile, while a boss monster that takes 20 hits feels much more solid.

 Summary
 The six pieces of the game feel system that are malleable for the game designer are:

 ● Input—The physical construction of the device through which player intent is
expressed to the system and how this changes game feel.

 ● Response—How the system processes, modulates and responds to player input in
real time.

 ● Context—The effect of simulated space on game feel. How collision code and
level design give meaning to real-time control.

 ● Polish—Effects that artificially enhance impression of a unique physical reality in
the game.

 ● Metaphor—How the game’s representation and treatment change player expecta-
tions about the behavior, movement and interactions of game objects.

 ● Rules—How arbitrary relationships between abstracted variables in the game
change player perception of game objects, define challenges and modify sensa-
tions of control.

 For each of the six pieces of the game feel system, I’ve pointed out a few different
things that are instructive to measure when examining a particular mechanic or a
particular game feel system.

 Each of these is discussed in more detail in Chapters 6 through 11. We’ll be look-
ing at what can be measured and what’s useful to measure. We will be pursuing
both soft and hard metrics. For each measurement, we’ll go through why this is
useful to know about a particular game and how it helps us compare the feel of two
games in a meaningful way.

 The point of measurement is to derive general principles about game feel which
can be applied to future designs and to let us meaningfully compare the feel of two
games. Instead of taking shots in the dark, emulating existing mechanics or trying
to shoehorn someone else’s tuning into your system, you want to be able to under-
stand the tools at your disposal. If you want your game to feel like Sonic, Megaman
or Burnout: Revenge, you’ll be able to do it with a deeper understanding. You might
not have the exact recipe—it’s probably secret—but at least you won’t be staring at
a finished cake wondering what kind of sugar was used.

101

CHAPTER
 Input Metrics

 The pianos (think input devices) of Ludwig Van Beethoven’s day were flimsy, cheap
things. In the course of his exuberant performances, he often broke 10 to 15 piano
strings, sometimes damaging the piano beyond repair. It was not just his playing
that destroyed pianos, but the music itself: it was not written for the pianos of his
day. Part of Beethoven’s genius was his ability to look beyond the physical limita-
tions of the piano and define a space of a greater virtuosity and musical expressiv-
ity than the one actually presented by the piano itself. When he looked at a rickety
Viennese piano, he saw the robust grand pianos of today.

 What Beethoven was able to see clearly—and exceed—were the physical and
mental limitations imposed upon him. He understood that a tool or instrument
inherently shapes and influences the activities that can be carried out employing it,
both physically and mentally. Consider a screwdriver. A screwdriver is used to fas-
ten things together. But it is a very specific kind of fastening, and the nature of that
fastening is implied by the screwdriver itself. For one, it must employ a screw that
matches the head of the screwdriver being used. If it’s a Phillips head screwdriver,
it needs a Phillips head screw, and the grooves in the screw head must be machined
to a size comparable to the head of the screwdriver. A large Phillips head screw-
driver cannot be used to screw in a tiny screw. A screwdriver, like all tools, contains
within it a specific subset of possible uses, a possibility space for its use. As a tool,
it defines what it can do, and, more importantly, what people will expect to do with
it. If you buy a sports car, you’re likely to get speeding tickets. If you have a ham-
mer, everything looks like a nail.

 This is an interesting notion and one which we rarely apply to the input devices
used to control video games. Just how much does the design of a particular
input device affect the feel of a virtual object controlled with it, and to what
degree is game feel defined by the input device itself? In other words, to what
degree is the possibility space of a virtual object defined by the physical object used
to control it?

 To answer this question, we need to be able to measure the input space repre-
sented by a particular input device. Next, we need to be able to compare the input
space of one input device to another in a meaningful way. Finally, we need to examine

101

 SIX

CHAPTER SIX • INPUT METRICS

102

how the feel of a particular game is affected by the physical construction of the
input used to control it. To do this, we’ll examine input at three levels:

 ● The micro level, examining each individual input that makes up the input device

 ● The macro level, examining the possibility space of the input device as a whole,
its layout and construction and the types of actions it implies

 ● The tactile level, examining how the construction of the input device affects of
input virtual feel of game objects controlled with it.

 Micro Level: Individual Inputs
 The first easily measurable thing about an input device is the number of separate,
individual inputs it contains. My Xbox 360 controller, for example, has 15 separate
inputs on it (Figure 6.1). This includes a couple thumbsticks; a directional pad; two
“ trigger ” buttons; two “ shoulder ” buttons; four standard buttons; and some flimsy,
seldom-used buttons for select, start, wireless resync and other miscellany. Culling
out the inputs that are rarely used for game control, this leaves 4 usable inputs.

F I G U R E 6.1 The Xbox 360 controller has 15 input options.

103

 ● X-, Y-, A- and B-buttons (standard buttons)

 ● Right and left “ shoulder ” buttons

 ● Right and left “ trigger ” buttons

 ● Directional pad

 ● Left thumbstick

 ● Right thumbstick

 The common element every input possesses is the potential for motion. A but-
ton can be pressed down, a thumbstick pulled away from center and a mouse slid
across a flat surface. In each of these cases, the input sends a specific type of signal
to the computer. It is interpreted, responded to and fed back via the output devices
(screen, speakers and so on). This potential for real-time manipulation and signal-
sending is the fundamental property of an input. If you can’t move it in some way
and have it send a corresponding signal to a computer, it’s not an input. The key to
correlating seemingly unrelated types of input, then, is in this motion.

 The first way to classify an input is as either discrete or continuous. That is, does
it send signals continuously (joystick, mouse, steering wheel) or does it send indi-
vidual, momentary signals (keyboard key, mouse button, controller button)?

 Inputs that enable continuous input can also be categorized 1 like this:

 ● Type of Motion: linear vs. rotation. A mouse measures movement linearly (in two
dimensions) while a steering wheel measures rotation.

 ● Type of Sensitivity: position vs. force. A mouse measures changes in posi-
tion, while a joystick measures how much force is being applied against spring
resistance.

 ● Dimensions of Motion: A mouse measures linear movement in two dimensions,
as does a thumbstick. A trigger button measures linear movement in one dimen-
sion. A Wiimote measures rotational movement in three dimensions.

 ● Direct vs. Indirect Input: A mouse is indirect—you move the mouse on the desk
and the cursor moves on the screen. The touch screen on the DS enables players
to directly tap on or touch the thing they want to interact with.

 ● Boundaries on Motion: The thumbstick on an Xbox 360 controller has a round
casing enclosing it, while a mouse has no physical boundaries on its motion. The
way that the motion of an input is bounded can change what it feels like to use
it. For example, the slotted casing around the Nintendo 64’s thumbstick feels dif-
ferent from the smooth round casing of the Playstation 2’s.

 ● Sensitivity: Roughly, how many different states can the input exist in. A stand-
ard button is very low sensitivity; it has only two states (ON or OFF). A mouse

MICRO LEVEL: INDIVIDUAL INPUTS

 1 This is adapted from Robert J.K. Jacob’s excellent 1996 paper “The Future of Input Devices. ” Available
online at: http://www.cs.tufts.edu/�jacob/papers/sdcr.pdf

CHAPTER SIX • INPUT METRICS

104

is highly sensitive by comparison; it has no physical boundaries making each
tiny motion another possible state. Though inputs can be mapped to in-game
motions that make them more or less sensitive, individual inputs have an inher-
ent sensitivity.

 ● Signals Sent: What is the format of the signals each input sends to the game, and
how do they change over time?

 One way to visualize these properties for a particular input device is to hold out
your hand as shown in Figure 6.2 . This will also be useful for comparing movement
of an input device to movement of the object being controlled, which can indicate
whether a mapping is natural (in the Donald Norman sense).

 Imagine that lines extend outward from your index finger, middle finger and
thumb, as in Figure 6.2 . Now imagine each finger as an axis. If you move your hand
along any of these axes, you’re moving it linearly in a single dimension, X, Y or Z. If
you rotate your hand around a particular finger you’re rotating in X, Y or Z. Mouse
movement is unbounded, so if you slide your hand around the plane described by
the X- and Z-axes (index and middle fingers) this is a good way to visualize the
unbounded movement of the mouse (Figure 6.3).

 A Playstation 2 thumbstick has the same kind of motion, but it has a
boundary, so we can think about being able to move in that plane, but only so far
in a particular direction (Figure 6.4).

F I G U R E 6.2 Use three fingers to visualize axes of movement for input devices.

MICRO LEVEL: INDIVIDUAL INPUTS

105

 Every button has two boundaries—fully pressed and fully released—between
which it moves. Whether it’s a trigger button with a handful of states between the
extremes of ON and OFF or a mouse button with only two states, there is a limit on
movement. The same goes for thumbsticks and arcade joysticks with their circular
plastic housings. (In contrast, Wiimotes and computer mice are two general-use
input devices that have no built-in boundaries on their motion.) Boundaries are
important to take note of because they reduce the overall sensitivity of the input to
a particular range. Sometimes—as in the case of a thumbstick—the boundary can
play an important role in defining the types of controlled in-game motions that are
best suited to the input (Figure 6.5).

F I G U R E 6.3 The “ axis hand ” moving like a mouse.

F I G U R E 6.4 The “ axis hand ” moving like a thumbstick.

CHAPTER SIX • INPUT METRICS

106

 Now think about how many possible states there are between the boundaries as
you move your hand around. For a thumbstick, it’s a lot. For a mouse, even more.
For a “ trigger ” button, it’s more than 1, but less than with a thumbstick or mouse.
This is a rough measure of the sensitivity of the input device.

 The amount of sensitivity an input possesses is a soft metric. It is possible to
calculate the actual, physical number of states an input can reside in—two for a
standard button, something like 1,920,000 for a mouse on a 1,600 � 1,200 desk-
top—but that comparison doesn’t accurately portray the sensation of using these
inputs. It’s more like the difference between an Etch A Sketch™ and a paintbrush.
You can paint a picture with either, but the paintbrush offers a lot more versatility.
The idea is that different inputs have different amounts of sensitivity inherent in
their design. A standard button has the absolute minimum amount of sensitivity.
It’s either fully on or fully off. The dial on a classic Breakout paddle has a bit more;
its one-axis rotation has a great deal of sensitivity in a limited way. More sensitive
than either of those is an arcade joystick, which moves freely in X and Z, but which

F I G U R E 6.5 The boundary of the Xbox thumbstick is important for the feel of Geometry
Wars: Retro Evolved.

MICRO LEVEL: INDIVIDUAL INPUTS

107

is bounded on all sides by a circular plastic housing. Figure 6.6 shows a (rough)
scale for input sensitivity.

 More or less sensitivity in an input can be desirable depending on the intended
feel, and how that feel is intended to fit in with the design as a whole. It’s like the
color blue—whether or not it’s appropriate to use it depends on the context and the
desired result.

 The final thing to measure about an input is the types of signals it sends. This
is the data you will be mapping to some response in your game, so it’s impor-
tant to keep track of the raw form in which it arrives in the computer. This is a
hard metric—an input signal always ends up in a simple, numeric format a com-
puter can easily understand—but it also supports our understanding of the soft-
metric sensitivity of the input device. A single button sends a binary signal, “ up ” or
“ down. ” Measure this over time and you get signals for “ up, ” “ pressed, ” “ down, ”
and “ released. ” A mouse sends a pair of values, one for each axis, that get updated
every frame. So a mouse might send 60 different pairs of values in a second, like
Table 6.1 .

 The signals sent by the mouse are more complex than those sent by the button.
Figure 6.7 shows the types of signals sent by various input devices.

TA B L E 6.1

 Frame Signal Sent

 1 (0.52, 0.11)

 2 (0.51, 0.21)

 3 (0.50, 0.34)

 4 (0.31, 0.42)

 5 (-0.1, 0.61)

F I G U R E 6.6 Sensitivity of input devices.

CHAPTER SIX • INPUT METRICS

108

 Input Measurement Examples
 Measuring all these properties for each input is useful for understanding game feel
because it is an immutable part of the interface to a particular game. Every game
played on the Nintendo Entertainment System was designed to respond to that par-
ticular configuration of eight simple, two-state buttons. If we understand just how
simple those buttons are in functionality, it becomes all the more remarkable that
expressive mechanics like the swinging in Bionic Commando or the slippery move-
ment of Super Mario Brothers were created. More importantly, if we look at the
number, type and sensitivity of inputs used to create a mechanic, we can begin to
get much closer to a meaningful comparison between the feel of games created with
different input devices. Comparing the feel of Halo to the feel of Contra becomes a

F I G U R E 6.7 Signals sent by various inputs.

109

lot more viable if you understand that Xbox thumbsticks are inherently much more
sensitive than the directional pad and two buttons of the NES controller.

 Standard Button
 The standard two-state button (Figure 6.8) is the most basic type of input in general
use today. The button moves only in one axis, the Y-axis, and the motion is linear.
A spring beneath the button pushes it upward constantly. A plastic housing or catch
stops it at a certain point, which represents the fully released state. When the player
presses the button, he or she overcomes the force of the spring and the button slides
downward, in the Y-axis, into the controller. It’s stopped at a certain point and then
sits in the fully depressed or OFF state. There are no states in between these hard plas-
tic boundaries for Y-axis movement. The button, then, has only two states: ON or OFF.

 These characteristics also describes the essential functionality of a keyboard key,
a mouse button or any other simple two-state button such as the “ shoulder ” buttons
on a typical modern controller, though these are larger and can be depressed only
a tiny amount. These buttons are remarkable for their lack of sensitivity. There’s
very little that can be expressed by a standard button alone. The feedback from the
button is discrete rather than continuous, meaning that the signals it sends happen
at one particular moment in time. The signals are binary; the button is either on or
off at any given time. As brilliant one-button games like Ominous Development’s
Strange Attractors prove, however, it’s possible to map a single button to a complex,
nuanced, sensitive response from the game, but the button by itself is very limited
as an input. It is not really possible to create functional input device with fewer
states, with less expressive potential than a single two-state button.

 The Y-axis movement of a standard button has hard boundaries at the fully
released state (where the spring’s pushing force is stopped by a plastic catch) and at
the fully pressed state (where the player’s pressing force is stopped by a plastic catch).

F I G U R E 6.8 A standard two-state button. It has two states, moves only in the Y-axis and is
by itself a very low-sensitivity input.

INPUT MEASUREMENT EXAMPLES

CHAPTER SIX • INPUT METRICS

110

 Trigger Button
 Like the standard button, the “ trigger ” button (Figure 6.9) typically found on mod-
ern controllers moves in only one axis. In this case, I’d call it the X-axis, as it’s usu-
ally on the front of the controller and is usually operated by the index finger. Again,
though, this is all relative to the controller’s position in space.

 Trigger buttons are unlike standard buttons because they recognize many states
between their boundaries. Between the fully pressed and fully released states, there
is a zone of sensitivity inside which it’s possible to have many different positions of
the trigger. Fiddling around with my Xbox 360 controller, I estimate that there are
four or five discrete states including fully on and fully off. Like a standard button,
the trigger is spring-loaded and defaults to a fully extended released state. The major
difference is in the button’s range of motion. By carefully depressing the spring a
certain amount, the player can keep the button a quarter, half or three-quarters of
the way depressed without pushing it fully to one extreme or the other. This X-axis
movement has hard boundaries at the fully released state (where the spring pushing
force is stopped by a plastic catch) and at the fully pressed state (where the player’s
pressing force is stopped by a plastic catch).

 A trigger button typically returns a float value, a number between 0.00 and 1.00.
For example, across three frames it might return 0.63, 0.81 and 0.97 as it is pulled
from off to on.

 Paddle
 Though they’re not in common use anymore, it’s interesting to note that the pad-
dle controllers sold with many of the first home consoles used a hard-boundary,

F I G U R E 6.9 The motion of a trigger button.

111

one-axis rotation. There was one spinner input on the front of the controller (Figure
6.10). It was gripped between the thumb and forefinger and could be rotated left
or right a certain amount before it reached a defined hard boundary point and the
plastic would catch and stop it. Through a combination of factors, this input type
fell out of vogue, but it was quite a sensitive input, with hundreds of possible states
between fully left rotation and fully right.

 A paddle controller returns a float value, in a range from � 1.00 to 1.00. When
the paddle knob is centered, it’s at 0.00. As it is rotated left of center, it goes nega-
tive (something like � 0.26) and as it is rotated right it goes positive (something
like 0.41).

 Thumbstick
 A typical thumbstick is movable in two axes simultaneously, left-right and up-down
(Figure 6.11). It’s spring loaded in both directions, though, so it will always seek
back to its straight-standing centered position. In most cases, the housing contain-
ing the thumbstick provides the hard boundary against which it stops when pushed
fully in any direction, and it is usually smooth and round. With a thumbstick, it’s
no longer meaningful to track the total number of possible states. When using a
thumbstick to control something in a game, there is no notion of discrete states, but
a fluid, smooth sense of highly accurate positioning.

 The thumbstick is often used as a direct or semi-direct stand in for the intended
in-game motion. Rolling the stick across the edge of its round casing creates a
carving turn for a ship in Geometry Wars, a quick heel-turn for Mario or a quick
Jab in Fight Night. With a thumbstick, one can be said to “ feather ” or “ flick ” a

F I G U R E 6.10 An old school paddle controller: bounded rotational control in one dimension.

INPUT MEASUREMENT EXAMPLES

CHAPTER SIX • INPUT METRICS

112

control; these are properties of highly sensitive input, one which vastly more sensi-
tive than a standard or trigger button. From its centered position, the thumbstick
can only be displaced until it comes into contact with the circular housing, which
constrains its movement.

 The thumbstick can be displaced from its centered position left to right and up to
down, which creates a perceptually infinite number of possible states for the player.

 The thumbstick returns two constantly changing float values at the same time,
one for each axis of motion. Left to right motion (in the X-axis) returns one float
value between � 1.00 and 1.00, while up and down motion (in the Z-axis) returns
another. The format of the signal could be: (� 0.16, 0.93) .

 Mouse
 A mouse—and here I’m talking about the input which detects positional movement,
not the clickable buttons—is similar to thumbstick in that it enables movement
in two axes. In the case of the mouse, however, there are no in-built boundaries
(Figure 6.12). There’s a sort of a soft boundary in the sense that you need a small
section of flat surface to rest the mouse on, and that potentially can lead to the
mouse falling off a table or running into something. In practice, the boundary most
often exists in software rather than hardware. The edge of the screen stops the cur-
sor before the edge of the table.

 Because there is no explicit boundary, the potential for different states is even
higher than with a thumbstick. All position is relative, and there is no spring push-
ing the mouse back into a neutral position. These factors combine to make the
mouse the most sensitive input device in common use today.

 F I G U R E 6.11 A thumbstick controller offers fluid, accurate means of controlling game action.

113

 The boundaries for a mouse’s movement are in software, stopping the cursor
(the meaning of further mouse movement) at the four edges of the screen (top, bot-
tom, left and right). Technically, there’s also a boundary at the edge of whatever
surface you’re mousing on, but this boundary is almost never reached due to the
typical ratio of physical mouse movement to computer space movement. You get a
lot of screen movement for a little mouse movement, so you don’t run your mouse
off the table very often.

 The mouse is a highly sensitive input device. On my 1,200 � 1,600 pixel desk-
top, the mouse cursor can potentially rest on any one of 1.9-something million
pixels. In practice, a user can’t be expected to accurately hit targets smaller than a
certain size (checkbox on a dialog), but the sensitivity is there.

 Like the thumbstick, the mouse returns two separate float values in the form
(0.18, � 0.28). But in the mouse’s case, what’s being returned is a displacement.
How far the mouse has moved in both the X and Z directions since the last frame,
in other words. This is often mapped directly into screen space movement (as in the
movement of a cursor) but the movement is not absolute. If it were, you would not
be able to pick up the mouse, move it and put it back down to continuously move
the cursor in one direction.

 Table 6.2 compares all these input devices.

F I G U R E 6.12 A mouse has tens of thousands of states and almost no boundaries.

INPUT MEASUREMENT EXAMPLES

CHAPTER SIX • INPUT METRICS

114

TA B L E 6.2 Input Metrics

 Standard
Button

 Trigger
Button

 Paddle Thumbstick Mouse

 Type of
Motion

 The button
moves in
only one
axis, the
vertical or
Y-axis.

 Linear. The
button moves
along one axis
linearly.

 Rotation.
The
paddle’s
motion is
rotational
around one
axis.

 Linear. The
thumbstick
moves linearly
along the X- and
Z-axes.

 Linear. The
mouse
moves
linearly
along the X-
and Z-axes.

 Dimensions
of Motion

 The button
moves in only
one axis, the
forward or
X-axis.

 Y-axis
rotation
only.

 The thumbstick
moves in
the X and Z
dimensions.

 The button
moves in
the X and Z
dimensions.

 Direct or
Indirect
Input

 Indirect; you
press the trigger
in your hand
and something
changes in the
game. You don’t
directly touch
the screen with
the trigger.

 Indirect;
you don’t
directly
touch the
screen with
the trigger.

 Indirect input. Indirect
input.

 Boundaries
on Motion

 Two hard
boundaries,
fully
pressed
or fully
released.

 Two hard
boundaries, fully
pressed or fully
released.

 Two hard
boundaries,
full left
rotation or
full right
rotation.

 One boundary,
typically round
(but can also
be square or
grooved, which
changes the
feel of using the
joystick).

 Four soft
boundaries.

 Sensitivity The button
has only
two states,
on or off.
There are
no states
between
the hard
on/off
boundaries.

 Four to five
possible states
between on and
off.

 Hundreds
of possible
states
between
the two
extremes of
rotation.

 Thousands of
possible states
between up/
down, left/right
movement, and
all the positions
in between fully
released and
pressed against
the housing.

 Millions.

(Continued)

115

 Macro Level: The Input Device as a Whole
 That takes care of the micro level of individual inputs. Now let’s recompose the
inputs into a complete input device and look at how inputs combine to create an
expressive potential greater than the sum of their parts. To keep things simple, let’s
return to the NES controller, as shown in Figure 6.13 .

 Examining each input, we must concede that this is very low-sensitivity input
device. There are six buttons for use in active gameplay, and each of them is a
standard two-state button. More than that, certain buttons are mutually exclusive
by design. You can’t press up and down on the D-pad at the same time, nor can you
press right and left simultaneously. But this controller has more sensitivity than its
individual inputs would at first indicate. Even with six buttons and the limitations
imposed by the D-pad, the possible combinations of buttons look something like
Figure 6.14 .

 In order to truly come to terms with the input space of an input device as a
whole, you have to consider it at both the macro and micro levels. How much sen-
sitivity does each input have, and how do the layout and design of the controller
reduce and/or increase sensitivity? In the case of the NES controller, the sensitivity
is reduced by the mutually exclusive D-pad buttons and increased by the combined
possibilities of the buttons, laid out as they are for use with both thumbs.

TA B L E 6.2 (Continued)

 Standard
Button

 Trigger
Button

 Paddle Thumbstick Mouse

 Type of
Sensitivity

 Force. The
button is
sensitive to
how far its
spring-loaded
mechanism has
been displaced
from its normal
position.

 Force
(torque in
this case).
The paddle
knows
how far
it’s rotated
to the left
or right
of center
by spring
resistance.

 Force. The
thumbstick
is sensitive
to how far its
spring-loaded
mechanism has
been displaced
from its normal
position.

 Position.
The mouse
is sensitive
to changes
in position;
when it’s
dragged
left, right,
up or
down, this
changes the
signals it
sends.

 Signals Binary; “ up, ”
 “ pressed, ”
 “ down ” or
 “ released. ”

 Float value
between 0.00
and 1.00.

 Float value
between
� 1.00 and
1.00.

 Two float values,
each between
� 1.00 and 1.00.
One for the left/
right axis, one for
the up/down axis.

 Float value
between
� 1.00 and
1.00

MACRO LEVEL: THE INPUT DEVICE AS A WHOLE

CHAPTER SIX • INPUT METRICS

116

F I G U R E 6.13 The whole input device is greater than the sum of the parts because inputs
can be combined and overlap.

F I G U R E 6.14 Simple buttons combine to form a larger, more sensitive input space.

117

 Again, this isn’t a hard metric. We can measure the total number of inputs and
all the permutations of combining them as specific numbers, but that’s not espe-
cially useful. We’re interested in getting a rough idea of how the inherent sensitivity
of an input device compares to the sensitivity of another device. It suffices to know
that NES controller is much less sensitive than a computer mouse; from that point
it is possible to make design decisions relative to our intended feel and to compare
the feel of two games controlled with input devices of varying sensitivity.

 Tactile Level: The Importance of Physical Design
 It’s also useful to understand how the input feels physically. This is an overlooked
aspect of game feel: the tactile feel of the input device. Games played with a good-
feeling controller feel better. For example, the Xbox 360 controller feels good to hold;
it’s solid, has the proper weight and is pleasingly smooth to the touch. By contrast,
the first-run Playstation 3 controllers were lamented as being light and “cheap [feel-
ing], like one of those third-party knockoffs. ” 2

 This difference in tactile feel of the input device has surprising implications for
the feel of a given game. When I prototype something—platformer, racing game,
whatever—it will feel noticeably better if I hook up the inputs to my wired Xbox
360 controller instead of using simple keyboard inputs. Of course, this is a very soft
metric. It’s tempting to simply say “de gustibus non est disputandum ” (there’s no
accounting for taste) and leave it at that, but there are some noticeable, measurable
qualities of various inputs that can be observed and taken into account.

 Weight
 The weight of a controller is an important quality for an input device. A heavier,
more solid-feeling controller is perceived as being of higher quality. For a game’s
feel, this can go a long way toward making actions feel weighty, powerful or satisfy-
ing. Of course, it’s also possible to push too far into the heavy direction, as the orig-
inal Xbox controller seemed to, but in general input devices seem to trend toward
being too light, flimsy and cheap-feeling. This significantly affects the feel of control
of a virtual object.

 Materials
 The material used to construct the device has an impact on the way the user feels
about the controller and, therefore, the game. The white plastic that houses my
Xbox 360 controller has a smooth, pleasingly porous feel. It’s almost like skin.
My Wiimote and Playstation controllers feel like plastic. It’s a subtle difference
and measuring its impact on game feel is extremely difficult. All I can say is that

 2 By “ Zeus ” from http://forums.maxconsole.net/archive/index.php/t-19989.html

TACTILE LEVEL: THE IMPORTANCE OF PHYSICAL DESIGN

CHAPTER SIX • INPUT METRICS

118

I prefer holding my Xbox controller. The Dell mouse I’m using currently has a simi-
lar porousness but is much coarser, making it less pleasurable to handle than my
Xbox controller. This has a mostly subconscious effect on my interaction with these
objects, and on how I perceive virtual objects controlled with them.

 Button Quality
 By “button quality, ” I mean the feel of the spring resistance. Particular buttons on
input devices are often described the same way the feel of a game is described: tight
or loose, quick-responding or sluggish. This feel is contingent on the quality, con-
struction and type of springs that drive the motion of the input, whether they’re on
a button or a joystick.

 As James Goddard of Crunchtime Games says, “There is a huge difference in
how input devices—even similar ones—can have on the feel of a game. Most peo-
ple can tell the difference in the feel of control when a game is cross-platform but
most do not know what exactly is causing it. Even a majority of developers really
are not trained to know. The usual argument is that a specific platform’s controller
is ‘just better. ’ Assuming a game engine is truly ported equally across the platforms
and button layout is close to the same, what people are perceiving as better is the
actual mechanical differences in the sticks/buttons tension and mechanical ‘travel ’
distance. This sensitivity can come down to millimeters. ”

 The design of controllers has a lot to do with industrial design and product
design. Controllers are consumer products after all, as are game consoles, comput-
ers, mice, keyboards and handhelds. Every piece of hardware upon which game feel
is built is a consumer product. The physical design of hardware can change the feel
of control over virtual objects.

 Summary
 To summarize, we can categorize an input device according to individual inputs,
the input space of the device as a whole, and tactile feel resulting from the materi-
als and physical construction of the device itself.

 Individual inputs can be measured according to their dimensions and types of
movement, whether they track position or force, whether they directly or indirectly
change things on the screen, the boundaries on their motion, and the signals they
send to the computer (hard metrics). They can also be measured according to their
sensitivity (soft metric).

 The input space of the device as a whole can be measured by looking at how
many different inputs there are on the device, and the ways in which they can be
combined (hard metrics).

 The tactile feel of the device can be measured by the feel of each input (the resis-
tance to movement, springiness, etc.) and the feel of the input device as a whole
(heavy and solid versus light and flimsy, physical properties of the materials). Both
of these are soft metrics, affecting the feel of games in a mostly subconscious way.

119

CHAPTER
 Response Metrics

 When I say response, I mean the game’s response to player input. The output, in
other words. There are many different ways an input signal, once received, can be
processed before returning to the player in the form of feedback, but the process
has three essential steps:

 1. Input signal comes in

 2. Input signal is interpreted and filtered

 3. Input signal modulates some parameter in the game

 To measure the response of a particular game to input, we begin by looking at
how each signal from the input device is mapped to a change in the game. What
parameter does it modulate, and how does it change that parameter over time? And
what are the relationships between those parameters?

 There are many different ways an input signal can modulate a parameter in a
game. While an input device is a physical object constructed out of plastic and
springs, an avatar in a game has no such constraints. An input can be mapped to a
change in the position of an avatar, as it is in Megaman. Inputs can also be mapped
to rotation, as they are in Asteroids and Gran Turismo, where a forward thrust is
steered via angular rotation. Or rotation and positional changes can be mapped to
the same input, as they are in Jak and Daxter, Super Mario 64 and Geometry Wars,
where pressing a direction with the thumbstick rotates and moves simultaneously.

 An input can also be mapped to the creation of a new entity, as when Megaman
fires his weapon and “ spawns ” a bullet or when Guile throws a sonic boom in Street
Fighter II. In this case, an entirely new entity is spawned by an input, often from the
position of another avatar. This entity often has its own properties of movement and
its own velocity.

 Another possible response to input is the playback of a linear animation, as in
the games Soul Calibur, Samurai Showdown 4 and Street Fighter II. You press a but-
ton and a “ move ” happens. A move consists primarily of animation, created by a
professional animator, and some game-relevant spatial movement. It occurs at the
position in space and time of your choosing, but once triggered, the animation plays
back as a linear sequence of frames, as it would if it were an animation playing

119

 SEVEN

CHAPTER SEVEN • RESPONSE METRICS

120

back on a television. The duration of the animation may be short, but it’s interest-
ing to note that what’s been mapped is still the linear playback of an animation to
a particular input. This can be taken to ridiculous extreme, as it is in the original
Prince of Persia, where the game can only be controlled via the playback of linear
animations. Your input serves only to change which animation is playing at a given
time, and you’re tasked with managing the movement of the character in that stiff,
robotic way.

 Still another thing that input can be mapped to is a change in one or more
parameters in a simulation. For example, in Mario Kart DS, there’s a simulation
running every frame which computes the game’s internal model of the karts—their
relationships to one another, their weight, their mass, their velocity, their rotational
force and of course, their friction values—how the forces that are acting on the kart
are reconciled with the friction value of the surface they’re currently in contact with
and how that affects their motion. You can map an input not only to moving the
kart forward and rotating it, but to the friction value itself, altering the resulting
motion of the entire system. When you enter the “ powerslide ” state by pressing
the R-button, what you’re really doing is changing the friction value. It’s decreased,
enabling you to corner better by carving less (sliding sideways instead of gripping
the road, in other words).

 Generalizing the possibilities, an input signal might:

 ● Set a new position for an object each frame.

 ● Set a new orientation for an object each frame.

 ● Add a force or torque to a simulated object, causing it to rotate or move.

 ● Modify a simulation variable, changing gravity or the friction of a car’s tires.

 ● Play back an animation from start to finish, like a single move in a fighting game.

 ● Change the speed at which a looping animation plays back.

 The process of hooking up input signals to specific parameters and determining
how they will modulate those parameters over time is known as mapping. For real-
time control, however, there is a specific subset of mapping required: mapping to
motion.

 If there is real-time control, the input signals will be mapped, directly or indi-
rectly, to the motion of an avatar. The movement of that avatar can, for the most
part, be measured using criteria similar to the ones we used to measure input.

 ● Type of motion: Linear vs. rotation. Does the avatar move linearly or rotate?

 ● Dimensions of motion: In what dimensions, X, Y or Z, does the avatar move or
rotate?

 ● Absolute or relative motion: What frame of reference does the motion use? Is
the motion relative to the avatar, as in Asteroids or the camera as in Mario 64, or
some other point in the world?

121

 ● Position versus rate/magnitude: Does the input modify a position, a rate or a
magnitude? A mouse cursor is usually mapped to changes in position. Pushing
the thumbstick to the left in Halo changes the rate at which the avatar turns
(halfway causes a slow turn, while fully pressed turns very quickly).

 ● Direct or indirect control: Does the input modify the avatar directly or does it add
forces to a simulation or cause another object to move or rotate? For example,
in Zuma, movement of the mouse cursor determines which direction the frog
will face.

 ● Integrated or separate dimensions: Does the input change one parameter in the
game or many? For example, Geometry Wars maps both thrust and rotation of
the ship to the left thumbstick. Jak and Daxter does this as well, changing both
speed and rotation with one thumbstick.

 The point of taking stock of the avatar’s movement in this way is to hone in on
exactly which parameter each input is mapped to. We can look at the Sonic avatar
and say he moves along in the XY plane. Or we can look at the movement of Crash
Bandicoot and say, he moves in an XZ plane, but he can also jump or fall in the
Y plane, as well as rotate in the Y-axis to change his direction. Kratos from God
of War moves in a similar way. Knowing which dimensions an avatar moves in,
we can identify which inputs control movement in which dimensions, and whether
that movement is linear or rotational. For example, Mario’s horizontal movement is
controlled by the left and right directional pad buttons, while his vertical movement
is controlled by the A-button.

 Attack, Decay, Sustain and Release
 Regardless what parameter an input is mapped to—position, rotation, animation
playback and so on—the modulation of a parameter over time will have some kind

ATTACK, DECAY, SUSTAIN AND RELEASE

F I G U R E 7.1 The Mario Avatar moves in two dimensions, X and Y.

CHAPTER SEVEN • RESPONSE METRICS

122

of curve. One way to describe this curve is as an ADSR envelope. ADSR stands for
attack, decay, sustain and release. An ADSR envelope describes the modulation of a
parameter over time, in four distinct phases (Figure 7.2).

 Such envelopes are used to describe the modulation of the sound of musical
instruments. For example, when you play a note on a guitar, the resulting sound
can be described in terms of attack, decay, sustain and response. The note is loud-
est just as the string is plucked, but it takes some time to go from silent to loud.
This is the attack. From the loudest volume, the sound then drops down again
before reaching a stasis point. This is the decay. The point at which the volume
stabilizes is the beginning of the sustain part of the envelope. This lasts until the
sound begins to fall off again, eventually returning to silence. This final period is
the release. Graphed over time, it looks like Figure 7.3 .

 Contrast this with a pipe organ. The note starts at a constant volume, continues
to play at that same volume and falls silent almost instantly when the button is
released (Figure 7.4).

 ADSR envelopes are often used to modulate the output of digital instruments
to make them sound like their physical, real-world counterparts. They are also a
good way to think about the modulation of parameters in a game relative to specific
input. For example, look at the “ left ” input in Super Mario Brothers (Figure 7.5).

F I G U R E 7.2 An ADSR envelope; modulating a parameter over time in four phases.

F I G U R E 7.3 The ADSR envelope for a guitar’s volume when a string is plucked.

123

In this case the vertical axis of the envelope is movement. There is an attack phase
as Mario ramps up to his maximum speed, no decay, a sustain as long as the but-
ton is held and a long release when the button is released. The result is that Mario
speeds up gradually over time (Figure 7.6).

 Now compare Mario’s left motion to Donkey Kong’s, shown in Figure 7.7 . When
Jumpman (the pre-Mario character from Donkey Kong) moves, he has no attack
and no release. The moment the joystick is activated, he moves at a constant speed
in the appropriate direction (Figure 7.8).

 Once we know what parameter in a game is mapped to what input, we can
measure the modulation of that parameter over time relative to the input signals
coming in as an ADSR envelope. Assuming that the parameter being modulated
feeds into the real-time motion of an avatar, we can make generalizations about
how players are likely to experience the sensation of control based on this envelope.

F I G U R E 7.4 The envelope for a pipe organ is much more rigid.

F I G U R E 7.5 The ADSR envelope representing Mario’s horizontal movement.

ATTACK, DECAY, SUSTAIN AND RELEASE

CHAPTER SEVEN • RESPONSE METRICS

124

 A longer attack phase results in a floaty or loose feel. This is not necessarily a
bad thing; the thruster mechanic in Asteroids has a long attack, and players gener-
ally seem to enjoy that feel. When a long attack phase begins to cause trouble, how-
ever, is when there seems to be no immediate response to input (Figure 7.9).

 This is problematic because it starts to erode the impression of instantaneous
response. There may be some small change happening immediately, but if the player
can’t perceive it, the game feels unresponsive. An envelope like the one in Figure
7.10 , which has a rapid initial attack but a long attack phase in general, will have
both instantaneous-feeling response and a loose, organic feel. On the other end of
the spectrum, a short attack phase will tend to feel tight and responsive (Figure 7.11).

F I G U R E 7.6 Mario speeds up gradually from a standstill.

F I G U R E 7.7 The ADSR envelope representing Jumpman’s horizontal movement.

F I G U R E 7.8 Jumpman moves at a constant speed in the direction indicated by the input
device.

125

F I G U R E 7.9 This feels unresponsive if the thing being controlled takes more than 100 ms to
move (or if the player perceives it this way).

F I G U R E 7.10 Even though the attack phase is very long (more than a second) there is an
obvious initial response.

F I G U R E 7.11 A short attack phase feels tight and responsive.

ATTACK, DECAY, SUSTAIN AND RELEASE

CHAPTER SEVEN • RESPONSE METRICS

126

 Even with tight, responsive controls, the attack phase usually has some
nonlinear curving to it. In other words, the attack phase is a curve, not a straight
line. This keeps the flowing, organic feel while enhancing the perception of instan-
taneous response. On the other hand, when the attack phase is short and when
there is a more linear progression from off to on, most players describe the feel as
twitchy (Figure 7.12). This too can be desirable depending on the intended effect. If
the attack is totally linear and very short, the controls can feel stiff.

 What’s interesting is that these sensations—floaty, twitchy, tight, loose,
unresponsive—all exist on the same continuum. They’re just slightly different enve-
lopes, slightly different modulations of motion over time. That motion could be
direct or indirect, a force or a rotation; regardless, changes in attack will alter the
feel of control.

 Attack and release are often mirrored, as in the horizontal running of Super
Mario Brothers. After you release the button, it takes Mario the same amount of
time to slow back down to zero as it does to speed up from a standstill to his maxi-
mum speed. The soft release maintains the loose feel after the button is released.
Having no release, as in Donkey Kong, feels more abrupt.

 When decay is present in game control, it’s usually by accident. Sometimes a
game designer will inadvertently make the speed of movement faster just after
a change in input than during the eventual sustain period. This means that to
maintain maximum speed, constant button pressing is necessary. This is almost
never desirable for the simple, practical reason that it fatigues the player’s hands.

 Playable Example

 You can experience the difference in example CH07 - 1. Press the “ 1 ” key for an
unresponsive, the “ 2 ” key for a responsive but loose feel.

 F I G U R E 7.12 A short attack phase with a flat progression from on to off creates a twitchy feel.

127

For example, in some of the earlier beta versions of Counter-Strike, it was possible
for those in the know to “ skate ” by angling slightly sideways and pressing forward
and sideways rapidly. When moving at a particular angle and switching between
going sideways and forward, there was a decay phase—the attack took the maxi-
mum speed above the level of sustain (Figure 7.13).

 This gave experienced players a huge advantage because they could move one
and a half times more quickly. This was an exploit to be removed because it gave an
overwhelming advantage to veteran players and enabled the player to move faster
than intended.

 The level of sustain can be thought of as a limit, such as the maximum speed of
a car or character.

 Simulation
 So where do these envelopes come from? For any game, it’s relatively easy to track
what parameter a particular input mapped to and how it modulates that parameter
over time. But it is often difficult to discern exactly what sort of system gave rise to
that modulation. Most often, envelopes are defined by relationships between vari-
ables in a simulation.

 As a simple example, consider a cube that moves left and right. Both directions
of movement have an ADSR envelope that looks like Figure 7.14 .

F I G U R E 7.13 The decay phase in Counter-Strike became an exploit.

 Playable Example

 To experience this, open example CH07 - 1. Move the cube left and right using
the A and D keys. Enter new values by clicking on a parameter (such as
 “ Max Speed ”), typing in numbers and pressing enter to see how the envelope
changes.

ATTACK, DECAY, SUSTAIN AND RELEASE

CHAPTER SEVEN • RESPONSE METRICS

128

 Currently, an acceleration value is added to the cube’s velocity each frame, creat-
ing a smooth quarter-second attack phase. This speeds the cube up gradually, giv-
ing it a loose, organic feel. Mirroring this, a drag value is also applied in each frame,
causing the cube to slow back to rest again when the button is released. Without
this drag value, the cube would keep going indefinitely (switch “ Drag ” to zero to
experience this). The Max Speed variable determines the level of sustain, the con-
stant movement value the cube reaches after completing the attack phase.

 This simple test demonstrates how simulations give rise to the different modu-
lations of parameters, and how changes in that simulation modify the sensations
of control. It gets a lot more complex than this (as we’ll see in Chapters 12–17)
but simulations like this are the building blocks for sensations of control. How the
simulation is built determines the sensations of control possible. A particular tuning
can change the feel of control drastically, but the construction of the simulation—
which parameters are available to tune in the first place—determines what tunings
are possible.

 For example, consider the feel of the left-right movement in Ghosts and Goblins,
Donkey Kong and the original Metroid. In all three of these games, horizontal move-
ment has very little attack or release (Figure 7.15).

 In the systems that create this kind of envelope, pushing the joystick or press-
ing the button directly overwrites the position of an avatar. Every frame in which
the game detects the button as held, it adds some amount to the current position of
the avatar in the appropriate direction and places the avatar in that new position.
In the same way, the release value brings the player to a halt instantly when the
button is released. The result is a system that feels stiff but responsive. It feels crisp
and is good for dealing with challenges that require precise positioning and accurate
jumping. This same kind of feel applies to other mechanics with little or no attack

F I G U R E 7.14 The cube has smooth, organic movement.

129

and release, such as the movement of a mouse cursor in response to mouse move-
ment. Sometimes players categorize this feel as twitchy.

 Compare this to the “ thruster ” mechanic in Asteroids. Pressing the thruster but-
ton has a long attack (Figure 7.16). In this case, it’s because Asteroids keeps track
of a separate velocity value for the ship. Instead of the position of the ship being set
directly each frame, the ship keeps its own value for velocity and updates its own
position based on that value. Pressing the thruster button adds to the velocity value
in the direction the ship’s currently facing. The result is that the ship speeds up
gradually, a curved and gentle attack. It’s a different kind of simulation and a differ-
ent kind of feel.

 The other way to define an envelope is by filtering input before it is plugged into
the changes in the game system, as happens when rotating the Asteroids ship left
and right. The envelope looks like Figure 7.17 .

 While the left button is held, the ship’s orientation is changed by a certain
amount each frame. There’s a slight attack value, which is achieved by changing

F I G U R E 7.15 A responsive, but stiff, feel.

F I G U R E 7.16 A loose, fluid feel.

ATTACK, DECAY, SUSTAIN AND RELEASE

CHAPTER SEVEN • RESPONSE METRICS

130

the input slightly as it comes in. At the first millisecond the button is pressed, the
amount by which the ship’s orientation changes is less than it is a few millisec-
onds later. The value gets increased over time. In this way, the feel is responsive
but slightly soft. The player can tap the button lightly to make small adjustments
or hold it down to turn full speed. The rotation is just a filtering of the input signal
over time. This is another way to modulate an envelope: just change the input sig-
nals as they come in.

 State Changes
 Another interesting, measurable feature of simulation is state changes. States are
artificially constructed changes in circumstance that modify the meaning of incom-
ing signals. In Super Mario Brothers, for example, there are ostensibly three con-
trols: left, right and jump. In Figure 7.18 , we see different states that overlap and
interact in different ways.

 Mario has a “ ground ” state and an “air ” state. As far as the simulation is con-
cerned, Mario’s potential for movement—his physical properties—change when
he’s on the ground or in the air. When in contact with the ground, the left and
right buttons map to certain additive force. When Mario is not in contact with the
ground, the strength of his left and right movement is greatly reduced, creating a
different state. This is a very simple example of increasing sensitivity through state
switching. Left and right movement means something different when Mario is in
the air, meaning that one input is actually mapped to two separate actions that
change depending on the state of the character. What’s interesting is that this cre-
ates additional sensitivity in the system: there is greater expressivity when inputs
are mapped to different responses across states which are altered and maintained
by the simulation itself. You’re getting two sets of responses mapped to one input,
essentially.

F I G U R E 7.17 A slight softness in the attack.

131

 This is used to great effect in the Tony Hawk games where there are as many as
six separate states, each of which assigns a different value to each button on the
controller. Every button means something different in each state. A relatively small
number of inputs becomes an interface to a huge number of moves. The game has
artificially created different physical states for the avatar to exist in. If these state
changes are clear to the player, they can correspond to a huge number of possi-
ble responses. The same principle is applied to fighting games, where being in the
ducking, blocking or jumping states changes the meaning of each input.

 Examining the type and robustness of the simulation a game is running can yield
useful fodder for comparison. Without getting too crazy deep into the mathematical
intricacies of a given physics system, we can see that while Super Mario’s verti-
cal movement uses a simple simulation, the jumping in Metroid is a predetermined
set of positions. This lends Metroid a crisper, more precise feel. It’s also useful to
catalog whether or not the avatars have different states they can exist in. If the ava-
tars do have multiple states, how many states do they have and how do the dif-
ferent states cause different input signals to be interpreted by the simulation and
responded to?

 Filtering
 Input signals come in from the input device in various forms, such as Booleans and
changing float values. It is possible to map “raw ” input either directly to a response
or to a force or other modification of a simulation. This rarely happens, because
to directly map raw signals is to forego the opportunity to tweak game feel. Most
often, an input signal is received raw and passes through a layer of code where it

F I G U R E 7.18 Overlapping states provide additional expressivity.

ATTACK, DECAY, SUSTAIN AND RELEASE

CHAPTER SEVEN • RESPONSE METRICS

132

is filtered in some way, into a different value range. Even if it’s just multiplied by
2 or 3 in order to create a greater force value to pass along to a simulation, most
input signals are modified before being mapped to a response. Almost all input is
transposed in this way; this is a large part of what “ tuning ” means as it is applied to
mechanic design.

 For example, the movement of a mouse-controlled cursor on any computer has
a control-display ratio. The change in position of the mouse on the desk is mapped
very closely to the movement of the cursor on the screen, but there is still a ratio
between physical movement and virtual movement. If the cursor moves 2 inches on
screen for every 1 inch the mouse slides across the desk, the control-display ratio is
1:2. In this case, the filtering of input is a simple multiplication. Inputs can also be
divided, added to, multiplied by themselves and so on.

 It is also possible to have complex, non linear transformations applied to input
signals as they come in. This is especially true when the signals represent a range,
as with a thumbstick on a controller (which returns two float values, each in a
range from � 1.00 to 1.00). This is employed in the driving mechanics Grand Theft
Auto 4 and other games featuring a driving metaphor. Instead of a constant car
steering ratio (1 degree of steering wheel turn � 2 degrees of car turn) the amount
of turning changes across the input space. The steering ratio increases the farther
the thumbstick is pulled in a direction (Figure 7.19).

 Pulling the stick about halfway to the right of center still yields a fairly small
turn. This mitigates “ twitchiness ” that is present in some harder-core driving games
like Vanishing Point or, to some extent, Grand Turismo. By making it much more
difficult to oversteer, the mechanism is much more forgiving and creates a nice
range between small avoidance adjustments and hairpin turns.

 At this layer, there is the possibility not only for modifying input signals before
passing them on, but for creating entirely new signals by further interpretation of
the incoming signals. Think of the famous Konami code, which looks for a par-
ticular sequence of button presses over time. The game’s code examines the input

F I G U R E 7.19 Turning changes as the thumbstick is pulled farther from center.

133

signals it receives for specific, predetermined patterns and responds differently when
it sees them. When a game is sensitive to patterns of inputs over time like this, the
input space becomes larger. Moves in fighting games are fundamentally the same
kind of interpretation. The Haduken in Street Fighter II or “Dark Metamorphosis ” in
Castlevania: Symphony of the Night each require a certain sequence of inputs over
time to trigger. Ditto the gestures used in many games controlled by the Wiimote.

 Fundamentally, what’s happening is that an additional process is running in the
layer between input and response. The signal comes in and a piece of code checks
to see if it recognizes the signal as the first part of a pattern. If it does, it moves
ahead and waits to see if the next part of the pattern is going to follow. Usually this
is time-based, enabling only a short window of time for the next input to occur
before resetting the sequence. Essentially, it’s building additional sensitivity into the
inputs coming through. After all, a sequence of inputs is not inherent in the signals
coming from the inputs themselves. It’s not a response per se, just the game listen-
ing for additional patterns among the input signals it’s receiving. Once a pattern is
identified, a special type of signal is generated by this interpretation layer and is
passed along to the simulation, where the response is carried out. This response
can be an animation, the unlocking of additional lives or the addition of a particu-
lar force into the game’s simulation. The same thing happens in most current Wii
games; it just happens to be a much more complex and sophisticated pattern-seek-
ing algorithm because it has to make mathematical sense of all the crazy data that
flows when you spew accelerometer and pointer data from a free-floating controller.
Whether it’s a Haduken or a Wiimote sword slash, however, I would categorize any
time a game listens for a pattern of inputs across time as a “ gesture. ”

 Another way in which it’s possible to create additional sensitivity through inter-
pretation is spatially, either across game space or input space. For example, while
pressing the A-button may have one meaning and pressing the B-button may have
a different meaning, pressing both simultaneously yields a third response. This is
similar to a gesture, but instead of looking to correlate a sequence of inputs across
time, it looks for combinations of input signals happening at the same time. In other
words, it assigns a different meaning to a combination of inputs than it does to
each of those inputs individually. This is commonly called “chording ” and is used
to great effect in games like Tony Hawk’s Underground, where every combination of
a button and a direction maps to a different trick. Remarkably, chording is present
even in early games such as Super Mario Brothers, where holding down the B-but-
ton modifies the meaning of pressing left or right (by adding more force).

 The other type of spatial transposition happens across game space and is more
commonly known as context sensitivity. For example, in Resident Evil 4, the posi-
tion of the character in the game world can alter the meaning of a particular input.
Standing by a window or a ladder changes the meaning of the A-button in a direct,
one-for-one kind of way. It’s not necessary for context sensitivity to be this rigid,
however, as proved by the game Strange Attractors. Strange Attractors has only one
input, which activates a series of gravity wells placed around the level. The grav-
ity from a well will affect the ship relative to its distance from that well (following

ATTACK, DECAY, SUSTAIN AND RELEASE

CHAPTER SEVEN • RESPONSE METRICS

134

the inverse square law, I assume) meaning that Strange Attractors features a fluid,
ever-changing sort of context sensitivity. The meaning of pressing the button is con-
stantly changing as the ship moves around the game space, closer to some wells,
farther from others.

 Drawing a generalization from all of this, transposition is either spatial or time-
based. Spatial transposition can mean turning a linear curve into an exponential
one, or it can mean augmenting sensitivity by recognizing groups of input signals
from different inputs as unique, and passing along corresponding (new) signals.
Time-based transposition assigns different meaning to input signals across time,
forming gestures which themselves create new and different signals. This offers us
another way to compare one game to another: the types of transposition the input
signals undergo and the resulting values that get passed along.

 Relationships
 Examining individual mappings and envelopes takes us most of the way to under-
standing how a game’s feel is built. The final piece of the puzzle is the relationships
between parameters in a system. This is where much of the tuning of game feel
happens. For example, in the game Sonic the Hedgehog, there is a parameter for
gravity. Gravity is the foil of jumping; the two work in concert to produce the feel of
jumping in Sonic. In the same way, to create the feel of “carving ” in a driving game
requires friction. Without friction, the car’s turning seems floaty, as if it’s driving
on ice. With sideways friction applied to the tires, they seem to carve and dig in, as
a real car would. Individual mechanics—mappings of one input to one response—
work in concert to produce an overall feeling of control.

 The whole process looks something like Figure 7.20 . As shown across the top,
input enters the system when the player manipulates an input device. From the
physical manipulations of various inputs, the input device generates and sends
to the game corresponding signals. A raw input signal can be mapped directly
to response, as with a mouse cursor, or it can feed directly into a simulation.
Alternately, some kind of filtering happens, where the input signal coming in is
altered in some way before being passed along to simulation and/or response. The
simulation layer represents the game’s internal model of reality, the one which the
player interacts with via input. Finally comes the game’s actual response to the sig-
nals it received, whether transpose, raw or from a simulation.

 To summarize, to measure response we want to know what inputs are hooked
up to what parameters in the game. To do this, we want to know how many differ-
ent things the player controls, how many avatars there are. We can then examine
each avatar in the game relative to its type and dimensions of motion, the frame
of reference for that motion, and whether the motion is direct or indirect. Knowing
this, we can identify how each input stream modulates the parameter over time and
can quantify this as an ADSR envelope. From this point, we can attempt to extrapo-
late the system that gave rise to this particular envelope. This could be a filtering

135

of input signals directly, a change in a simulation or both. Ultimately, we want to
understand what variables are being tweaked, the relationships between those vari-
ables and how they become the envelopes we’ve identified.

 Input and Response Sensitivity
 Out of the games discussed earlier, Donkey Kong is particularly interesting because
it maps a relatively high-sensitivity input device (the joystick, which can return
float values from � 1.00 to 1.00 along its horizontal axis) to a very low-sensitivity
response. Compare this to Super Mario Brothers, which has a very low-sensitivity
input device but has a very sensitive response.

 If we record the positions of these characters over time and include jumping
as well, it’s obvious just how much more expressive Mario’s loose movement is
(Figure 7.21).

 From this comparison, it’s apparent that Super Mario Brothers has a more
expressive mechanic than Donkey Kong. The combination of input and response
produces a fairly accurate picture of the overall “virtual sensitivity ” of the system
(Figure 7.22). This is a soft metric, of course, but useful for comparing the expres-
sivity of two different games.

F I G U R E 7.20 From input to response.

INPUT AND RESPONSE SENSITIVITY

CHAPTER SEVEN • RESPONSE METRICS

136

F I G U R E 7.21 The position of Mario and Jumpman over time: Mario is much more expressive.

F I G U R E 7.22 Different games on a rough scale of input and response sensitivity.

 Playable Example

 To experience this first hand, check out example CH07 - 2. There are four
options for control that can be accessed by pressing keyboard keys 1 - 4.

 To begin, press “ 1 ” and use the W, A, S and D keys to move the cube
around. These controls have low input sensitivity and low response sensitiv-
ity. The input sensitivity is low because there are only four buttons, each of
which only has two states, on or off. The reaction sensitivity is low because
the game’s reaction for each button has only two states, moving at full speed
or not moving at all. This is not a very good virtual sensation, very stiff with
very little fluidity or appeal. In some instances—the original Legend of Zelda,
for example—this grid-like rigidity is desirable because it creates a more

137

contemplative, less visceral feel. As in Pacman, all rotation and superfluous
directions of movement have been stripped away for simplicity. The result,
however, is not a very compelling virtual sensation when removed from its
context.

 Press “ 2 ” to experience low input sensitivity and high response sensitivity.
This time, the cube moves organically, loosely and smoothly. The simulation
is adding forces rather than overwriting position directly. This is a much better
feel, no? The lines of motion are flowing, curved and organic.

 Press “ 3 ” to experience high input sensitivity and low response sensitivity.
With this combination, you have very high sensitivity with the input device,
the mouse, but almost zero reaction from the game. The cube has become
essentially a very large cursor. This is a natural mapping; the position of the
mouse on the screen matches the position of the mouse sitting on the desk,
so it’s very easy to feel oriented and get a sense of mastery and control. Bit
boring, isn’t it? Because the mapping is so internalized from years of compu-
ter use, there’s nothing to learn, no motion translation to master. The motion
is quick and snappy and leaves the cube with no feeling of mass, weight or
presence.

 Press “ 4 ” to experience high input sensitivity and high response sensitiv-
ity. There’s a very interesting motion here, one that requires a bit of mastery.
It feels nice to whip the block around again and again to hit the red dot and
to experiment with trying to slow the block down again and reverse direction
or to make little figure eight patterns. Even a game with high input sensitivity
and low reaction sensitivity (a first-person shooter that ties mouse movement
directly to looking around a 3D space, for example), smoothes that snappy,
jerky input with a little bit of reaction from the game.

 This is a simple demonstration of some of the different ways input and
response can be combined to create different sensations of control. This rough
measurement can be applied to any game.

 Summary
 Our final metrics are as follows:

 ● Hard

 1. How many objects the player controls

 2. The dimensions, type and frame of reference for the movement of each avatar

 3. The ADSR envelope representing each modulation of a game parameter by an
input over time

 ● Soft

 ● The overall sensitivity of the system as a function of its input and response
sensitivity

SUMMARY

CHAPTER SEVEN • RESPONSE METRICS

138

 Understanding the simulation and input filtering that give rise to particular sen-
sations of control is craft knowledge. If you want to build real-time control that feels
a certain way, it’s useful to know how simulations give rise to what sensations. For
measuring the sensation of control across games, however, measuring the output,
the envelope, is sufficient. For measurement, as for the player, the underlying simu-
lation is mostly irrelevant. What is relevant is the output, the sensation of control
and the overall sensitivity of the controls.

139

CHAPTER
 Context Metrics

 Context is a catchall term for the effect of simulated space on game feel. Simulated
space is comprised of collision code, which defines how objects interact physically,
and level design, the physical layout of space. Together, they give meaning to real-
time control, providing a physical space for the player to perceive actively via the
avatar.

 Hard metrics are difficult to apply to the way that space redefines sensations
of control because context is so bound up with the player’s subjective impres-
sions, which are difficult to graph in any meaningful, consistent way. But we can
still identify some useful soft metrics. Let’s start at the highest level of context: the
impressions of space, speed, motion and size. Then we’ll touch on the feeling of
immediate space and object avoidance, which we’ll categorize as medium-level con-
text. Finally, we’ll look at how context affects game feel at the low level of intimate,
personal space.

 High-Level Context: The Impression of Space
 At the highest level, exploring a game world with an avatar you control will always
experience some sense of space. With the freedom to explore and move about as
you see fit comes the ability to mentally map a virtual space the same way you
map your own physical space. In your mind, fed by the ever-on firehose of percep-
tion and against the backdrop of the perceptual field, you’re constantly building and
refining a concept of your surroundings. It’s not quite accurate, but not quite not ,
and it enables you first and foremost to function and cope with your immediate sur-
roundings. If you’re like me, and like most people generally, you have a pretty accu-
rate map of all the streets and points of interest within a mile or three of your home.
Now think of a time when you took a trip, when your starting point was shifted to
a hotel or a friend’s guest room, somewhere new and unfamiliar. As you start to
explore and trace paths, you begin to populate your mental model with landmarks
and specifics. Before that, however, there is a period where your whole idea of this
new place, your whole mental model, is based on a generalization. A general, but
inchoate, spatial awareness. A feel.

139

 EIGHT

CHAPTER EIGHT • CONTEXT METRICS

140

 This process of spatial learning, from macro to micro, is analogous to what
happens when a player begins exploring a game space with an avatar. This is the
highest level at which context affects feel: the general sense of space. It’s not pos-
sible to measure this in a hard metric, finite numbers kind of way, but it’s certainly
possible—and useful—to catalog the general feel conveyed by the overall structure
of a space. To illustrate this, let me share a personal experience.

 Interested in the painterly textures and nursing a nostalgic fondness for Blizzard
games, I fired up World of Warcraft. I had no intention of actually playing the
game—an unfortunate, hygiene altering experience involving Ultima Online cured
me of the MMO bug a long time ago—but I was interested in at least poking around
and checking things out. What immediately struck me was the feeling of vast,
sprawling openness. There was a sense that this was a world with some interesting
and meaningful analogies to the world as I’ve experienced it. Specifically, trudging
around felt a bit like hiking up to catch the glorious, breathtaking view from the
top of the flatiron of Superstition Mountain, a grueling hike to the east of Phoenix,
Arizona, which my friends and I do from time to time (Figure 8.1). From the top,
there is no noise but there is plenty of wind. On a clear day you can see for hun-
dreds of miles in every direction. The view is miraculous. Schlepping up to the top
of the highest mountain I could find in World of Warcraft somehow felt similar.
Here, in game form, was a little virtual taste of how it felt for me to stand at the top
of a mountain and stare out.

 Oblivion, like World of Warcraft, felt open and sprawling. Climbing to the top
of something high, I could see for a great distance and, knowing that this was a
contiguous world instead of the Potemkin villages you so often see in single player
games, it felt like a realm of great possibility. If I saw something far away, I could
travel there. Neat. By contrast, the worlds of Counterstrike seem always hemmed
in, claustrophobic, and full of endlessly looping, twisting tunnels. Some levels

F I G U R E 8.1 Wide open space.

141

have open areas, to be sure, but there’s never a sense that anything exists outside a
Counterstrike level. As a player, you intuit within the first round of play that those
far off buildings and skyboxes are just there for decoration.

 To frame this concept another way, when the space is large and expansive, it
warrants pondering and exploration, encouraging players to look outside the self
and think about things like how small and insignificant they are. When it’s tight
and constrained, it causes more introspection.

 With respect to game feel, this can mean the difference between an intense focus
on the immediate surroundings and on the sense of exploration and possibility
lauded by so many fans of Oblivion. Counterstrike does a great job of harmonizing
its tight, twisting environments with other rules and systems that further empha-
size the need for intense, all-consuming focus on moving through the immediate,
medium-range space efficiently and effectively. Because one shot can kill you and
you know that five enemies could be waiting just around the corner, you’re careful,
calculating and hyper-aware of every nook and cranny of the environment.

 Without delving deeply into the notion of space as it is studied and employed by
architects, we can at least appreciate the effect of high-level, large-scale construction
of game worlds on game feel. Georgia Leigh McGregor, an astute student of the role
of architectural concerns in video game design, observes the differences between
the architecture of World of Warcraft and The Battle for Middle Earth II:

 An initial architectural reading of both video games reveals a dichotomy in the
way they portray or produce architecture . … Word of Warcraft privileges architec-
ture as a spatial experience. It is concerned with the ability to move through space,
constructing architecture as a series of solids and voids. When we interact with
the architecture we are alternately channeled and impeded . … This is a spatial
architecture that mimics the ways in which we use architecture as containers
for specific purposes in the real world. The architecture has what architects call
program, so that Ironforge can be divided into circulation space and activity
space . … Conversely BFME II is not concerned with architecture as space. 1

 In terms of measurement, we can say, as a soft metric, that a space feels mostly
open, like a seashore or a large city, or closed and claustrophobic like a subway tun-
nel or a cave, and to roughly chart the effect of that overarching structure on the
feel of a game.

 Impressions of Speed and Motion
 The other high-level way a game’s feel is affected by context is in the impression of
speed of moving objects. Speed in a video game is a purely notional concept. There
is no standard unit of measure for the movement of objects in a game. There can’t
be. Unlike our reality, where miles per hour means the same thing to a swallow in

IMPRESSIONS OF SPEED AND MOTION

 1 http://www.scribd.com/doc /268586/Architecture-Space-and-Gameplay

CHAPTER EIGHT • CONTEXT METRICS

142

Saskatchewan, a bus in Burma or a Maserati in Munich, every game uses funda-
mentally different units to measure (and tune) the speed of objects. Even in games
such as Project Gotham Racing and Gran Turismo, where speed is measured osten-
sibly in miles per hour, the metric does not correlate across games. The problem lies
in relativity. Speed in a video game only has meaning relative to the number, place-
ment and nature of the objects around it. Without at least one object to compare it
to, the speed at which something moves in a game has no meaning.

 Playable Example

 To illustrate just how powerful this effect is, I created an interactive test of
a car, example CH08 - 1. According to the game, the car moves at 100 miles
per hour. The game’s code says simply “when the space bar is pressed,
speed � 100 mph. ” As long as a camera follows that car at the same speed,
the number 100 is meaningless. The speed at which the car moves according
to the game’s code has no effect on the impression of speed for the player.
However, add an asphalt road texture beneath the car, and the impression of
speed springs to life. To experience this, press “ 2 ” on the keyboard. Simply
put, without a frame of reference there can be no impression of speed. Add in
trees and fences, cows and bridges, and the effect is enhanced. Have the field
of view of the camera change as the car speeds up and the impression of speed
is greater still.

 So even if we could distill the speed of an object moving in a game to a mea-
sure of, say, distance across the screen per second and compare that to the speed
of movement in other games, the problem remains that what we’re tracking is the
game’s internal model of speed rather than the player’s. What we want to mea sure
is the impression of speed as it exists in the mind of the player. So how do we do
that? Again, this is a bit of a soft metric. We can never really know exactly how
players perceive speed, only what they will tell us or what we experience ourselves.
Thankfully, the impression of speed seems to have very little variability across dif-
ferent players, probably because we spend so much of our time interacting with a
world where things move around quickly, and where it’s important that one be able
to gauge the movement of those things accurately. Stepping off a curb three sec-
onds earlier or later can mean the difference between a delicious muffin and grisly
death, so people are pretty great at judging the speed of moving objects at various
distances, especially with respect to their own visually verified point in space. That
oncoming bus is getting larger at a certain rate and the sound of its engine is getting
louder. The parked cars and lampposts it’s driving past help you verify its size, and
the rate at which it’s advancing past them gives you still more data about how fast
it’s coming. Other cars driving nearby also give me a frame of reference for speed;
if the bus is passing cars left and right, it’s probably going quite fast. All in all, there
are dozens of clues that enable me, in an instant, to judge, check and recheck my

143

concept of the bus’ speed of approach. With that data I can decide whether a deli-
cious muffin is worth the risk or whether it would be best to defer deliciousness for
another few minutes.

 The impression of speed conveyed by a video game offers these same kinds
of clues (such as size of objects, their relative motion and changes in sound) to
actively fool the audiovisual system into thinking motion is occurring. Depending
on the apparent movement of objects across the screen, changes in perspective
and field of view and effects such as Doppler shift and screen blurring, that motion
will read as fast, slow or somewhere in between. For now, let’s focus on the appar-
ent movement of objects on the screen and changes to perspective. Effects such as
Doppler shift and screen blurring are best categorized as polish because they are
layered on, and have no direct effect on the simulation.

 The best way to come to terms with the speed of something in a game is in com-
parison, again, to real-world objects. Is the impression of speed in the game similar
to riding your bike or is it closer to driving on the freeway with the top down? For
me, the movement of Daxter in his PSP incarnation seems most like that of a squir-
rel. The motion is quick; rather than having a very high speed and taking a long
time to reach that speed, it is showing quick changes in direction and a quick ramp
up to maximum speed, as happens when something very small moves around a
small space very rapidly. Loco Roco seems like playing with a bunch of fast-rolling
water balloons. All of this comes back to the balance between the speed of move-
ment of the avatar and the nature, size and spacing of the objects in the world that
avatar traverses. In this way, context is a second set of knobs for tuning real-time
control. Effectively tuning a game’s feel means tweaking a bunch of numbers which
govern the resulting movement of the avatar, but it is the placement of the objects
around, over and near which that motion that takes place that gives those numbers
meaning. To tune, you must have some context to tune against.

 The other thing that profoundly affects the impression of speed in a game is per-
spective. Returning to the example of watching a bus from a street corner, imagine
instead being in one of the cars driving alongside the bus. How fast does the bus
appear to be moving now? And what if you were instead in a news helicopter fly-
ing hundreds of feet above the bus? In that case, both the cars and the bus would
appear to be positively plodding. Even if the helicopter was in a hover, the dis-
tance would make the traffic seem to crawl in the same way that a jet plane seems
to amble across the sky when you’re standing on the ground. Perspective changes
everything. In the case of a video game, though, there is no real meaning to abso-
lute speed. It doesn’t really matter that the jet is actually moving at 600 miles per
hour; there is only the player’s impression of speed. From the point of view of a
game designer, this is great news. We can easily change the distance from which
objects are viewed, the size of objects and the speeds at which they move relative
to one another. In addition, we can change the angle view of the camera. Wikipedia
defines angle of view (perspective) as “As an effect, some first person games, espe-
cially racing games, widen the angle of view beyond 90º to exaggerate the distance
the player is travelling, thus exaggerating the player’s perceived speed. This effect

IMPRESSIONS OF SPEED AND MOTION

CHAPTER EIGHT • CONTEXT METRICS

144

can be done progressively or upon the activation of some sort of ‘turbo boost. ’
An interesting visual effect in itself, it also provides a way for game developers
to suggest speeds faster than the game engine or computer hardware is capable of
displaying. Some examples include Burnout 3: Takedown and Grand Theft Auto:
San Andreas. ”

 The Impression of Size
 An extension of the impression of speed is the impression of size conveyed by the
impression of speed. In other words, the size of an object and its motion have a
relationship which can be used reciprocally to create an impression of slow speed
or of massive size. In the game Shadow of the Colossus, for example, the colossi
appear to move very slowly. When you watch a commercial airliner amble its way
across the sky, the same phenomenon is at work. It is in fact moving 600 miles per
hour, but the distance from which you are seeing it reduces the impression of speed
to a crawl. As the hero approaches the colossi, however, it becomes apparent that
they’re not slow-moving; they’re simply huge. The impression is created not only
by the added frame of reference of the character being suddenly near the colossus ’
foot, but by the colossus ’ hefty, plodding movement. The interesting part is that it’s
the contrast between being very close to the colossus or very far away from it that
conveys the impression of massive motion. The little avatar moves closer to the
colossus over time, giving a fluid set of data points with which to form and inform
a detailed concept of the mass and heft of the colossus based on its movement. The
game also does some neat things with perspective, constantly looking along a vec-
tor from the character to the colossi, effectively guaranteeing that the colossi will
always seem to be towering above you and bending the view angle nicely wide in
order to exaggerate the impression of distance. The effect is such that the closer the
player gets to a colossus, the larger it will seem and the greater the distance covered
by its expansive motions. The sounds, particle effects, screen shake and other polish
sell the notion of largeness, but it is the impression of speed which truly lends the
colossi their impression of mass and size.

 To see what happens when such an attempt at impression of size goes wrong,
check out the bosses in the games Serious Sam and Painkiller. Both these bosses
were similar in size to the colossi, if not larger, at least, judging by the relative speed
of the avatar. Both of these games had the sounds, particle effects, screen shake and
other polish necessary to sell the notion of largeness, but the impression of speed
was lacking the requisite context to be effectively established. The motion was
wrong. Even when you got close to them, the impression was not one of a massive,
hulking beast. Rather, the impression was that a small creature had somehow been
enlarged, but had retained all of its physical properties. That is, physics were the
same for it at the size of a skyscraper as they were at the size of a dachshund. The
speed of the animation playback was paramount. The colossi moved very slowly
when you were far away from them but appeared to move appropriately quickly

145

when your frame of reference was changed to a closer aspect. The bosses in Serious
Sam and Painkiller appeared to move quite quickly, even from a distance, thus
destroying the intended effect of the impression of size.

 So that’s one great example of how the speed of movement of objects by pro-
viding context for one another can effectively sell the size, mass and weight of an
object. The sounds and particles and screen shake also speak to those properties,
but in this instance the sensation was really sold by the context of one moving
object relative to another.

 This is the same essential principle that applies to the apparently slow motion of
Zangief relative to Chun Li in Street Fighter II. Zangief’s motion seems ponderously
slow relative to the motion of Chun Li. His movement would probably seem some-
what slow by itself, but with the added frame of reference of twitterbug Chun Li,
the effect is enhanced considerably. To contrast that, imagine an alternate universe
Street Fighter II where Zangief is the fastest character. Relative to those dullards, his
motion would seem zippy fast.

 Medium-Level Context
 The medium level of context refers to the feeling of immediate space and object
avoidance. At this level, changes in context can mean the difference between sensa-
tions similar to pushing through a crowded party, wandering an empty street or a
playing in a basketball game. It’s not space at the low level—intimate and interper-
sonal—and it’s not the sensation of openness you get from walking along a beach.
It’s the layer where, with respect to game feel, context is the “second set of knobs ”
for game feel tuning. The first set of knobs is in the programmed response to input;
you tune the speed of motion of the character in absolute terms relative to the
game. For example, the character moves at 90 meters per second forward and can
turn somewhere between 0.1 and 5 degrees per second. None of these numbers has
any meaning, as we’ve said, unless they’re related to spatial context. In order for
the forward speed of a car in a racing game to have meaning relative to how fast it
can turn left and right, it must have a track. You have to have a track laid out that
has curves of a certain sharpness and that includes objects and obstacles to avoid.
It is at the intersection between the tuning of the individual response to input num-
bers and the spacing of the objects in the environment that the feel of a game gets
primarily tuned.

 So this mid-level of context is about steering and object avoidance, about nav-
igating an interesting spatial topology with enjoyable precision and deftness. In
order to compare the avoidance mid-level feel between games, what we need to
examine is:

 ● The number of objects

 ● The size of the objects

 ● The nature of the objects

MEDIUM-LEVEL CONTEXT

CHAPTER EIGHT • CONTEXT METRICS

146

 ● The layout of objects

 ● The distance between objects

 Across multiple games, we can compare how far apart objects are spaced relative
to the speed and motion of the avatar and can examine how this changes game feel
(Figure 8.2). A great example comes again from World of Warcraft. Moving through
WoW, I began to experience highway hypnosis. Highway hypnosis happens when,
while driving, you begin to zone out, and are to be lulled into a somnambulant state
by the flowing uninterestingness of it all. You’re sort of flying across the land and
your mind begins to expand in all directions, and you have this sort of powerful
alpha brain wave truncation of time. Before you know it you’ve driven 200 miles
and are suddenly nagged by the distinct feeling that yes, perhaps I should have
been paying more attention those last three hours. My driving instructor in high
school told us that 20-something percent of all accidents in some place during some
time period were caused by this. For me, it tends to happen when I’m driving cross
country. Traversing the landscape of WoW felt for all intents and purposes like driv-
ing the long stretch of straight, level freeway between Los Angeles and San Jose.

F I G U R E 8.2 Different configurations and types of space yield a different feel relative to the
controlled movement of the avatar.

147

Because the objects in World of Warcraft are spaced so far apart relative to the speed
of movement of the avatar, and because the movement of the avatar across that ter-
rain often has no gameplay function, running across this environment started to lull
me into the same zoned out state (Figure 8.3).

 In contrast, playing Vanishing Point is like another section of the route between
San Jose and Los Angeles. After hours of mindless driving on Route 5, you arrive
at Pacheco Pass. The contrast is striking. In Pacheco Pass, the wind blows right off
the adjacent waters of Lexington Reservoir, buffeting your car and threatening to
uncouple it from its reassuring grip on the road. The road twists at dismayingly car-
commercial-like angles, and there’s invariably some idiot who seems determined to
get his Jetta’s worth by driving the section at speeds he’s witnessed in such a com-
mercial. Playing Vanishing Point is like being the idiot in the Jetta. It’s an insidiously
difficult racing game from the Dreamcast era, with the most twitchy, difficult con-
trols. The game tasked you with accomplishing the most horrendous and knuckle-
whitening missions using those controls.

 These two extremes, WoW and Vanishing Point, are two points on the scale of
mid-level spacing. This is the primary dimension in which it’s possible to create
challenge. Along the gamut from WoW to Vanishing Point, you can have objects
spaced farther apart or closer together. In tweaking that relationship, you also
increase the challenge of navigating that space. So the alteration of the spatial con-
text in which an avatar moves is one of the primary vehicles with which it is pos-
sible to change challenge. Again, to measure at this level, we’re interested in the
spacing of objects.

 Low-Level Context
 Finally, context affects game feel at the low level of intimate, personal space,
at the level of tactile interaction between objects. At this level, what we’re inter-
ested in examining is collision. Now, the maths involved in collision detec-
tion and response is a little bit scary. At least, it is me (being a lowly brain-dead

F I G U R E 8.3 WoW-highway-hypnosis.

LOW-LEVEL CONTEXT

CHAPTER EIGHT • CONTEXT METRICS

148

game designer). Regardless, there are several excellent books and online resources
dealing with different kinds of collision and how to implement them. For our pur-
poses, we want to compare different ways it is possible to model collision and the
resulting feel is to simply draw comparisons to the interactions of physical objects
in our everyday lives. Again, this is something of a soft metric and requires some
conceptual leaps in terms of metaphorical relationships between objects moving in
a game and objects moving in the real world. But the analogies are usually sound,
and this is a useful tool for categorization and comparison.

 For example, most racing games subscribe to the “ waterslide ” method of colli-
sion and response. The reason is that it really sucks if you ’re playing a driving game
which requires a lot of precision and the car reacts like it ’s coated in glue when it
comes into contact with another object. Or, you know, do something akin to what
it would do if you were to scrape a real car against a barrier at 200 miles per hour.
Instead of this quagmire, most modern racing games use collision schemes which
essentially feel like a waterslide. There’s almost no friction at all when the cars run
into something. When you bang into a barrier, instead of crumpling or exploding,
the car ricochets off and keeps on going. This is a very different feel from a collision
system with a huge amount of friction, where if a car runs into a wall it might roll
or get stuck or crumple sideways.

 So essentially what we can do is look at the feel of collisions between
objects in a game and compare them to the feel of everyday things and so to one
another. For example, the collisions in Loco Roco feel like a big bowl of Jell-o or
a bunch of water balloons banging into one another. It feels very soft, very jiggly,
very spring-loaded. Very different from Gran Turismo, which has a very solid feel-
ing to its collisions. It’s a rigid, unyielding solidity, and an interesting comparison
can be drawn between the crisp smooth solidity of the collisions in Gran Turismo
versus the dirty, broken, mushy collisions in Burnout Revenge. In Burnout, they
still employ the waterslide model at some level, but they’re doing some rather
sophisticated damage modeling. This causes the car to compress and mush up
even if there’s nearly zero friction applied to the collision so the car can continue
driving apace.

 As a final example, consider the low-level feel of World of Warcraft. While the
high-level feel of WoW was open and boundless, it felt barren and empty. It was
tactilely sterile. When I climb Superstition, I can reach down and feel the rocks
beneath my hands. Indeed, doing so is mandatory—to make it to the top requires
a short section of light rock climbing. In WoW, I never really interacted with any-
thing. It felt very sterile. There was no reason to pay attention to what was nearby
or whether I was running into a building, running through a desert or running off
a cliff. The collisions felt smooth but dead in the sense that there was no energy
coming back out of them. You can’t smack into something and rebound or indeed
see any interesting interaction. It’s a bit like playing only with Nerf toys. Everything
is soft and mushy and safe to play with indoors. You’re never going to put your eye
out with them.

149

 Summary
 Context metrics can be categorized into three different levels:

 ● High-level context—The impression of space, speed and motion inherent in the
overall conception of the game world

 ● Medium-level context—The immediate space around a character and how the
character interacts with objects moving through that space, for example, object
avoidance

 ● Low-level context—The intimate, tactile, personal interaction between objects

 At each of these levels, we identified soft metrics that, while not strictly quantifi-
able because of the subjectivity impressions of each individual player that must be
taken into account, are nevertheless useful in game design. At the high level, our
metric is the general sense of space, speed and motion as it relates to the player and
the effectiveness of the game world. At the medium level, our metric is the spacing
of objects. And at the low-level, our metric is how objects collide, and how these
collisions feel compared to everyday objects in the real world.

SUMMARY

This page intentionally left blank

151

CHAPTER
 Polish Metrics

 Polish is any effect that creates artificial cues about the physical properties of objects
through interaction. In this case, artificial means “not simulated. ” When two objects
collide and the code tells them that they’re each solid and so should rebound with a
certain force in a certain direction, this is not polish. This is part of the simulation,
part of the game’s response to input. Instead of “artificial, ” the terms “ nonessential ”
or “layered on ” could also be used. The point is, if these effects were removed, the
essential functionality of the game would be unaltered. What would be changed
would be the player’s perception of the physical nature of the system. In this way,
polish has a huge impact on game feel: it provides the visual, aural and tactile clues
a player needs in order to create a detailed, expansive mental model of the physics
of virtual objects. Polish “ sells ” interaction, to put it another way.

 The tendency is to wave a dismissive hand at polish, saying, “Oh, well, it’s not
actually a very good game, it’s just really polished. ” This does a great disservice to
the impact that polish can have on game feel and on the experience of playing a
game generally. It is in the polish that much of the impression of a physical reality
different from our own exists. With that comes the sense of possibility and wonder
that attracts so many to games as a medium. In a few minutes spent feeling their way
around, players can extrapolate a universe of possible interactions based on their
observations and, in so doing, can experience a great joy of discovery and learning
which is rarely possible in everyday life. Much of what makes something interesting
and enjoyable to control is the perception that the thing is huge and weighty; lithe
and nimble; or that it is grinding, scraping, carving, blasting, smashing, caressing or
otherwise interacting with other things around it. The question is, how do we mea-
sure the effect of polish on a game’s feel and compare it to other games?

 First, we need to define exactly what we mean by an effect. For example, the
squeal of car tires is separate from the smoke particles that shoot out when pedal
hits metal. This is obvious enough—these are separate effects. One is a visual effect;
one a sound effect. To create each requires entirely different skill sets. What’s inter-
esting is that these two effects will be perceived as one by a player. As they are cor-
related in physical reality, so they are assembled into a single event in the mind of a
player. By an individual effect, then, we mean either the smoke or the squeal. Both
support the same perception of interaction—the friction of tires spinning against a

151

 NINE

CHAPTER NINE • POLISH METRICS

152

road under various powerful forces—but each is distinct and is constructed differ-
ently. At the higher level, we’re interested in the interactions that are supported by
these various effects. Many different effects, even across senses, can support and
enhance the perception of the same interaction.

 Next we want to identify individual effects and categorize them according to the
impression of physical interaction they are designed to support. A neat ancillary ben-
efit in doing this is that it provides a quick and dirty check of intent versus outcome.
A certain effect may be intended to enhance the impression of weight or mass,
but it may be clashing with other effects and conveying something different than
intended. Returning to Chapter 8’s example of the impression of size and weight in
Painkiller versus that in Shadow of the Colossus, the animated Colossus walking
has a much greater sense of weight and presence than that of the gigantic bosses in
Painkiller. In the case of Shadow of the Colossus, the sound effects featured deep,
reverberating booms and the sound of detritus being strewn in time with the Colossus ’
footfalls. The particles were correspondingly huge plumes of dust and sprays of
gravel as the animated foot slammed into the ground. In addition, when the player
was within a certain distance of the colossus, the screen would shake to further indi-
cate a massive impact. In Painkiller, the animation and effects clashed. The sounds
were similar to those in Shadow of the Colossus, but the animation lacked the slow-
moving weight and follow-through necessary for the intended effect. Also, there
were too few particles spewing up to enhance the apparent impact of a massive
foot. Though the creatures themselves were technically massive, their motions and
accompanying effects tended to convey an impression of something much smaller.

 Finally, before beginning our discussion of polish metrics, it’s important to note
once again that in the realm of polish, as with metaphor and many other areas of
game feel, we are dealing with soft metrics. This is because it’s very difficult to
aggregate and quantify players ’ individual perceptions of the exact feel created by a
polish effect. Player perceptions are relative, not absolute, and arise almost entirely
from world-view created by game, rather than real-world physics. As we will see,
however, there are a number of soft metrics associated with polish that are extremely
useful to game design.

 Let’s start by defining the kind of soft metrics we need to measure how polish
affects interactions between objects.

 The Feel of Everyday Things
 As we start to examine the interactions between objects, the temptation is to identify
each object simply, with respect to individual physical properties. But the proper-
ties of objects are not as simple as one might suppose. Under the heading “ physical
properties, ” Wikipedia offers the following list: absorption, acceleration, angle, areas,
capacitance, concentration, conductance, density, dielectric, displacement, distribu-
tion, efficacy, electric charge, electric current, electric field, electric potential, emission,
energy, expansion, exposure, flow rate, fluidity, frequency, force, gravitation, impedance,

153

inductance, intensity, irradiance, length, location, luminance, magnetic field, mag-
netic flux, mass, molality, moment, momentum, permeability, permittivity, power,
pressure, radiance, solubility, shininess, resistance,spin, strength, temperature, ten-
sion, thermal transfer, time, velocity, viscosity, volume, scattering light.

 Apart from being a rather exhaustive list, this isn’t quite what we want. Most of
these properties are not easily perceived by visual, aural or tactile observation; they
must instead be measured by sophisticated instruments. The problem, apart from our
inability to measure things like this meaningfully across games, is that these proper-
ties are mostly irrelevant. As far as the player is concerned, the perception is the real-
ity. The game can think an object weighs ten tons, but if it moves like a squirrel the
player will perceive it as such. What we want are more things like Figure 9.1 .

 We need unscientific terms like “ pointy ” or “ springy ” because the feel arising
from polish effects is based on the individual player’s perception, which is subjective,

THE FEEL OF EVERYDAY THINGS

F I G U R E 9.1 The feel of some everyday things.

CHAPTER NINE • POLISH METRICS

154

relative and general. This is in some ways the opposite of measuring something
in the real world, which is typically thought of as objective, absolute and specific.
We measure the weight of a brick by placing it on a scale. The scale (an objective,
impartial instrument) gives us a measurement in pounds or kilograms (an absolute
measurement—the same for all objects everywhere) of this (specific) brick. By con-
trast, the physical properties of a brick in a game are entirely based on a player’s
subjective perception.

 This means that the properties of objects in the player’s mind can only be
measured in the way that the perception of color, loudness and temperature are
measured, by the expected response of a group of observers when perceiving
the specified physical event. For example, out of a group of 50 people who touch a
glass of ice water and a mug of hot tea, everyone will be able to identify that the
tea is the hotter of the two, but no one will be able to say with certainty what the
temperature of either is. The hotness of the thing is only measured against the other
thing (a relative measurement), and we cannot guess the specific temperature of
either object by only measuring them relative to each other (the measurement is
general, not specific). The same goes for polish effects. What we’re interested in
tweaking, and tracking, is the general, relative, subjective sense that players have
of the various objects they control and interact with in a game. With that, we can
examine the corresponding physical properties that the players are inferring in their
minds from the nebulous, general sensation and trace that down to the level of indi-
vidual effects.

 This means that what we’re actually interested in tracking are not the physical
properties of objects in a game but the players’ perception and the clues that cause
players to perceive the properties of objects in a certain way. The nature of things
in a game cannot be decoupled from their observable properties, in other words.
To be a bowling ball, something only has to look like a bowling ball, act like a
bowling ball and sound like a bowling ball. There is no ultimate nature of mat-
ter to be measured by complex instruments. What the player perceives to be real
is real.

 From a player’s perspective, things can be light or heavy, rough or smooth. An
action can be weak or powerful, an impact gentle or jarring. These are percep-
tions. They have a relationship to measurable quantities such as mass, velocity and
weight, but are more about a gestalt, the general sense of physical nature that some-
thing conveys.

 Take the property of mass, for example. When we describe objects in a game
with respect to their mass, what we really mean is perceived mass, which is derived
from a bunch of small clues, each of which must be designed, often as a polish
effect. Every tiny change, every little spray of particles or sound effect, can make a
huge difference. The mass of an object will seem completely different depending on
when a spray of particles is triggered as it collides with another object, and if that
spray of particles is gentle or violent. The simulation of the collision between the
objects is unchanged but changes in polish have completely altered the perception
of their masses.

155

 In the end, then, it’s useful as designers for us to examine polish effects from
three different angles:

 ● As individual, free-standing effects whose motion, size, shape and nature can be
measured separately from the simulated objects in the game

 ● As groups of effects which convey nebulous, general perceptions to the player

 ● As observable physical properties that are inferred from groups of perceptions
(such as mass, material and texture)

 Individual effects enhance and support specific perceptions. These perceptions—
when taken as a whole—imply certain things about the physical objects in a game.
These physical properties, things such as weight, material, friction and so on, are
assembled by players into a cohesive concept of game world physics. As they inter-
act with the game, this conception, this model, is updated constantly to incorporate
any new interactions. If an interaction seems to contradict the player’s model, it will
stand out and will be incorporated with the model as part of the backdrop against
which future decisions are made (the perceptual field from Chapter 3). In this way,
learning to navigate a game space is the same process as learning to cope with our
everyday physical space, which is why polish is so crucial. Polish gives players the
grounding they need to cope with the new, unfamiliar topologies of game spaces
and the unfamiliar physics which govern them.

 Types of Polish
 The end goal for a polish effect is the same in every case—to convey some sense of
the physical properties of an object (weight or mass or whatever) by offering clues
when objects interact and move. A car skidding across the road leaving skid marks,
kicking up dust and smoke, and making a squealing noise are all clues inserted by
the game designer to indicate that yes, in fact, this is rubber and this is a road, and
the weight of the car is pushing the rubber tire into the road. All the subtleties of
that interaction sell the perception that these objects are real.

 Having identified the player’s perception as what we’re wanting to and are able
to affect with different polish effects, let’s dive down to the most basic level of indi-
vidual effects. That is, let’s look at the different ways in which it’s possible to alter
a player’s perception of the physical reality of the game world without changing the
simulation itself. These methods include animation, visual effects, sound effects,
cinematic effects and tactile effects.

 Animation
 Animation is a well-established medium with a rich history spanning from early
Disney masterpieces like “Snow White ” to “Beauty and the Beast ” and modern
masterworks like “The Incredibles ” and “ Ratatouille. ” Along the way, a detailed
set of best practices has emerged for animation, in the form of the principles of

TYPES OF POLISH

CHAPTER NINE • POLISH METRICS

156

animation .1 Every new animator has to learn these principles. They comprise a
universally applicable set of non-negotiable aesthetic guidelines. With respect to
aesthetics, the conventional wisdom is that there’s no accounting for taste. Different
people will interpret aesthetic choices differently, regardless of the intent of the art-
ist and independent of any sort of external, objective standard. The principles of
animation represent just such a standard. If your animation has squash and stretch,
it will be a better animation than one that doesn’t. Remarkably, this appears to be
true for all animations everywhere. This is why all new animators must learn and
master the principles of animation. Another fascinating aspect of the principles of
animation is that they apply to animation in a way that is analogous to the use of
polish effects in a video game. That is to say, almost universally, the principles apply
to selling the physical interaction between objects in an animation. This selling is
directed squarely at the player’s perception. What they’ve essentially got is a set of
standards which enable the animator to directly change the viewer’s perception of
the physical nature of the objects in the animation. They’ve cracked the code of per-
ception, essentially. They can modify perception directly by applying principles such
as squash and stretch, overlapping action and so on, to the movement of objects in
their animations.

 Squash and stretch specifically illustrates something fascinating about animation,
something which animators have known for many years. Emulating reality is not the
most efficient path to manipulating someone’s perception such that a world you’re
constructing seems believable and will engage the viewer. You can take shortcuts to
perception, so to speak, ignoring the constraints of reality to create more convincing
animation. Take the classic example of the bouncing ball animation (Figure 9.2), the
first assignment given to every student of animation.

 At the bottom, when the ball is in contact with the ground, it squashes way
down, deforming and flattening out. When it rebounds upward, it stretches along
the momentum line of the animation. In motion, this ball will appear much more
satisfyingly squishy and ball-like. If you animate a static sphere falling, touching the
ground and rising up again, it looks stiff and unnatural, lacking the sense of weight,
presence and personality. What this illustrates is that you can change a person’s
perception of something without resorting to a direct emulation of the reality you’re
trying to portray.

 As animation is applied to objects in a video game, an animated object typi-
cally replaces the visualization of a simulated object. It sits on top of the simulated
object and changes the player’s perception of its nature and character. It changes
the player’s perception of what it appears to be—a car, a jet or a ninja, whatever—
but also by animating differently. The principles of animation apply to the looping
animation of the character running, which is played back in sync with the motions of
the underlying simulated object, which is driving its motion in space. That animation

 1 Frank Thomas and Ollie Johnston’s “Principles of Physical Animation ” are online at http://www
.frankandollie.com/PhysicalAnimation.html

157

itself, which starts life as a linear animation created by an animator, will have
squash and stretch, overlapping action and all the things a good animation should
have. Ipso facto, it is the animation itself, sitting on top of the simulated object,
which conveys the sense of weight and presence, the physical properties of the
object. The animated visualization becomes the object in the mind of the player,
and so any physical properties it displays as it animates are perceived by the player
as part of the motion of the object, even though they have nothing to do with the
simulation. When animated effects become indistinguishable from programmed
response, animation does just as good a job of creating the sense of weight, mass,
presence and physicality.

 For example, the run and jump animations of Jak from Jak and Daxter convey a
sense of weight and presence that simply don’t exist at the level of simulation. As
Jak runs, he squashes and stretches with each footfall, has awesome overlapping
action, and generally looks to be a real, breathing physical being made of flesh and
bone and who is running across varied terrain. If you were to replace all the objects
in Jak and Daxter with grey capsules representing the way in which the simulation
sees them, the sense of weight, presence and personality would be lost.

 So the principles of animation apply almost directly to the motion of objects in
a game. With the exception of principles like staging, which rely on a controlled
frame of reference and predictable camera behavior, it’s safe to say that squash and
stretch and all the other principles can be and are directly applied to characters
in games like Guilty Gear, Viewtiful Joe and Ico, each of which features excellent
linear animation layered atop simulated objects.

 Another interesting thing to look at is hybrid solutions, where simulated objects
have an animated visualization layered on top of them but where some parameter

F I G U R E 9.2 The changing shape of the ball as it bounces creates a realistic perception of a
bouncing ball, even though the animation doesn’t directly emulate a bouncing ball.

TYPES OF POLISH

CHAPTER NINE • POLISH METRICS

158

of the simulation drives an aspect of the animation. For example, in the original
Super Mario Brothers, when the simulated cube object that drives Mario’s motion in
space speeds up, so too does the speed at which Mario’s run animation plays back
increases. It’s a nice way to link animation into the simulation underlying it. Note,
though, that this change in animation playback speed does not have any effect on
the simulation. The animation plays back faster because the cube is moving faster,
not vice versa. As we’ve said, it’s an artificial effect, not part of the simulation itself.

 The line between animation and simulation gets a little blurry when procedural
animation or active ragdoll solutions enter the equation. The keyframe animation
dictates the perception of that object until such a time as the simulation takes over.
For example, a football player running along and being tackled. The animation
drives the impression of motion until such a time as the character is affected by
another force, at which point the simulation takes over. The applicability to polish is
essentially the same, however. In traditional animation, as in game feel, the goal is
to convey the impression that something is physical and consistent and that it
is interacting with other objects around it.

 Visual Effects
 Visual effects differ from animations in two fundamental ways.

 One, visual effects typically wink in and out of existence to serve a short-term
need for indication of interaction between two objects. A visual effect appears only
momentarily at the intersection of two interacting objects: sparks shooting out when
a car is scraping along a barrier, or a spray of splinters when a crate is destroyed,
for example.

 Two, visual effects appear to be caused by another object, but are not the object
itself. With an animation, you have a visualization of character or an object and
it plays back a linear series of frames. Through deft manipulation in the hands of
an animator, that sequence of frames played back will cause the object to appear
to have weight and presence and volume and all that good stuff. A visual effect
appears to be caused by an object and emphasizes the interaction of that object
with other objects. The effects in Soul Calibur are a great example of this. A sword
swipe has a polygon trail following behind it, tracing its arc through the air. The
trail effect is caused by the motion of the sword. When two swords clash, a jet of
sparks flies off of them. The sparks themselves are not the object, nor is the trail,
but each emphasizes the motion and physical nature of the object it supports.

 Visual effects include particles, trails, sparks and other temporary indicators of
interaction and movement. These effects are accomplished in a variety of ways,
though most visual effects in modern games are made up of particles. A particle
in a 3D game is a 2D plane which has a position in 3D space. It will “ billboard ” —
always face the camera—and will typically not be affected by lighting or other forces
in the simulation, though hooking a simulation into particles can be used to great
effect, as it was in Kyle Gabler’s excellent gamelet The Swarm (in which the avatar
is a swarm of hazy black particles which cluster and pull toward the cursor and are

159

capable of picking up and throwing unsuspecting stick figures in the most charming
manner imaginable). So a particle effect is a series of textured planes that always
face the camera. The benefit of having a bunch of planes that always face the cam-
era is that you can create an artificial sense of depth by painting it into a texture,
which is then applied to each particle. Smoke particle system that has the appear-
ance of a billowing 3D smoke is comprised of a bunch of planes, each showing a
single painted image of smoke, which has the faked impression of depth painted
into it. Because you never see the image from an angle, the impression is consistent
and enables the series of planes to blend visually into a single plane, which reads as
a cohesive pillar of billowing smoke.

 One thing that’s interesting to note is that the texture—the image itself that
is on the particle—is not nearly as important as the motion of that particle. In
many games (Nintendo games especially), when things collide with one another,
the resulting visual effect might be comprised of an explosion of spinning, multi-
colored stars. Every single object in Super Mario Galaxy has little stars that shoot
everywhere when Mario interacts with them. They make absolutely no sense when
approached from a realistic, simulations point of view. But, like squash and stretch,
they are a manipulation of the player’s perception of the object without being an
emulation of reality. In the same way that a real object would never squash rudely
and stretch back again when it hit the ground, smashing a brick would never yield
a geyser of multicolored stars. But as long as the motion of those stars is to blast
out in a satisfying way and then fade out, the impression of physicality is effec-
tive without the constraint of realism. As in animation, realism is not necessarily a
worthwhile goal. You can show interactions between objects and emphasize their
physical nature without having to resort to emulating reality. No one would say that
the sparks in Soul Calibur look real. However, real is not the goal. The perception
that the impact is powerful is what we’re after.

 Sound Effects
 Like animation, the discipline of creating sound effects is well understood. It is the
same process as Foley for a film, with the caveat that sounds in a game must be
repeatable. Often times, a whole range of sounds is created to represent a particu-
lar interaction, with one chosen at random at any given instance of the impact (or
whatever event triggers the sound) in order to keep a sound effect from becom-
ing stale. This prevents players from hearing the same sound over and over again,
annoying or distracting them.

 Playable Example

 A sound effect can completely change the perception of an object in a game. To
experience this, check out example CH09 - 1. This a recreation of a Java applet
originally linked to me by the inimitable Kyle Gabler, of indie studio 2dBoy.

TYPES OF POLISH

CHAPTER NINE • POLISH METRICS

160

The two red rubber balls come together. One starts at one side of the screen,
the other at the opposite side. When the simulation starts, they fly toward each
other and their paths cross at the center of the screen. Based on purely vis-
ual feedback, you’d assume that these objects were some kind of ghost ball.
They appear to pass right through one another unimpeded and go on their
merry way. Playing the simulation with sound yields a totally different percep-
tion. With sound, the two balls behave exactly the same way in terms of their
appearance and motion, but when they cross at the center the ptoing! sound
of a tennis ball is played. The effect is startling: instead of appearing to go
through one another, the two balls seem to bounce off and rebound in opposite
directions. What a difference a sound makes!

 This is equally applicable to characters in a game. Derek Daniels, one of the
designers of the feel of God of War, gave a great example of sound completely
changing feel. For a particular attack of Kratos, an animator had created a detailed
animation. Derek had implemented that animation and had tuned the move up,
but the result somehow felt lacking. The animator was about to go back and redo
the animation to improve the timing, but Derek said, no, hold on, let’s get a sound
in there. Sure enough, the sound was the missing piece of the puzzle; it made the
move feel weighty, satisfying and appropriately violent.

 In terms of sound effects, you can have impacts, grinds or loops. An impact hap-
pens when two objects run into one another at some speed that is, when a can-
nonball hits a stone wall, a racket hits a tennis ball or a giant hammer smashes
the ground. At that moment, a sound effect will play to indicate the impact of one
object and another. What’s interesting about impact-mapped sound effects is that
they can affect not only the perception of the objects interacting, but the surround-
ing environment as well. If that massive hammer hits the ground and the sound
echoes and reverberates, the sense conveyed to the player is that this impact hap-
pened inside a giant warehouse or other massive, empty, interior space. If the
impact is muffled, it will sound more like striking the ground outside. If you hear no
reverberation, you can assume that sound waves just kept traveling outward instead
of bouncing off of something and coming back.

 A grind implies a prolonged interaction between two surfaces. One of my favorite
grinding noises, which actually accompanies a move called grinding, is in Tony
Hawk’s Underground. In the game, it is possible to jump your skateboard up and
grind it against a rail for a long period of time. It makes a very satisfying grind-
ing, woody, metal noise. Essentially what you have is a short loop of sound that
plays back over and over again but is modulated slightly so that it always sounds as
though the objects are grinding together in slightly different ways as the weight on
the board shifts around.

 There are also looped sounds, which are essentially just sounds that repeat
regardless of the interactions between objects and which convey the ongoing sound
of something like an engine or a turbine.

161

 The final thing that’s interesting to note about sound effects is that they’re less
bound than visual effects in some way.

 Sound effects, in the same manner as squash and stretch or a star-shaped parti-
cle effect, are not necessarily bound to realism. The record scratch for the King of
All Cosmos speaks in Katamari Damacy or the orchestral hit when a special move is
completed in Tony Hawk 3 prove that mapping an unexpected sound effect to a par-
ticular event can have delightful results. These have nothing to do with the reality
of the things they are attempting to portray, but they feel satisfying. As in a cartoon,
it’s not necessary to limit your thinking about how to apply a sound effect to the
emulation of reality. You can convey an impression of physicality with a noise much
different from the apparent reality of the object.

 Cinematic Effects
 Cinematic effects are things like screen shake, changes in view angle, motion
blur and Matrix-style slowdown. These are effects which are applied to the camera
rather than an in-game object. As we’ve said, the camera in a game provides the play-
ers their eyes in the world, their organ of perception. It is the players’ point of view
and has a finite position in the world, a position which can be moved or changed
just as with any other avatar. This is a vocabulary we’ve been taught over the
years by constant exposure to big-budget filmmaking. When a giant explosion goes
off on the screen, there is a slight delay, after which the screen appears to shake,
as though the camera were responding to the jarring force of a shockwave caused
by the explosion. The end result is the perception that a hugely weighty impact
has occurred.

 The point here is that these effects are applied to the in-game camera rather
than to particular objects, but in so doing, the effects can change the percep-
tion of the physical properties of objects in the game. In a fighting game, if one
player punches another and the result is a jarring screen shake, the perception for
the player is that an impact of almost ludicrous force has taken place. Another
effect often used by fighting games is the slow down or frame pause. When
one character hits another with a particularly devastating move, the game may
pause momentarily—20 milliseconds, perhaps—to emphasize the impact. The same
effect was used in Nintendo’s The Legend of Zelda: Twilight Princess and our own
Off-Road Velociraptor Safari (Figure 9.3).

 It’s interesting to note that these kinds of effects have no analogy in everyday
perception, but are nonetheless ingrained in our consciousness. As with comparing
the temperature of the mug of tea and the glass of ice water, everyone will recog-
nize screen shake as an indication of massive, concussive force. Likewise, a change
in view angle gives the perception that an object is moving faster and faster. Motion
blur has a similar effect on the perception of speed, blurring the movement of
fast-moving objects as a camera would.

TYPES OF POLISH

CHAPTER NINE • POLISH METRICS

162

 Tactile Effects
 Finally, there are tactile effects. In the current generation of input devices, this is
limited mostly to controller shake or rumble, which is caused by the actuation of
weight-loaded motors inside the input device, such as in the Xbox 360, PS2 and Wii
controllers. Controller shake can be a bit of a blunt instrument because the motion
is always rotational, but it can be used to great effect in games where it is cleverly
fit to the metaphor presented. A gun has recoil, for example, and that motion is
something rumble motors can simulate well. Most modern console shooters use a
constant rumble effect to enhance the sensation of firing of a machine gun. For a
single shot weapon such as a sniper rifle, it will be a single rumble. When shoot-
ing is the only control that triggers the motors, the effect can be quite powerful.
Employing a totally different metaphor, games like Tony Hawk’s Project 8 offer a
constant low-level rumbling to simulate the grinding of a skateboard against various
surfaces. In this case, too, the effect is quite powerful if used judiciously, allowing
the feel of a particular interaction to be correlated across a third sense.

 Other types of tactile effects include so-called “force feedback ” devices. This is
also known as haptic feedback. The notion is that the controller provides actual,
physical resistance to displacement, forcing the user to work at pulling, pushing or
rotating it. This is an active application of force administered in certain amounts and
at certain times by the game’s code, above and in addition to that caused by the
springs that keep it in neutral position. These kinds of devices have been around for
years in the form of flight sticks and steering wheels, though they have never entirely
caught on. This is perhaps because haptic feedback can serve to enhance the percep-
tion that the thing being controlled in the game has a real, physical character, but
more often it serves to enhance the fatigue of players ’ arms, wrists and hands.

F I G U R E 9.3 Off-Road Velociraptor Safari: when you hit a raptor, the game zooms in and
goes into slow motion.

163

TYPES OF POLISH

 Case Studies: Gears of War and Dawn of Sorrow

 As I dug into an examination of all the various polish effects featured in Gears
of War and Dawn of Sorrow, I began immediately to regret the decision to inves-
tigate these particular games. The sheer number of polish effects in these two
is frankly staggering to catalog, let alone to contemplate creating from scratch.
This is the nature of the polish beast, I fear. It’s quite the rabbit hole in terms
of development time. Polish has the reputation of being a dangerous phase to
become stuck in or to enter in too early. Looking at games like these two, you
can see why. There are just so many effects! You can always find some other
polish effect to create, some better way to sell the interaction between objects.
The trick, I think, is to focus on the overall perception you’re creating and
enhancing. This is why Dawn of Sorrow and Gears of War make for an interest-
ing comparison; with Gears of War the vision seems to have been very clear
and the result almost entirely cohesive. With Dawn of Sorrow, there are some
clashes. Here’s an in-depth examination of the polish of each going from indi-
vidual effect, to general perception, to inferred physical properties.

 Play the game and simply make a note of the effects that you observe as
you play. I find it useful to frame this in terms of the four categories: anima-
tion, visual effects, sound effects and cinematic effects, working though each
and listing out each individual effect.

 Gears of War

 Animations Visual Effects Sound Effects Cinematic
Effects

 Tactile
Effects

 Run cycle—
big, looping,
heavy, lots of
overlapping
action

 Foot steps—
crunch and thud
satisfyingly

Clattering of armor
and gear—sounds
suitably heavy and
complex, like metal
against thick armor
plating and leather

 Slight
bobbing in
time with the
run cycle

 Dive roll—
quick and
nimble

 Roll dust—
happens (oddly)
just as the roll
starts. Character’s
feet are suddenly
obscured by a
puff of dust as if
by magic

 Clattering of armor
and gear—sounds
a bit light for such a
broad motion

 Camera dips
gently to
follow rolling
motion

(Continued)

CHAPTER NINE • POLISH METRICS

164

(Continued)

 Animations Visual Effects Sound Effects Cinematic
Effects

 Tactile
Effects

 Roadie Run—
a hunkered
down,
awkward,
heavy-looking
run. Saving
Private Starcraft

 Gentle puffs
of dust at each
footfall

 Clattering of armor
and gear—sounds
suitably heavy and
complex, like metal
against thick armor
plating and leather

 Camera bobs
and sways as
though held
by a running
cameraman

 Door kick—
heavy impact
with nice
anticipation
and a great
sense of power

 Dust particles
explode from the
door

 Satisfying metallic
crack as the impact
causes the door to
shatter and give way

 Camera rears
back and tilts
in anticipation
and shakes
forward quickly
as the kick is
delivered

 Enter cover—
heavy
impact, like
a linebacker
tackle

 Dust particles
shake loose from
the wall and
ceiling and fall
gently

 Crunch and thud—
sounds like a huge,
complex object
smushing up
against a textured,
mottled wall

 Camera
changes focus
depending
on direction
character is
facing, placing
the character in
the left or right
of frame

 Barrier hop—
quick and
nimble in the
hop but with
nice follow-
through and
overlapping
action on
landing

 Crunchy grinding
noise as the
character slides over
the barrier, impact
hit when he lands

 Camera dips
down to show
character’s
feet as he
lands before
returning to
standard over
the shoulder

 Fire “ Lancer “
machine
gun—
powerful
sense of
the recoil of
the gun,
character

 Muzzle flash
particles at barrel
of gun

Smoke particles
at barrel of gun

Chunky gravel
particles when

 Deep, powerful
machine gun sound

Pinging of bullets off
surfaces

Sounds of shell
casings hitting the
ground

 Screen shakes
in time with
bullets

 Constant
rumble to
indicate
recoil from
machine
gun fire

(Continued)

165

TYPES OF POLISH

(Continued)

 Animations Visual Effects Sound Effects Cinematic
Effects

 Tactile
Effects

stands in a
wide stance
and braces
against the
forces

bullets hit a wall or
other surface

Bullet holes
created in walls,
start glowing
white then go to
yellow, red

 Swing
grenade—
grenade
seems heavy
and massive.
Character rears
back and looks
at grenade
initially

 Deep, satisfying
swooping noise as
grenade is swung,
slight Doppler effect

Sound of chain
clanking

 Camera view
angle changes
slightly to
frame swinging
grenade and
improve sense
of speed

 Throw
grenade—
great follow-
through,
grenade seems
like a massive,
heavy object

 Chunky, metallic
impact noise each
time grenade hits
the ground

 I’ve omitted a few of the effects—there are dozen and dozens—but this is a
reasonable cross section, representing effects from each of the five types.

 Castlevania: Dawn of Sorrow
 The effects in Dawn of Sorrow are somewhat mind-boggling. For each creature
(there are well more than 100), there are different sounds, visual effects and
animations. Some, such as the bosses and larger enemies like the iron golem,
even have their own specific cinematic effects. For every weapon the charac-
ter wields, there are different animations and effects. What follows is a small
subset of these effects, enough to draw conclusions and comparisons. Even
without tactile effects (the Nintendo DS has no rumble motors) the amount of
polish work on display here is truly staggering.

CHAPTER NINE • POLISH METRICS

166

 Animations Visual Effects Sound Effects Cinematic
Effects

 A purple trail follows
Soma’s every
movement, enhancing
the impression of
speed and the feeling
that he’s some kind of
ethereal being

 Run cycle—Very
stylized, but with a
nice sense of weight
at each footfall. It’s the
transition animation
going from one
direction to another
that really causes the
impression of a floating,
weightless character

 Attack with Axe
 “ Golden Axe ” —Huge,
fully body motion as
the character seems
to heft the axe in a
ponderous arc

 Subtle swiping
noise. Character
grunts with effort

 Attack with Spear
 “ Gungner ” —Great
anticipation as the spear
is held up and powerful
follow-through with
overlapping action as
the spear is swung. Nice
delay holding the spear
out for emphasis of
weight

 Air swipe Doppler
noise

 Attack with Sword
 “ Muramasa ” —quick,
snappy motion with
nice overlapping
action of the hair and
blurred arm motion

 For some reason,
swords appear to
shoot out at various
angles from the
sheath as the sword
is swung

Sword arc is traced in
the air

 Air swipe Doppler
noise

(Continued)

167

TYPES OF POLISH

(Continued)

 Animations Visual Effects Sound Effects Cinematic
Effects

 Jump—weird hover/
delay just before
contacting the ground

 Light rising scrape
as Soma leaves the
ground

Light, clicking
thud as feet hit the
ground

 Double Jump—
quick and nimble
flipping motion,
satisfying swishing of
coat

 Same light scraping
noise as first jump

 Witch Soul shot—
flings arm out
satisfyingly

 Ball of blue energy
pulsating, flies
quickly out

 Abstract,
reverberating
magical noise

 Trail of smaller
particles gives the
blue ball an almost
comet-like aspect

 Hippogryph Jump—
character stretches
vertically and looks
upward, flyings in that
direction with great
speed. On impact,
flips upside down
and compresses
against the ceiling
in a preternaturally
nimble way, though
there is nice recoil and
overlapping action
with the coat (as usual)

 Sound like rushing
air as the character
flies upward

Dry, plastic thud
as the character
impacts the ceiling

 Screen shakes
on ceiling
impact

 Destroy skeleton—as
the skeleton is hit, it
falls to pieces

 Puff of dust as the
skeleton pieces hit
the ground

 Slapping noise as
the skeleton is hit

Hollow woodblock
sound as each piece
hits the ground

CHAPTER NINE • POLISH METRICS

168

 If you think listing things out this way make it seem as though there are
a hell of a lot of effects, you’re spot on. It boggles the mind that games like
Guilty Gear and Soul Calibur manage to do such an amazing job of harmo-
nizing animation, visuals, sounds and cinematic effects to clearly convey a
unique feel for so many different characters. It’s no wonder there are so many
people on those teams, or that many different people may work on the same
character exclusively for the entirety of production.

 Though it’s a little tedious with games as intricate as Dawn of Sorrow
and Gears of War, it is useful to look at each animation as a separate effect.
Sometimes one animation will support a particular perception while another
one contradicts it. For example, the jumping, spinning and sliding animations
in Dawn of War give the appearance that Soma is exceedingly quick, like some
sort of preternatural gymnast. He’s more squirrel than man, it appears. When
running on flat ground, though, he appears to chug along rather lackadaisi-
cally, his feet sliding across the ground. This is particularly true if you change
directions over and over again; he slides back and forth as though swimming
gently through water, which is about as far from the tight, whipping, circular
motions of his flips as it is possible to get.

 The dive roll animation in Gears of War is more neutral; in my perception
it neither supports nor detracts from the impression that the character is a
human-shaped wrecking ball. I notice, however, that much of the action takes
place off screen. Without confirming this with a designer at Epic, I would
guess that this is because it’s very difficult to create a rolling animation that
is fast enough to feel responsive but which conveys the appropriate sense of
weight.

 Note that a single effect can support more than one perception, as when
an animation shows both weight (Marcus Fenix is like an NFL linebacker,
stretched horizontally and covered in a suit made of cinderblocks) and mate-
rial (the overlapping action of the armor he wears makes it appear to be a
heavy, composite metal of some kind).

 There seem to be two currents of feel at odds here. Except for the quick and
nimble flipping of double jump animation and the “hippogryph jump, ” Soma
moves fluidly and lightly. He’s nearly weightless, as though he’d be right at
home in “Crouching Tiger, Hidden Dragon. ” His animation for switching
directions and the constant purple trail of self copies that follow him around
all support this perception, almost as though he’s moving through something
other than water. At certain points, however, his actions seem to have great
impact, as when he collides with the ceiling during a “hippogryph jump ” and
causes the screen shake effect. During his run cycle, there is one moment of
overlapping action where his head snaps downward that really lends a sense
of weight and presence to his step, but the effect is diffused somewhat by
the fact that his movement speed doesn’t map perfectly to the movement of
his feet. This is often referred to as “ skating ” by animators and is a common

169

TYPES OF POLISH

problem in games, where the speed of animation playback is often matched
dynamically to the speed of the object underlying the motion.

 Hitting things with weapons also has a great sense of impact and weight,
especially in the contrast between the heavy and light weapons and because
of the spraying, exploding particles that most enemies spew when defeated.
Again this mirrors the general perceptions of movement and interaction I get
from Crouching Tiger. The characters move and float around like tissue paper
on the wind until the moment their weapons clash, at which point there is a
powerful sense of impact. None of the impacts in Dawn of Sorrow have the
impression of weight, presence and impact of those in Gears of War, however.

 Gears of War is like controlling a human-shaped wrecking ball. From the
thumping run cycle to the camera-jarring kicking down of doors, each anima-
tion and accompanying effect enhances the perception that the thing you’re
controlling is huge and weighty. Every time the character interacts with the
environment, such as when he presses against a wall to take cover, the effects
combine to sell a sense that a large, meaty, complex object is mashing against
a grimy, textured surface. Sprays of dust particles come off the walls and ceil-
ing, and the sounds are deep and crunchy. The impression that the environ-
ment is malleable and reactive is further enhanced by the myriad effects that
happen when bullets hit it. The interactions seem suitably sloppy, though, as
bullet holes spray in a wide grouping and chunks of material come flying off
each hole. Firing a gun seems like an appropriately jarring affair, emphasized
by judicious use of controller shake and the deep, resonant gunshot sounds
and accompanying impact effects. The fact that the characters react relatively
little to both firing guns and being hit by them seems to further emphasize
just how massive and burly these folks are.

 Grouping the perceptions (such as mass, material and texture) into specific,
observed physical properties and comparing them to one another we get:

 Gears of War Dawn of Sorrow

 Masses Heavy and over-the-top massive Light and ethereal but with
surprising forces on impact

 Velocity Relatively slow moving; changes
direction in an instant, however,
and can make short, quick motions

 Medium to fast. Changes direction
in an instant, can attain great
speeds with certain souls equipped

 Momentum No real momentum except in
animations

 No real momentum except in
animations

 Materials Flesh, composites, metal Some evidence of metals versus
woods versus bone, but mostly

(Continued)

CHAPTER NINE • POLISH METRICS

170

(Continued)

 Gears of War Dawn of Sorrow

in enemies. Character has a very
slippery, lightweight character,
almost like a bar of soap

 Friction Very high-friction, textured world Sense of friction when character
slides but otherwise everything
seems to have enough friction
to walk or else simply flies in an
arbitrary manner

 Gravity Very high gravity; no vertical
jumping

 Very low gravity, some things (such
as the character) seem to fly and
float with little logic or prompting

 Shape Stout and thick, seems to be
shaped like a human (pressing
against things)

 Shaped like a rectangle

 Elasticity None in evidence None in evidence

 Plasticity None in evidence None in evidence

 Summary
 In this chapter, we’ve examined the many different ways polish can be used to alter
a player’s perception of the physical reality of the game world without changing the
simulation itself. Specifically, we looked at polish effects from three different angles:

 ● As individual, free-standing effects whose motion, size, shape and nature can be
measured separately from the simulated objects in the game

 ● As groups of effects which convey nebulous, general perceptions to the player

 ● As observable physical properties that are inferred from groups of perceptions
(such as msass, material and texture)

 We also examined how animation, visual effects, sound effects, cinematic effects
and tactile effects are used to affect player perception. Polish gives players the
grounding they need to cope with the new, unfamiliar topologies of game spaces
and the unfamiliar physics which govern them.

171

CHAPTER
 Metaphor Metrics
 As a component of a game feel system, metaphor has two aspects, representation
and treatment.

 Representation is the idea of the thing, or what it appears to be. Is it a car, a
gelatinous cube of meat or a plucky spike-haired hero in a neo-steampunk tropical
wasteland? Is it a MacLaren F1 or is it Fatty from Run Fatty Run? Metaphor unifies
the idea of the avatar, the idea of the world, and the idea of all the objects in the
world. If you replace all the art, music and sound in a game with purely abstract
shapes and colors, what you have removed is the representation. Imagine the game
Diablo with graphics by Jackson Pollack and sound by Steve Reich. The fundamen-
tal functionality of the game is still intact, but the metaphorical representation is
gone. While dribbles of paint and electronic pulses do not really represent anything,
barbarians, buildings and cows give each object in the game some hook on which
players can hang their conceptual hats.

 Treatment is the cohesive whole formed by visual art, visual effects, sound
effects, tactile effects and music. If you take away all the art, music and sound from
a game but leave the core systems untouched, what you have removed is the treat-
ment. Imagine the game Diablo with every object—avatars, townsfolk, creatures,
environment—replaced by flat gray boxes. The fundamental functionality of the
game is still intact, but both treatment and representation are gone. One could argue
that flat gray boxes are a treatment of sorts, but you get the point.

 We can measure the impact of metaphor on game feel in two ways. First, we
want to identify the what. What does this thing appear to be? What is each object
representing to the player at the conceptual level? Again, this will be something like
a car, a train or a tall humanoid cat. Next, how will the player expect the thing
to act? In other words, based on the metaphorical representation, what are the
expected behaviors, effects, animations, motions, interactions and sounds?

 We’re also going to examine the role of treatment. Treatment dictates to a power-
ful degree how accurate a player will expect the nature and motion of an object to
be relative to its representation. A player can rightly expect something that appears
visually to be a photorealistic human to move and act as a person would. If that
person is a stick figure, however, the expectations set are much different (and much
easier to fulfill).

171

 TEN

CHAPTER TEN • METAPHOR METRICS

172

 To generalize, the primary effect of metaphor on game feel is to prime a
player with preconceptions about how given object should behave. The repre-
sentation conveys an idea about what the thing is, and the treatment indicates its
level of sophistication. The more response, context and polish seem to match the
metaphor presented, the more cohesive, self-consistent and good-feeling the game
will be.

 Note that we’re not making any judgments about what “ matching ” the metaphor
means. It certainly doesn’t mean that emulating reality is the way to go. There is
a phenomenon similar to Masahiro Mori’s Uncanny Valley at work with respect to
how well the metaphorical representation of an object in a game matches the feel of
that game. If a sound, animation or effect is close to matching the expectations set
by the representation and treatment, but falls just short, it can be much more dis-
tracting than if it were completely abstract.

 For example, in Doom 3, the treatment was intended to be realistic. But many
objects in the world, when touched or shot, would spin and fly around in a wild,
unrealistic way. If the treatment was more iconic, like a graphic novel, or if the
metaphor was more abstract, with floating shapes instead of zombies, this would
not have created dissonance for the player. As it is, because the treatment and meta-
phor in Doom 3 were intended to be realistic and serious, the fact that every zom-
bie had the exact same pattern of dangling became distracting. Even the gunshot
sound effects in the game Doom 3 did not seem to live up to the standard set by the
realistic visual representation. The shots sounded like cap guns. If instead the shots
were an abstract pulse or laser sound, they might have been easier to accept. Even
something completely absurd like kittens meowing could have fit better, if the goal
was to be absurd. There is a sweet spot where a game’s metaphor can correspond
perfectly to response, polish and context.

 Case Studies: Mario Kart Wii and Project Gotham 3
 To set the stage for understanding how this all comes together as a practical
metric, it’s useful to compare and contrast, in some detail, how metaphor is
used in two very different games of the same genre. Let’s dive in and look at
Mario Kart Wii and Project Gotham 3.

 Visually, both games start with cars in a racetrack environment lined up for
the beginning of a race. Mario Kart is 3D and cartoony, and all the visuals are
iconic and round. The environment is stylized, smooth, colorful and inviting.
The graphics have some link to the real world, but they’re highly symbolic. A
tree is identified as a tree, but it’s not a very specific tree, just a generalized
idea of a tree. In contrast, the treatment in Project Gotham 3 is about as far
from Mario Kart as it is possible to get while still representing the idea of cars
at a racetrack. Project Gotham 3 strives for total photorealism. If the designers
could achieve their ideal representation of forms in Project Gotham 3, it would

173

METAPHOR METRICS

be like playing a movie. You could drive cars around a track, and you would
drive past stuff that looked just like the stuff you would drive past in real life.
The car you were driving and all the cars around you would look like moving
photographs.

 In terms of sound, there is much less environmental background in Mario
Kart. Project Gotham has the revving of many, many engines, probably
recorded from the real-life cars they are meant to represent. Project Gotham
also has cheering spectators and all sorts of authentic noises. Depending on the
starting point on the track, city or country, you also hear the appropriate back-
ground sounds. So Project Gotham strives for great realism in its soundscape
as well. Mario Kart Wii represents many of the same things, but the sounds are
similar to the visuals in that they are symbolic representations. The karts make
these little rumbling noises in place of strictly realistic engine sounds. Even so,
the sounds in Mario Kart are not quite in line with the stylized appearance of
the karts. It’s entirely possible that the sounds could be made much more fan-
tastic and still achieve unity with the visual metaphor.

 In both games, when the starting countdown happens, you hear dink-dink-
dink DING. The series of noises are actually quite similar. In Project Gotham,
it’s most likely an actual recording whereas Mario Kart has more of a lo-fi feel.
The countdown proceeds, and they’re off!

 As they start moving around the track, the environments are very differ-
ent. In Mario Kart, the player encounters bizarre things like being fired out
of a cannon or sucked down a warp pipe. In Project Gotham, cars are speed-
ing around a realistic track that twists and turns in very real-world ways.
And the motion mapping in Project Gotham is also more realistic than Mario
Kart, which is more cartoony. In Project Gotham, driving the car is intention-
ally similar to driving a real car at high speeds. You shift and brake and drift
the back end to bring the car around curves at the highest speed possible
while not losing control and crashing. In Mario Kart Wii, if you don’t press
the Power Slide button as you come round a corner, you won’t be able to
carve the turn without running into something. Pressing the Power Slide but-
ton changes the friction properties of the car, increasing the floatiness of the
car and enabling it to slide sideways. You can also improve the slide by wig-
gling the thumbstick and changing the color of the sparks. If you build up the
sparks to the gold spark level by holding down your thumb, when you release
you get a speed boost coming out of the turn. Clearly, the driving feels noth-
ing like driving a real car. Driving Mario Kart Wii is a simulation of cartoon
physics where Project Gotham takes a much more literal approach to driving
physics.

 In both games, the visuals and sound effects that happen in response to
the motion are consistent with the style of each game. Smoke particle effects
coming from the tires in Project Gotham are restrained and light, much like
they would be in real life. Tire screeching noises are recordings of real cars.

CHAPTER TEN • METAPHOR METRICS

174

In Mario Kart, there are a huge number of particles flying everywhere, and the
puffs of smoke and sounds they make are all very exaggerated.

 Now let’s look at how well the metaphors in each game are executed to
create good game feel. In terms of the interaction of objects and the game, this
starts to get into context, in the sense that when objects interact, the way they
behave has a huge impact on the way the game feels.

 In Project Gotham, when the cars collide they just bounce off each other,
which is not what you would expect based on the realistic visuals and sound.
You would expect that if two cars that looked real, moved real and sounded
real ran into each other, there would be a massive crash like you see on the
NASCAR replays. Bits of car would go flying everywhere, things would catch
on fire, one of the cars would spin out and all the others would swerve to
avoid it or not—mayhem would ensue, and all the drivers would be under the
yellow flag until the emergency vehicles cleaned things up. Oh, the human-
ity. In Project Gotham, the interactions are coded almost like a waterslide. It’s
like a bunch of big, round, smooth plastic objects falling down a waterslide
and bumping off one another. Similarly, if a car runs into something in the
environment, it comes to a gentle halt or else glances off and keeps going as
though the walls were peanut oil. The cars just keep slip-sliding along, which
is not at all what happens if a real car runs into a real wall, lamppost or chain-
link fence. This is an unfortunate mismatch between metaphor and the feel
conveyed by the response, context and the various polish elements.

 Tellingly, the interaction between the cars in Mario Kart Wii is similar to
that in Project Gotham. One car runs into another, you get a little sound, and
the cars glance off one another with the same sort of waterslide feel. Objects
never get hung up on each other. In the case of Mario Kart Wii, however,
there’s no dissonance. The karts ’ treatment is cartooned, which means the
player’s expectations are different. No one expects them to behave like real
cars. The main difference between the relative feel of cars in Mario Kart Wii
and Project Gotham is that in Mario Kart, some karts read as larger, heavier
objects which can knock smaller karts around when they run into them. In
this respect, the interaction between objects in Mario Kart Wii is actually more
sophisticated than Project Gotham 3, in which the cars seem to have a uni-
form mass.

 Overall, the two games are similar in just about every aspect except for
their representation. But there is a huge difference in the dissonance or har-
mony of the various aspects of the games. In Mario Kart Wii, all the differ-
ent aspects, from the cartoony representation to the abstract sounds to the
motion that’s produced to the way the karts interact, all those things seem to
harmonize very well. Whereas Project Gotham 3 has harmony across visuals
and sound, the glaring omission of commensurately detailed car interaction
disrupts the unity of the game’s feel significantly. This was actually due to
an unfortunate legal hang rather than a bad design choice, but the result is

175

F I G U R E 10.1 Realistic, iconic and abstract: three types of representation.

REAL, ICONIC AND ABSTRACT

illustrative nonetheless. The result is that the cars in Project Gotham 3 simply
do not meet expectations for how they should interact, creating significant dis-
sonance in the photorealistic metaphor of the game. Mario Kart Wii does a
much better job of harmonizing with its metaphor.

 And this is what we are interested in measuring: the overall effect that met-
aphor has on the feel of an object with respect to the way it sets up expecta-
tions in the player about how objects should sound, how they should look,
how they should behave, and how they should interact with one another. In
this way, all pieces of a game’s feel are affected by the metaphor that you
choose and apply.

 Real, Iconic and Abstract
 Up to this point, we’ve made oblique references to the term realism. Let’s nail that
sucker down so we can get a better grip on how treatment modifies game feel. The
way we’ve used realism thus far is as a measure of how similar something looks to
a photograph or film. On the other end of that spectrum is cartoony. This is, I think,
how most people apply the term realism, especially to graphics in games.

 A slightly different approach is that used by Scott McCloud in Understanding
Comics. He adds a third axis and changes “cartoony ” to the much more descriptive
“ iconic ” (see Figure 10.1). Although Scott’s concept is summarized below, please
consider reading his original explanation in “Understanding Comics, ” which is very
well done.

 On Scott’s diagram, all visual representation exists somewhere in a triangle. At
the far left point of the triangle is reality. At the far right is iconic. He defines the

CHAPTER TEN • METAPHOR METRICS

176

written word as the ultimate abstraction, the point of visual representation that
is furthest from reality while still effectively conveying meaning. Between reality
and pure meaning, there are various shades of iconic. That is, visuals which are
abstracted from reality, but which still convey meaning. With the third axis, he
separates iconic abstraction from what he calls “ non-iconic ” abstraction, which is
probably what most of us think of as abstraction. Shapes, colors and lines; things
which exist for their own sake and have no inherent meaning, which don’t repre-
sent anything. This scale, while originally designed to apply to comics and other
visual art can, with a little fudging, be applied to the representation of objects in a
video game (Figure 10.2).

 Gears of War fits somewhere between Project Gotham and Mario Kart Wii. There
are some iconic elements, in the sense that the characters are large and bulky (not
something you’d see in the real world of everyday experience), but the texture and
lighting attempts to be hyper-realistic, in the way that the movie Alien attempts to
visualize a world in which things are more sticky, more wet and more rim lit.

 Call of Duty IV is even more realistic, trying to emulate photo-like visuals in a
more staid way than Gears of War. There’s not much stylization in the proportion
of the characters, though there is a grainy, filmed look to the game that could be
considered stylization. On the iconic side, Legend of Zelda: Wind Waker is highly
iconic but represents a complete game experience in a world with its own self-
referent, entirely consistent rules. If we move to the top of the triangle, toward the
purely visually abstract, we have games like Everyday Shooter, in which the objects
are geometric and musical abstractions with no apparent metaphor.

 From a metrics point of view, what we’re interested in are the implications for
how elements of game should behave if the game is more or less realistic, iconic or

F I G U R E 10.2 Some well-known games placed on the triangular diagram.

177

abstract, with respect to game’s overarching metaphor. For example, returning to
Project Gotham 3, we located that game far over to the left of the diagram toward
realism, and we can infer that everything in the game should behave as closely as
possible to how things behave in the physical world as we perceive it. Everyday
Shooter is very abstract, presenting us with a bizarre world where we’re not really
sure how things are going to react, which has the effect of setting expectations wide
open. It would be hard to make objects in Everyday Shooter behave in a way that
seemed wrong, but it leverages no expectations either. In an iconic game like Sly
Cooper, which is far over to the right, we expect cartoon physics and are not dis-
turbed if two things jiggle like Jello-o when they collide, as long as volume is main-
tained per the principles of animation.

 Metaphor sets up expectations about the way things should look, move, sound,
behave and interact. This is how metaphor affects game feel. When everything is
in harmony, and all the player’s expectations are met, it’s a win for the designer
and the player. When things aren’t in harmony, it causes dissonance and frustra-
tion, and the player disengages from the game. If the visuals write a check that the
game’s physics can’t cash, the player loses his or her belief in the self-consistent
fidelity of the world.

 Summary
 We can measure the impact of metaphor on game feel by looking at response, con-
text and polish, and by comparing them to the expectations set up by the metaphor
applied to all the objects. This is a soft metric. Players will perceive things as they
expect to perceive them, not necessarily as they really are. We want to know what
perceptual expectations are being set up by metaphor and treatment.

 If you’ve ever been to a wine tasting, it’s easy to experience this phenomena in
real life. If you put out eight bottles of wine and hide the labels, you’ll get a very
different result than if the tasters can see the labels. People expect famous, pricey
wines to taste better—and results of a tasting will reveal that they do! The Chateau
Mouton Rothschild will always rank higher than the Stags Leap Cabernet. But taste
the wines blind, and you can get some very different results, as in the famous 1976
wine tasting in Paris, where California wines soundly whupped some of the top
French chateaux in a blind tasting by famous French judges.

 So be careful what expectations you set up and how. Ask the following
questions:

 ● What do the objects in the game represent?

 ● Where does the treatment rest on the triangle diagram? How realistic, iconic or
purely abstract is it?

SUMMARY

CHAPTER TEN • METAPHOR METRICS

178

 ● How well does the representation and treatment of objects in a game coincide
with the way those objects behave? Based on the metaphorical representation,
what are the expected behaviors, effects, animations, motions, interactions and
sounds of the game?

 ● Does the metaphor set expectations that are in line with game feel for each ele-
ment of the game? If not, either the metaphor or the game elements probably
need to be adjusted.

179

CHAPTER
 Rules Metrics

 For our purposes here, a “ rule ” is an arbitrary, designed relationship between
parameters or objects in a game. Arbitrary because there is no higher order guiding
the creation of such relationships and designed because it is a relationship inten-
tionally created by a designer. A few examples of rules by this definition:

 ● Collect 100 coins to get a star.

 ● Collect 5 stars to open a door.

 ● Orange triangles upgrade weapons.

 ● Defeating Woodman gets you the Leaf Shield.

 ● You can only hold two weapons at once.

 ● It costs 5 hearts to throw Holy Water.

 ● To score a capture, your team’s flag must be in your base.

 ● It takes 3 hits to kill a Skelerang.

 ● Experience points required to level up increase exponentially.

 It’s fascinating to pull individual rules out like this and hold them, naked and
shivering, up to the lightbulb of logic. Notice that they make no sense outside of the
context of the systems into which they were so carefully crafted. Inside their proper
context, though, they lend a sense of purpose and intent to actions in a game.
Collecting coins has meaning precisely because it restores health, increases score
and earns stars.

 So what do rules like this have to do with game feel?
 Changes in rules can alter the feel of a game in subtle but measurable ways.

Having an incentive to collect coins changes the nature of your interaction with
them and therefore can change the way it feels to collect them, or even how it feels
to steer around an environment. To see how this works, we’ll compare the way
rules affect the feel of various games by dividing them up into high-, medium- and
low-level rules, as set forth in Chapter 5:

 ● High-level rules consist of broad sets of goals that focus the player on a particu-
lar subset of motions, such as collecting coins. High-level rules can also take the
form of health and damage systems.

179

 ELEVEN

CHAPTER ELEVEN • RULES METRICS

180

 ● Mid-level rules are rules for specific objects in the game world that give immedi-
ate meaning to an action, such as capturing the flag in a capture-the-flag multi-
player game.

 ● Low-level rules further define the physical properties of individual objects, such
as how much damage it takes an avatar to destroy an enemy.

 The goal, as always, is to arrive at generalized intra-game measurements which
enable us to compare the rules of one game to another with respect to how they
change feel.

 High-Level Rules
 At the highest level, rules can serve to focus players on a certain subset of mechanics
and, in so doing, change their perception of the game’s feel. The designer is direct-
ing the player to perform certain actions. From all the available action choices in a
game, the designer wants the player to make certain choices and institutes a reward
system to reinforce that behavior. Through rewards, the game designer is communi-
cating with the player, pointing out that certain actions are more fun, more satisfy-
ing, than others. Developing this certain set of skills, the designer is saying, is most
worth your time.

 This is similar to the effect the high-level construction of space has on a mechanic’s
feel because it’s not overt; it’s a general feeling. A high-level relationship like this
doesn’t slap you in the face and tell you to do something. Instead, it encourages
you to play a certain way by leaving you a trail of breadcrumbs to follow. For exam-
ple, collecting 100 coins in Super Mario 64 gives you a star, which in turn unlocks
various star doors in the castle. Open enough star doors and you reach the boss
level. Beat the boss level and you get access to more areas of the castle, the high-
est reward possible. There is a hierarchical reward structure involving coins, stars
and areas of the castle. Essentially, the player is being rewarded for completing a
challenge with access to new challenges, but the feeling is one of excitement and
triumph. It’s a classic—if somewhat sneaky—convention. The point, though, is that
the meaning of collecting a coin goes all the way up to getting access to a new area,
the highest reward in the game. As a result, coins seem quite valuable.

 This sense that coins are valuable has a measurable effect in terms of game feel.
Skills like precise turning, movement and jumping are emphasized, as are highly
difficult skills like flying and swimming. Everywhere in the game, there are coins.
To collect them requires a great deal of precision, especially when moving at top
speeds. The coin gives the player a point of reference against which to measure
skill, and a driving purpose for running, jumping, swimming and flying. It’s like
dribbling a soccer ball. Dribbling across an empty field may have some lowly kines-
thetic appeal, but it’s not going to keep you practicing for hours. What keeps you
practicing for hours is the sensation of dribbling a soccer ball around two defenders

181

and kicking in the winning goal. (Or the potential for that sensation, at any rate.)
The skills that the rules of a game successfully make important become important,
worthwhile skills. The feel of the motion changes in proportion to the value created
for it by high-level rules.

 To get a clearer sense of just how powerful this effect can be, think about a
time you played a game in which there were a great number of possible actions,
but in which none of the actions seemed worthwhile. For me, a great example of
this is Ratchet and Clank. In Ratchet and Clank, everything spews cogs, nuts and
bolts. Everything. Lots of them. For me—and this is not true for everyone—playing
Ratchet and Clank felt a little like vacuuming. There were so many of these lit-
tle things that each individual one ceased to have meaning, making the action
of having to chase down each individual cog and bolt feel like a tedious chore.
Compounding matters was the unsophisticated relationship between collecting and
buying. You collect a bunch of stuff and then take it to the gun vending machine.
The tradeoff was too transparent. If you want a new weapon, spend a lot of time
killing the same guys over and over again and vacuuming up detritus. Boo-urns.

 Now think about a very important object in a game, an object you greatly desired.
Why did you want it? It clearly has no importance outside the game, but somehow,
some way, it was given some amount of relative importance by the cunning con-
struction of rules.

 Another interesting aspect of high-level rules is that they can make even a tedi-
ous action very fun or “addictive. ” For example, in the various Zelda games, there
is grass everywhere. Using a sword, you hack your way through the grass. Of itself,
this action isn’t very satisfying, because the grass offers no resistance. But you
keep doing it because there’s a rule, an arbitrary relationship between unrelated
things, that says when you cut down grass, a certain percentage of the time cer-
tain items will spawn out of that grass. Those items in turn have their own mean-
ing. For example, sometimes you get rupees, and if you collect enough rupees, you
can go buy special armor, bombs or other things that, in their own particular way,
have their own relationship to the world and enable you to interact with objects
you couldn’t before, access new areas of the game and generally feel very rewarded.
Cutting down grass might also give you arrows to refill your bow, because there is
an arbitrary rule that you can run out of arrows. The rule could just as easily have
been that you have infinite arrows, but then you would tend to use the bow all the
time. Also, there are places where you need to fire an arrow in order to solve a puz-
zle, and cutting grass nearby will replenish your arrow supply if you are out. So in
a certain sense, the feel of cutting down the grass is altered because the meaning of
the reward for cutting down the grass changes. The meaning assigned to an action
by a rule alters the feel.

 The same principle applies to even simpler mechanics. For example, in Diablo,
there’s a rule that governs the drop rate of different items, from enemies to treas-
ure chests. For every 100 or so enemies a player kills, one will drop an item that
will upgrade the player’s ability to kill enemies. So the player continuously has

HIGH-LEVEL RULES

CHAPTER ELEVEN • RULES METRICS

182

an incentive to kill as many enemies as possible or click on treasure chests, even
though the action itself is very tedious. The reward system compensates and changes
the experience so that the player keeps coming back again and again.

 Medium-Level Rules
 Medium-level rules can give immediate meaning to action. In a game that empha-
sizes game feel—steering around objects and navigating space—a great deal of
stock is put into the spacing (the context) of objects. Not only do you have to tune
the speed and movement of avatars, but also their speed and movement against
spatial context. The number, nature and spacing of objects in the world is the other
half of game tuning. The same fundamental thing applies when objects in the world
are given immediate, temporary importance by virtue of a rule system.

 Think of Quake. If you’re playing a game of Quake and your health is very low,
when you see a health pack in the immediate vicinity, getting that becomes a very high
priority. To avoid giving another player a point, you have to get that pack; therefore
everything else has little meaning until you do. Given this rule, the objective of the
game becomes getting your health back at the expense of everyone else. It’s a simple,
arbitrary rule that changes the way the player approaches the space of a level.

 Now think about what happens when you’re playing a game and you sud-
denly become aware that you’re low on health. It could be a fighting game, such as
Samurai Showdown 4, or a more staid affair such as The Legend of Zelda. Suddenly,
every tiny motion seems a lot more important. You have a heightened awareness of
every motion and are keenly attuned to the control, the feel, of the avatar. In this
way, rules defining health and its meaning in a game can lend a sense of impor-
tance to an object in a spatial environment. This, in turn, can heavily affect the feel
of that space.

 The same thing applies to capturing a flag in Soldat. When you’re holding
the flag, you are the focus of all action in the game and the meaning of all your
actions changes. You suddenly feel the situation is much more urgent, and you are
no longer interested in engaging enemy players and fighting them. You want to get
away from them as quickly as possible and return to your base. Instead of feeling
like you are swooping in and out of terrain, in control, you are looking for the near-
est exit. The movement of the avatar feels slower than it did just moments before.
Even before it’s grabbed, the flag object itself completely changes the way the play-
ers interpret the space and their movement through it. The locus of all action in
the capture-the-flag level is the two flag areas. That’s where everyone wants—and
has—to go in order to score. So the entire meaning of the level is changed by the
placement of the flags. When they are placed in different areas, the feel of the level
and the feel of moving around it changes.

 At the medium level of rules, immediate meaning can be conveyed to objects
in the game world by arbitrary rules. This changes the feel of the mechanic in a

183

manner similar to the placement of static, non-rules-affected objects in the world
by providing a meaningful context against which to balance the avatar’s response
to input. The added benefit is that collecting something that is valuable by virtue of
the system’s rules feels better and more satisfying than, say, deftly avoiding a pillar
in Star Fox. These kinds of rules provide positive reinforcement for spatial mastery.

 Low-Level Rules
 At the lowest level, the level of kinesthetic interaction, rules can affect the feel of
the game by changing the perceived properties of objects, especially as they interact
with the avatar over time. For example, in Halo, there are little tiny guys with fins
on their heads and the gigantic brutes. In general, you have to shoot an enemy a lot
of times in Halo to reduce its health to zero (death). Again, this is just an arbitrary
relationship. The amount of health something has relative to the amount of damage
a weapon does can be defined in any way. When you shoot the little guys, you riddle
them with bullets for a while, and they plop over and make a sad little noise. It
takes a lot more hits to gun down a gigantic brute, which makes them feel larger
and more massive, more imposing. Yet the mechanic is basically the same. The large
number of shots it takes to penetrate their shields and finally kill them reinforces
the perception of massive strength.

 How much damage an object can sustain before being destroyed has a great
effect on how the physical object is perceived. Shooting anything in Halo requires
many shots, which make the game feel fairly massive, especially compared with a
game like Dawn of Sorrow, where you can whack a skeleton once and bones go fly-
ing everywhere. It’s very satisfying, but has a completely different feel than Halo.
Small enemies die easily; medium-sized enemies take more hits, and game bosses
require dozens of hits. The amount of damage something can take provides feed-
back on the assumed physical properties of the object. Like a blind man’s cane,
shooting things in the game world accomplishes a specific task—figuring out what
things are most dangerous to you and which are impervious to your weapons so
you don’t waste time and resources on them. At the lowest level, you can convey
a sense of physicality at a very kinesthetic level with an arbitrary rule about health
and damage.

 The same essential principle applies in fighting games with heavier or lighter
moves. Compare a fierce kick with a light punch in Street Fighter II. Through the
arbitrary rule that’s applied, the fierce kick, which is a heavier, slow-moving attack,
is made to do more damage. The sense that the fierce kick is heavy and weighty
and really plows into enemies is emphasized by the rules. But it’s entirely arbitrary.
From the point of view of the system and how it’s set up, there’s no reason why
a light punch couldn’t do more damage than a fierce roundhouse kick. It feels
right because it’s in line with the physical nature of those objects as perceived by
the player.

LOW-LEVEL RULES

CHAPTER ELEVEN • RULES METRICS

184

 Case Studies: Street Fighter II and Cave Story
 Now let’s take a look at how all three levels of rules combine to enhance game
feel. Consider the difference between rules in Street Fighter II and the indie
classic Cave Story.

 In Street Fighter II, the high-level rules affect the feel of interaction through
the round structure (Figure 11.1). In Street Fighter, the gameplay is organized
around “best of three ”—if you win two rounds, you win the entire match.
And in order to win the match, you must win two rounds. This has the effect
of placing higher stakes on a round in which you face elimination. In each
match, there’s only one round—the first one—where this is not the case.
After the first round has been played, one character will be facing elimination,
which is a great way to raise the stakes and focus the player very intently on
the individual motions and controls.

 At the medium level, the amount of damage it takes to kill someone is
important. This has a huge effect on the feel. The characters in Street Fighter
II take a relatively large amount of damage to destroy. Accordingly, the per-
ception that the characters are solid and massive is increased, reinforcing the
visual and aural effects. These are large, detailed, well-animated characters. If
they were to be defeated in one hit, it would belie the perception conveyed by
their animations, sounds and metaphorical representation.

 At the lowest level, there is different damage for different moves. Heavier
moves do more damage and lighter rules do less damage.

 In Cave Story, the high-level rules do a fantastic job of providing impetus
for every action. Access to new areas and the surprisingly engaging periodic

F I G U R E 11.1 The basic relationships in the system of Street Fighter II.

185

LOW-LEVEL RULES

story snippets provide a delightful carrot, egging the player ever onward. In
addition, the arbitrary relationship between what guns you choose and how
you choose to upgrade profoundly affects the skills that you end up using and
learning later in the game (Figure 11.2). Here’s how the rules work: at the
start of Cave Story, you can only run and jump. As you progress, you can get a
variety of weapons. Weapons include various beam weapons, a machine gun
and a bubble gun, and they can be obtained from treasure chests or traded for
at various locations in the game. There are nine different weapons, but the
player is limited by the trading system to having only five at any time. Most
weapons can be upgraded by collecting weapon energy dropped by enemies
and will lose weapon energy if the player is hit. Non-weapon items in the
game are plot-oriented, having no impact upon normal gameplay, although a
few, such as the Booster (a type of jet pack) and the Life Pot, are useful.

 Medium-level rules in Cave Story change the meaning of movement relative
to various enemies, depending on health and weapon upgrade level. Being hit
reduces both health and weapon energy. Health functions the same way it
does in most games, increasing focus and attentiveness as it is lowered, and
altering feel by altering behavior and meaning.

 But the real genius of Cave Story’s rules lies in the weapon upgrade system
and how it’s hooked into interaction with enemies. As weapon energy drops,
it may become necessary to switch weapons quickly in order to finish off a
particular creature, changing on the fly the relationships between weapon,
damage, enemy health and weapon upgrade level. When fighting high health
bosses, it becomes necessary to plan out which weapons to use in which
order, assuming that the upgrade levels will be dropped. In preparation for a

F I G U R E 11.2 The basic relationships in the system of Cave Story.

CHAPTER ELEVEN • RULES METRICS

186

boss fight, players may find themselves doubling back to fight enemies over
and over again, in an effort to power-up a seldom-used weapon. Just in case.

 At the low level, the amount of damage it takes to destroy something in
Cave Story is extraordinarily well balanced. The health of a given creature
relative to the amount of damage dealt by which weapons at which level of
upgrade is meticulously well balanced. The result is that every object in the
world seems to be truly made of the same stuff. The more hits something
takes before it pops into puffs of dust and a shower of bouncing orange trian-
gles, the more substantive it is. Rarely do the physics of a single game feel so
cohesive based solely on the balance and implementation of rules.

 Summary
 The arbitrary, designed relationship between parameters or objects in a game are
the game’s rules. They are arbitrary because there is no higher order guiding the
creation of such relationships. They are designed because it is a relationship inten-
tionally created by a designer. We characterized three types of rules: high, medium
and low level, and examined how they affect game feel at each level, and how the
work together at different levels of the game to convey an overall impression of
game feel independent of, but reinforced by, the other metrics of game feel:

 ● Input—The physical construction of the device through which player intent is
expressed to the system and how this changes game feel

 ● Response—How the system processes, modulates and responds to player input in
real time

 ● Context—The effect of simulated space on game feel. How collision code and
level design give meaning to real-time control

 ● Polish—Effects that artificially enhance impression of a unique physical reality in
the game

 ● Metaphor—How the game’s representation and treatment change player expecta-
tions about the behavior, movement and interactions of game objects

 ● Rules—How arbitrary relationships between abstracted variables in the game
change player perception of game objects, define challenges and modify sensa-
tions of control

187

CHAPTER
 Asteroids

 Chapters 12 through 16 feature in-depth examples that will provide recipes for
the game feel of the games they describe. To develop these examples, we’ll apply
the classifications we built in Chapters 6 through 11, breaking down well-known
existing games into input, response, context, polish, metaphor and rules. The idea
underlying these breakdowns is not simply to clone these games, though that’s cer-
tainly possible using this information. The idea is to better understand the hun-
dreds of tiny implementation decisions that gave these games the feel they have. In
many cases, these decisions seem counterintuitive—artificially changing gravity at
the highest point of a jump, for example. All these little decisions and relationships
together, though, are what make these games feel good.

 The creators of these games did not follow a particular methodology. They
noticed something that bothered them about the feel and tried different implemen-
tations until it felt better. Coming at it from a more structured place, we can look
not only at the decisions they made inside their specific games, but make gener-
alizations about why this worked the way it did and how it can be applied to all
games. That’s the idea, anyway. We want to understand the principles underlying
these decisions outside of the context of specific games.

 With that in mind, we’re not interested in specific implementations in specific
languages; you could achieve the same feel coding in Actionscript, C � � or Python.
It really doesn’t matter. Also, throughout these chapters I will reference specific
examples. I highly recommend you go to http://www.game-feel.com and download
the examples, experiencing the difference in feel at various points throughout the
example. These things are better felt than described. For each demo, the idea was
to expose the important parameters, enabling you to feel differences in game tuning
without having to program anything. I recommend going to http:// www.game-feel
.com/examples/ and downloading each applet so you can follow along. These
things are best felt.

 At the start of every example section, I’ve provided a URL to a naked version of
the system, with every parameter tuned to zero. Consider these an exercise in tun-
ing. The pieces are all there; if you want a challenge, I suggest trying to recreate the
feel of each game from this all-zero tuning.

187

 TWELVE

CHAPTER TWELVE • ASTEROIDS

188

 The Feel of Asteroids
 Asteroids redefined the meaning of “video game. ” It was the iPod of its time, as
synonymous with video games as Apple’s ubiquitous product is with digital music
now. When the game was released in 1979, it sold more than 70,000 units, obliter-
ating all previous sales records, including those set by Space Invaders the previous
year. Space Invaders, itself a game so popular that it caused a national coin short-
age in Japan, was left in the dust. Why was this? Why did Asteroids dominate? How
could it handily overtake a game so overwhelmingly popular? The answer hinges on
the game’s unique feel.

 Asteroids was, in essence, a rebalancing of the formula set down by the pro-
genitor of all good-feeling games, Steve Russell’s Spacewar!. As such, it featured
programmatically simulated inertia and discrete tracking of velocity, acceleration
and position of the ship. Pressing the thrust button added force into the simulation,
accelerating the ship forward in whatever direction it was currently facing. Turning
the ship was a much simpler affair, overwriting the ship’s orientation to rotate it left
or right.

 The combination of this detailed simulation for position and the simple, direct
rotation gave Asteroids both crisp precision and a flowing expressivity. It was as
though the ship was always on the verge of being out of control, but it never actu-
ally was. The player’s job was to steer and tame it. This feel was not novel. There
had been numerous attempts to bring the Spacewar! feel to arcades, including
Cinematronic’s Space Wars and Atari’s own Computer Space. The insight of Lyle
Rains and Ed Logg in designing Asteroids was to find just the right combination of
rules and spatial context for the tuning of the ship’s movement. The spinning aster-
oids provided just the right context, dominating the screen space in a difficult but
not oppressive way. They were just the right shape, size and speed for the motion
of the ship, providing close shave after close shave and round after round of fluid,
expressive excitement. The rules were simple, encouraged a very clear and particu-
lar set of skills and rewarded continued play.

 By comparison, the feel of Space Invaders (Figure 12.1) was stiff and rigid. Its
motion was limited to a small region at the bottom of the screen. Its left-right steer-
ing changed only the ship’s position, and did so rather slowly. It is an enjoyable
game but in terms of feel, it does not compare to the rich flowing motion of the
ship in Asteroids.

 William Hunter, curator of the excellent video game history Web site thedoteaters
.com writes, “I was never much of a Space Invaders fan. … But Asteroids, with its cool
ship inertia and frighteningly close shaves between the rocks, is simply a master-
piece of design and programming. While the games that had inspired Asteroids,
such as Spacewar! and Computer Space, had pioneered the concept of inertia in
video games, the feeling of actual physics being played out in Logg’s creation is
another big draw of the game. ” 1

 1 http://www.thedoteaters.com/p2_stage2.php

189

 There are still games being made today that emulate the feel of Asteroids, such
as Shred Nebula and Geometry Wars. The feel of Space Invaders, however, is all but
gone from modern mechanic design.

 Input
 Asteroids ’ input space consists of five standard buttons (Figure 12.2). The buttons
are far apart, making control a two-handed affair, though all five buttons can be
pressed simultaneously. Though the possibility exists, there are no chorded moves
in Asteroids.

 Physically, the Asteroids cabinet is big and bulky, made out of wood. The surface
in which the buttons are embedded is nice and smooth, made out of molded plas-
tic; it feels good. The buttons themselves are big and springy and make a satisfying
noise as they click down. When pressed, they become almost completely flush with
the surface of the cabinet.

 Each button has two states and sends the usual Boolean signals of ON, OFF
and HELD.

 Response
 The incoming Boolean signals modulate parameters in the game in the following
ways:

 The Rotate Left/Right buttons rotate the ship along its axis clockwise and
counterclockwise (Figure 12.3).

RESPONSE

F I G U R E 12.1 Compare the movement of the ships in Asteroids and Space Invaders.

CHAPTER TWELVE • ASTEROIDS

190

 The Thrust button adds force along the local forward direction of the ship, lim-
ited by a maximum value. This progression is highly floaty, taking around three sec-
onds to reach sustain and even longer to release (Figure 12.4).

 The Fire button launches a bullet along the local forward direction of the ship,
limited by a timed delay. The bullet inherits the velocity of the ship. Only four bul-
lets can be on screen at one time.

 The Hyper Space button sets the ship’s position to a new, random value.

F I G U R E 12.2 Five two-state buttons are the inputs for Asteroids.

F I G U R E 12.3 Attack, delay, sustain and release for the rotation in Asteroids. There is a very
slight attack value.

191

 Simulation
 To create the feel of Asteroids, the ingredients are one ship avatar, two varieties of
flying saucers, screen wrap and a healthy sprinkling of asteroids. Since the asteroids
and alien spacecraft exist mostly to provide spatial context for the motion of the
ship, we’ll hold off discussing their behaviors and motion for now and instead focus
on the ship.

F I G U R E 12.4 The ADSR envelope for thrust in Asteroids.

 Playable Example

 Open example CH12 - 1 and try to recreate the feel of Asteroids. The necessary
parameters are there, just zeroed out.

 The ship avatar in Asteroids has two basic motions, accelerate and rotate (Figure
12.5). The rotational motion is crisp and precise while the acceleration is loose and
sloppy. In both cases, the motion’s frame of reference is the ship itself, a “ local ”
motion.

 The most important relationship to the specific feel of Asteroids is the decoupling
of rotation from thrust. This is achieved by storing separate velocity values for the
ship and for the thrust that gets added to it. If these values are not separated and
the thrust velocity overwrites the ship velocity directly, the feel is more like a squir-
rely remote-controlled car than a smooth, flowing spacecraft.

 Let’s build the feel up from the beginning. First, we need a ship that rotates.
The rotation of the ship in Asteroids is simple. If one of the two rotate buttons is
held down, the game adds a small value to the ship’s orientation in the correspond-
ing direction, clockwise or counterclockwise. There’s no simulation in the code, no
acceleration to speed up or dampening to slow down. If the button is held down,
the ship rotates. If not, it doesn’t. However, there is a very slight Attack value
applied to the input signals as they come in (Figure 12.6).

 The ship does not go directly to full speed rotation from a standstill. There’s a
short ramp-up in speed, an Attack, over about a third of a second. It’s subtle, but

SIMULATION

CHAPTER TWELVE • ASTEROIDS

192

without it, the rotation feels stiff and robotic. An interesting thing to note is that,
perceptually, it’s just as though the ship had a very slight inertia that had to be
overcome. From the player’s point of view, it seems as though the ship took that
third of a second to ramp up to full rotation speed.

F I G U R E 12.5 Dimensions of movement for the ship in Asteroids.

F I G U R E 12.6 The attack takes only a quarter of a second, but its absence is noticeable.

 Playable Example

 To experience this subtle difference, open example CH12 - 2 and click on the
 “ Raw Input ” checkbox.

193

 Next we want the ship to move forward in response to the Thrust button. This
motion will be relative to the current heading of the ship, which causes the left and
right rotation to control the direction of the ship. If the forward acceleration were
relative to the camera or to some other object in the world, the ship would be stuck
moving in one direction, which would not be much like Asteroids at all. Now, if we
set the position of the ship the same way we’re setting the rotation, by overwrit-
ing it directly depending on whether or not the button is held down, the feel is stiff
and inorganic. It’s crisp, precise and responsive, but moves so differently from any
object encountered in everyday life that the motion feels jarring and unsatisfying.

 Playable Example

 To experience this, click on the “Mode: Set Position ” checkbox in example
CH12 - 2.

 This is clearly not what we want. The first big thing that’s missing is static
inertia. In Asteroids, the ship speeds up gradually to its maximum and continues
moving at that speed indefinitely until another force acts on it. To get this sense of
inertia, we’ll separate position from velocity and have the Thrust button modulate
acceleration instead of modifying position directly. In each frame, the acceleration
value is added to the velocity value, which then updates the position value based
on how far the ship has moved (Figure 12.7).

 Playable Example

 To experience this, click on the “Mode: Translate ” checkbox in example
CH12 - 1.

 This is the feel of a frenetic racecar gripping the road with perfect sideways
friction. It carves circles, without any hint of the desired Asteroids floatiness. The
motion is interesting, even aesthetically pleasing, but it feels totally different from
Asteroids because the rotation and thrust are now inextricably interconnected.

F I G U R E 12.7 The different values that drive the thruster movement of Asteroids changing
over time.

SIMULATION

CHAPTER TWELVE • ASTEROIDS

194

Turning changes heading instantly, every frame, while the lack of dampening causes
the ship to go on forever without hope of slowing down. To arrive at the feel of
Asteroids, the thrust vector must be separate from the ship’s velocity. When the
thrust button is pressed, instead of setting the modified ship velocity directly, a new
vector is created using the ship’s heading as its direction and the thrust speed as its
magnitude. This is the thrust vector and when the thrust button is held, this vector
is added to the ship’s current velocity (Figure 12.8).

 Great success! This change, between adding and overwriting velocity vectors,
makes all the difference. We now have a simulation that can be tuned to the precise
feel of Asteroids.

F I G U R E 12.8 The most important relationship to the feel of Asteroids is the ship velocity to
the thrust velocity.

 Playable Example

 To experience this, click on the “Mode: Asteroids ” checkbox in example
CH12 - 2.

 The final things to note are the limit on velocity, the screen wrapping effect and
the very low dampening force.

 An arbitrary maximum is applied to the ship’s velocity vector. This value may
change the feel slightly if it is set very high or very low, but primarily it serves as
a catchall to prevent the ship from having runaway speed. If you’re interested in
changing this limit to see the difference, it’s the “ Max Velocity ” parameter.

 The screen wrap effect is achieved by detecting whenever the ship’s position is
greater than the size of the screen, then setting its position to the opposite side of
the screen. For simplicity, this is done for the X and Y edges of the screen sepa-
rately. The screen wrapping, like the Max Velocity parameter, is mostly a pragmatic
measure. Without screen wrap in place, the motion of the ship avatar carries it off
screen in a matter of seconds.

195

 Finally, there’s very little dampening on the motion of the ship. Once acceler-
ated, it will keep going at speed for more than four seconds before coming to rest.
This low friction produces a “ spacey ” feel. Though we Earthbound schlubs have
never experienced frictionless motion, when we see it in a game it reads as space-
like because of our exposure to news footage of astronauts and science fiction films
such as “Apollo 13 ” and “ 2001: A Space Odyssey. ”

 The final set of variables we’re tweaking are these (their relationships are shown
in Figure 12.9):

 ● Ship Rotation—How quickly the Y-axis orientation is changed clockwise or coun-
terclockwise per frame

 ● Ship Position—The position of the ship in absolute space, expressed as an X posi-
tion and a Y position

 ● Ship Velocity—The current direction and speed of the ship in absolute space

 ● Thrust Speed—The current thrust value

 ● Thrust Acceleration—The amount the thrust value will increase over time as the
thrust button is held

 ● Thrust Velocity—A vector representing the force that gets added to the ship
velocity when the thrust button is held. It gets its direction from the ship’s cur-
rent heading (which can be different from Ship Velocity) and its speed from the
current Thrust Speed value

 ● Max Thrust Speed—Limits Thrust Speed to a hardcoded maximum value. Speed
can not be greater than this amount

 To summarize the simulation of Asteroids, when the game receives the signal for
“thrust button held down, ” a force is applied along the ship’s forward-facing axis.
As the button is held, that force is increased according to the acceleration value,

F I G U R E 12.9 The relationships that create the feel of Asteroids.

SIMULATION

CHAPTER TWELVE • ASTEROIDS

196

to a predetermined maximum. Whatever direction the ship happens to be facing,
the thrust is applied in that direction as an additive vector. 2 It doesn’t simply over-
write the previous velocity vector of the ship, but rather gets added to it. This is
crucial because it decouples the rotation of the ship from its thrust. This separation
of thrust from rotation is the most important part of the feel of Asteroids. It enables
the ship to rotate freely regardless of its current velocity. It gives the impression of
frictionless motion as well as creates a slightly manic feeling of being constantly out
of control. It’s only when the thrust button is held that the orientation of the ship
affects its velocity, and even then it’s additive. The end result is highly floaty: when
the player changes direction by rotating, it will take almost three seconds before the
velocity of the ship is in line with its heading. In the case of the context and rules of
Asteroids, this floatiness is both desirable and awesome.

 Context
 The only thing that really needs to be said about the asteroids in Asteroids is that
they provide just the right spatial context for the ship’s movement. The larger aster-
oids dominate a large amount of the screen, but they move very slowly and are
easy to predict. Smaller asteroids take up less screen space but are much more dif-
ficult to dodge because they move much more quickly. In all cases, the ship moves
faster than the asteroids themselves but because its motion is so wild and squirrely
and because the constraint of screen wrapping applies equally to both the asteroids
and the ship, every asteroid on the playfield feels unsettling. For me, it feels like
being an experienced ice skater at a crowded public rink. When I go to a public
skate, I can skate much more quickly than just about everyone on the ice because I
played hockey as a kid. But I can’t predict when people are going to fall or turn or if
they’re suddenly going to cut across me to head to the cocoa machine. As a result,
I limit my speed and try to give everybody a wide berth. Even though I can stop
and turn quickly, I don’t have enough control to stop myself from running over or
into someone’s mom if she biffs it in front of me. Playing Asteroids feels a bit like
an extremely crowded kids ’ night at the local rink. Except for the shooting and the
subdividing asteroids, of course.

 In terms of functionality, the asteroids are imparted with a random velocity at the
beginning of the game. When shot, they break down into medium-sized asteroids
and have an additional force applied to them in a random direction. They inherit
the velocity of the larger asteroid that spawned them, though, so the likelihood of
their speed going up rather than down is very high. The same thing happens when
they split into the smallest asteroids. There’s no particular insight here; the aster-
oids, as they get broken down, further clutter the field and become more difficult

 2A vector is a combination of speed and direction. For example, driving 40 mph to the west would be a
vector, where 40 mph is just a speed and west is just a direction.

197

to maneuver around. The ship moves very quickly and turns rapidly, but the turn-
ing never seems quick enough to truly react and get out of the way of an asteroid
unless you’ve planned ahead.

 The flying saucers are much more difficult to deal with than the asteroids, but
they provide fundamentally the same function. They move in unpredictable pat-
terns, going mostly horizontally but randomly moving up and down. And, of
course, they shoot back. The closer you are to them, the more likely you are to be
shot, so dealing with them feels a bit like poking a hornet’s nest with a long stick.

 Generally speaking, the feel of Asteroids is as much defined by the things to be
avoided as it is by the motion of the ship itself. The constant, inescapable danger
of the asteroids is compounded by the wily flying saucers, and the screen wrap
means that you can never escape. These dangers give meaning to the quick, slip-
pery motions of the ship, defining every subtle twist and turn and making it feel
almost more out of control than in control.

 Polish
 Without a lot of processing power to spend, it would be perfectly reasonable for
Asteroids to lack for polish effects of any kind. Instead, the Atari engineers rose
to the challenge magnificently, with a masterful cohesion across visual and sound
effects. Specifically, there is an excellent, consistent relationship between the vis-
ual size of objects and the sounds they make. For example, when a large asteroid
is shot, it makes a deep, booming sound. A medium asteroid’s explosion sound is
higher pitched, and smaller asteroids are higher still. Similarly, the large flying sau-
cer makes a lower pitched noise than the small one. Being the smallest objects in
play, bullets make the highest pitched sound of all. Of all the sound effects, the
thruster firing is the lowest and most rumbling, conveying the sense that it is a
comparatively powerful device.

 Other subtle but effective polish effects include a spray of particles when
an asteroid is destroyed, the ship disintegrating into its component parts when
destroyed, and the subtle but effective flashing of the vector line to indicate rocket
flame. Because of the limited processing power, each individual effect is drop-dead
simple. They harmonize so well, though, that the net effect is a powerful sense
of the physical properties of the ship, flying saucers and asteroids. This is a great
example of how cohesive, self-consistent effects can be more effective than gaudy,
splashy ones that are applied willy-nilly.

 Metaphor
 As a metaphorical representation, Asteroids is very simple. There appears to be a
space ship, but it’s more Flash Gordon than NASA. The asteroids and flying sau-
cers reinforce this science fiction theme. The treatment is highly iconic. It’s not

METAPHOR

CHAPTER TWELVE • ASTEROIDS

198

approaching any sort of realism but it’s also not venturing into the realm of the
abstract. Each item—the ship, the rocket flames, the bullets, the asteroids—is
iconic. They clearly are meant to represent a particular idea. Because the treatment
applied to these objects is simple and consistent, there are few expectations being
set up for the player. The theme is outer space, so the frictionless feel of the ship is
certainly not clashing with the metaphorical representation, but neither is it inextri-
cably linked with it. A car-like physics such as the one we experienced earlier might
not seem so jarring because the visualization is so simple.

 Rules
 The main rules affecting the feel of Asteroids are those related to collision and
destruction of the ship. At the start of the game, the player is arbitrarily given
three lives. Running into anything—bullet, asteroid or saucer—destroys the player
instantly and removes one of those lives. This serves to make the ship seem exceed-
ingly fragile and to make extra lives seem like the most valuable commodity in the
game. This sense of value also hooks into the points system: because you gain an
extra life for every 10,000 points you score, destroying asteroids feels gratifying and
worthwhile. A large asteroid is worth 20 points, a medium is worth 50 and a small
is 100 points. This creates a nice value scale for the destruction of asteroids and pro-
vides constant incentive to destroy them.

 What’s really set up, though, is an awesome risk-reward relationship with the
tiny flying saucers. Flying saucers are simultaneously the most dangerous and diffi-
cult to kill objects and the most valuable. For a large saucer, you get 200 points. For
the small, extremely difficult to hit saucer, you get 1,000. So there’s a lovely risk/
reward tradeoff that happens, because you get so many more points for destroying
this tiny flying saucer than for blasting another set of mundane asteroids. When you
see one come across, even though it is shooting back at you and is an unpredict-
able, tiny target, you focus on it and steer toward it because there’s the promise of a
huge number of points, which moves you that much closer to getting an extra life.

 Of course if you lose a life in the process of trying to shoot this damn thing,
the point is moot. So there’s this circumspect little calculation that happens in your
brain about risk and reward. Is it worth it, is it not? How many lives do I have? Do
I have a lot? Do I need the points? How close am I to getting extra life? And so on.
This sense of value, risk and reward affects feel by driving the player closer to the
tiny saucer. In so doing, they learn a whole new set of skills and experience just how
out of control the ship is relative to the saucer’s quick, precise motions and shots.

 Summary
 Asteroids was groundbreaking and hugely popular, in large measure because of its
unique feel. Applying our taxonomy of game feel, it’s easy to see why.

199

 The input device was satisfying, though it only used Boolean on-off buttons,
and it mapped well to how things moved in the game action. It also required both
hands and five fingers, ensuring the player was challenged (but not too much) and
engaged.

 The response mapping was clear, simple and easy to follow.
 But a lot of the “secret sauce ” of Asteroids was in the simulation. Thrust is sepa-

rated from rotation, creating the most important part of the feel of Asteroids. It cre-
ates the loose feel that is so crucial to the feel of the game.

 In terms of context, the asteroids in Asteroids provide just the right spatial back-
ground for the ship’s movement. The constant, inescapable danger of the asteroids
is compounded by the wily flying saucers, and the screen wrap means that you can
never escape. These dangers give meaning to the quick, slippery motions of the
ship, defining every subtle twist and turn and making it feel almost more out of
control than in control.

 Adding to the overall feel, just the right amount of polish was used in Asteroids—
not overdone, not underdone. Visual and sound effects are simple, but cohesive and
self-consistent, making the most of the processing power available at the time.

 The metaphor—outer space—is simple and iconic, setting up easy to exceed
expectations of how “ real ” spaceships ought to behave in the mind of the player.

 Finally, the rules in Asteroids are exceptionally well done, challenging the player
to increase his or her skills in anticipation of greater rewards.

 Overall, all of these elements were balanced beautifully to create a simple but
wildly popular game. The man who conceived Asteroids, Lyle Rains, and the crea-
tive visionary who programmed and designed the game, Ed Logg, did everything
right. It’s no wonder Asteroids was such a hit in the United States and became
Atari’s best selling game of all time.

SUMMARY

This page intentionally left blank

201

CHAPTER
 Super Mario Brothers

 Super Mario Brothers was a breakout hit for video games as a medium.
 In 1983, things looked a littles bleak for the future of digital games. “ Video

game ” was a dirty word to retailers, and arcades were shutting their doors with
frightening speed. Atari had flooded the market with inferior product, culminating
with the much-lampooned E.T. The Extra-Terrestrial cartridge. Consumers lost inter-
est, retailers lost money and doomsayers decried the fiery end of the video game
fad. Enter Nintendo and its “Entertainment System. ” Improbably, a young industrial
design graduate was about to change video games forever.

 A quiet, unassuming man who is “very content ” with his modest salary and
seems genuinely bemused by his worldwide celebrity, Shigeru Miyamoto was an
unlikely candidate for “world’s most acclaimed game designer. ” As he flashes
his trademark smile and casually explains his original sketches for Donkey Kong,
you get the sense that he is as excited today about the idea as he was more than
20 years ago. Because there was simply no one else in the company available,
Miyamoto was tapped by Nintendo president Hiroshi Yamauchi to create the game,
Miyamoto’s first. In the most emphatic and real sense, the future of Nintendo hung
on the unproven industrial design graduate and his “Stubborn Gorilla. ” Against all
odds, the game became a smash hit, in a stroke saving the ailing Nintendo and
establishing Miyamoto’s reputation.

 While it was the first major hit of the burgeoning “ platformer ” game type,
Donkey Kong still felt very stiff. The character in Donkey Kong, Jumpman, 1 could
run left and right, climb ladders, and, of course, jump. His jump followed a specific,
predetermined arc and he only ran at one speed. On or off, full speed or complete
standstill. There was no gradual acceleration or deceleration and no control over
the jump once you were in the air. It was a step forward—a charming, playful game
with appealing characters, bright colors and detailed animations—but it still felt
very stiff. Miyamoto knew that his games could feel much better. After a successful
Donkey Kong sequel, he turned his attention to refining the movements of his now-
Italian, now-plumber character in Mario Brothers.

201

 THIRTEEN

 1 The naming of Mario was, apparently, a conciliatory gesture to the irate landlord of Nintendo of
America’s warehouse, Mario Segale.

CHAPTER THIRTEEN • SUPER MARIO BROTHERS

202

 Mario Brothers was different. This time, Mario jumped much higher, though his
trajectory was still unalterable once he’d left the ground. The first hint of the power-
ful feel that was to come was in Mario’s left and right movement. Instead of move-
ment being binary-state (full speed or stopped), when the joystick was pressed,
Mario now had three states: stopped, walking and running. As a result, he now
sped up gradually, and the player could make quick tapping motions on the joy-
stick to make small adjustments to his position. Likewise, once the joystick input
stopped, there was a slight slide as Mario came to a halt. Mario now had inertia.
This smooth feel was used in games like Asteroids and the venerable Spacewar! but
had not yet found its way into a character-based game about jumping over obsta-
cles and gaps. Mario Brothers was a modest hit, coming as it did at the end of the
arcade era.

 In 1986, all the elements came together. Super Mario Brothers combined a loose,
fluid feel with a powerful character-driven metaphor and a charming, surreal treat-
ment. Instead of one extra state inserted between standing and running, there were
hundreds. Mario now accelerated gradually, without perceptible switches, up to his
full speed. When the input stopped, he slid gradually to a halt. The game felt intui-
tive but deep: sloppier and more imprecise than Donkey Kong, but better for it.
Somehow it felt more “ real. ” It took the world by storm. The first truly universal hit
video game, Super Mario Brothers sold more than 25 million copies worldwide, far
and away the greatest selling game of all time. In a 1987 survey, Mario was more
recognizable to American children than Mickey Mouse.

 Miyamoto understood game feel not in terms of simulation but of simplification.
First, he regarded the feel of a game artistically, as a composite aesthetic experi-
ence. At a time when the field was dominated by engineers who, in the tradition of
Steve Russell, drew on complex, literalistic metaphors like the gravitational pull of
black holes or landing a spacecraft on the moon, Miyamoto brought a refreshing,
naïve perspective. He simply wanted to make fun, colorful games about whimsical
characters that felt good to play. Second, he designed games holistically, taking into
consideration both software and input device. (To this day, Miyamoto designs con-
trollers as well as games, a rarity among designers, especially now, with the death
of the arcade.) Finally, Miyamoto understood the power of metaphor and how it
affected players’ willingness to learn and master a complex system and their emo-
tional attachment to it.

 Miyamoto had intuited just how powerful the tactile, aesthetic feel afforded by
instantaneous reaction to user input could be. Super Mario Brothers felt great, a
shining example of possibility for virtual sensation.

 Now the big question: just how was this feel created? How does one build a
game that feels exactly like Super Mario? Like many questions surrounding game
feel, this is a surprisingly difficult question to answer. Just thumb through this chap-
ter and you’ll see; even for a game as simple as Mario, there are a huge number
of tiny but ultimately important decisions that must be accounted for. Individually,

203

they often seem trifling and bizarre. Taken as a whole, they lead to the feel that sold
more than 25 million copies.

 Input
 As an input device, we have the NES controller. The signals it sends are very simple,
as we have said, and overall it has very little sensitivity as an input device. It feels
pretty good to hold and use and is composed of a series of standard two-state but-
tons. One of its great strengths is its simplicity. When you hold it, it’s almost impos-
sible to press the wrong button since there are so few for each thumb to deal with
(Figure 13.1).

INPUT

F I G U R E 13.1 The simple, but classic, NES controller.

CHAPTER THIRTEEN • SUPER MARIO BROTHERS

204

 Button States Signals Combination

 A 2 Boolean B, any direction

 B 2 Boolean A, any direction

 Up 2 Boolean A, B
One other direction at a time, except down

 Down 2 Boolean A, B
One other direction at a time, except up

 Left 2 Boolean A, B
One other direction at a time, except right

 Right 2 Boolean A, B
One other direction at a time, except left

 Each button sends a binary signal. Taken alone, this input data can be inter-
preted as “ up ” or “ down. ” When measured over time, the signal can be interpreted
as “ up, ” “ pressed, ” “ down ” or “ released. ”

 That’s it. Not much more to say about the NES controller; as an input device it is
among the simplest, most effective ever created. The plastic on the front is smooth
and porous, the buttons springy and robust, and the overall package feels solid.

 Note that we’re using the keyboard to control the examples presented here,
which will change the feel of control by allowing left and right to be pressed simul-
taneously and because this input uses multiple fingers instead of a single thumb.

 Response
 There are two avatars in Super Mario Brothers, Mario himself and the camera. Mario
has freedom of movement along a 2D plane, X and Y, as shown in Figure 13.2 .

 Since the Mario avatar doesn’t rotate at all, there’s no distinction between local
and global movement.

 The camera (Figure 13.3) is indirectly controlled by the player via the position of
the Mario avatar and moves in only one axis, X. Interestingly, it can never move to
the left.

 A Recipe for Mario
 The feel of Super Mario Brothers lives primarily in the main Mario avatar.

 If you want to create a game that feels exactly like Super Mario Brothers, the first
thing you need is a rectangle. This is how the game views the object that millions of

205

us know and love as Mario. He’s simply a rectangle. More specifically, he’s a series
of points that form a rectangular shape, but for our purposes it’s reasonable to call
him a rectangle. So let’s start with our rectangle, sitting motionless in the center of
the screen (Figure 13.4).

F I G U R E 13.2 Mario moves in two dimensions, X and Y.

F I G U R E 13.3 The camera in Super Mario Brothers moves in one dimension: the X-axis.

 Playable Example

 Open example CH13 - 1 to follow along. To begin, there is no motion, all the
parameters are set to zero and the avatar is a blank rectangle in the middle of
the screen.

 The next obvious step is to have the rectangle move. The way Mario’s simulation
functions, there are two distinct subsystems at work, the horizontal (X-axis) move-
ment and the more complex vertical (Y-axis) movement. To start, let’s focus on the

RESPONSE

CHAPTER THIRTEEN • SUPER MARIO BROTHERS

206

horizontal movement. It’s the interplay of these two systems that gives rise to the
expressive, fluid feel of Mario, but they are kept mostly separate as far as the simu-
lation is concerned.

 Horizontal Movement
 All horizontal movement in Mario is mapped to presses of the left or right direc-
tional pad buttons. The signals coming in are simple Booleans and they can’t be
pressed simultaneously because of a physical constraint imposed by the input
device itself. As a result, at any given time there will be only one relevant signal
coming in from the input device: left or right. The simplest way to map this input
to a response in the game would be to store only a position for the rectangle. When
either the left or right signal was detected, the rectangle’s position would change
by a certain amount in the corresponding direction. As long as the left button was
held, the rectangle would move some distance per frame in the corresponding direc-
tion. This is the way that Donkey Kong works, changing position when the joystick
is held in a direction. This is not, however, how the horizontal movement in Mario
works. Figure 13.5 shows graphing of Mario’s movement over time versus Donkey
Kong (from Chapter 7).

 Now, I like the feel of Donkey Kong. I think it’s rather charming. It’s hard to
argue, however, that it’s more expressive than Mario. Mario feels fluid and respon-
sive while Donkey Kong feels stiff and robotic. Look again at the movement of
each over time; you can see just how many more places it’s possible for Mario be,
how much more expressive potential there is for the player. The primary reason
for this lies in the simulation. Super Mario Brothers has something resembling a

F I G U R E 13.4 The shape of Mario: a series of points forming a rectangle.

207

simulation of physical forces. It’s a sort of first-year college physics level of sim-
ulation, but there are in fact stored values for acceleration, velocity and position.
So while it’s simple by the standards of modern physics simulations, it is a model
of Newtonian physics. It may not be very accurate—the programmers only had
8-bit numbers to work with—but it is modeling things in a certain sense. It’s not
totally fake.

 Donkey Kong has no such simulation. The character has a position and two
states, and that’s it. When you press the right button, the code simply takes the cur-
rent position and adds a value to it. This new position gets drawn to the screen and
becomes the current position and so the motion continues. The player moves at a
constant rate if the joystick is held in one direction or another. There is no period
of acceleration between standing still and running full speed. Likewise, when the
input stops, there is no deceleration. Put another way, Jumpman’s speed can only
ever be equal to, say, five units per second or zero units per second. There is no in
between. Donkey Kong takes the sensitive, expressive input of the joystick with all
its states between center and fully expressed and clamps it down to a simple on or
off response. Figure 13.6 shows the short attack phase of the movement in Donkey
Kong. The movement starts the frame after the input is received, but there is a
sensation of a slight attack because it takes some time to push the joystick from
off to on.

 Mario’s horizontal movement incorporates separate values for acceleration,
speed and position. When the signal for “ left ” is received, it applies an accelera-
tion in each frame rather than feeding directly into position. For each frame when a
directional button is held down, the acceleration value adds a certain amount to the
velocity value. The velocity value in turn tells the rectangle how it should change its
position. Instead of the boxy non-curve shown in Figure 13.6 , the change in Mario’s
position looks like Figure 13.7 .

F I G U R E 13.5 The movement of Donkey Kong and Mario.

RESPONSE

CHAPTER THIRTEEN • SUPER MARIO BROTHERS

208

F I G U R E 13.6 Donkey Kong’s movement is very stiff.

F I G U R E 13.7 Mario’s movement has a gradual ramp up to maximum speed, making it much
more expressive.

 Playable Example

 If you’re following along in example CH13 - 1, you can experience what we’ve
constructed up to this point by setting a high max speed value (try 2,000) and
turning all the jump values and the deceleration value to zero. If you want, you
can also switch the metaphor to rectangles.

 Now steer back and forth by pressing the A and D keys. Notice anything?
The speed value quickly runs away and becomes way too large. We need to
clamp that down, put a limit on it. This limit is the max speed value, and it
applies unilaterally to both left and right movement.

209

 The other thing you’ll notice at this point is that once set in motion, the rectangle
will not slow down or stop. You can reverse direction, counteracting speed in one
direction with acceleration until such time that the movement switches from right to
left, but you can never come perfectly to a halt again. For this, we need a separate
value to decelerate Mario back to a standstill. This is the deceleration or slowdown
value. If Mario’s running forward and suddenly I stop touching the controller, Mario
will slide gently to a halt. The rate at which he comes to a stop is its own vari-
able, unrelated to how fast you sped up. Now, with the deceleration value included,
we’re getting warmer, close to the horizontal movement feel of Mario.

 The last piece of the puzzle involves the B-button. When the B-button is held,
Mario “ runs. ” The change is caused by a mapping of the B-button to changes in
the simulation. Under the hood, when the game detects that the B-button is held, it
changes the values for acceleration and it changes the max speed. When the B-button
is held, the rate at which the character will accelerate is increased and his max
speed is increased. In this way, the B-button is sort of a state modifier, mapped only
to a change in the parameters of the simulation, not to a particular force.

 This feel was different from games of the time featuring as it did two different
accelerations and two different max velocities for running. The expressive power of
such a seemingly simple change is in the interplay between the speeds. The percep-
tion of increased speed is created by the contrast. The run seems fast only when
compared to the walk. Change both values up or down, and the run still seems like
a run. What’s important is the relationship between the two values. As long as that
relationship is maintained, the impression of speed that comes from the contrast
between walking and running will remain. This is very interesting; it is the relative
relationships between speeds—rather than the speed values themselves—that seem
to be most crucial to the feel.

 Another interesting result of this change is just how much expressive power it
lends to the horizontal movement. If you’re at a standstill and you hold down B
and start running, the curve describing the acceleration will be different—it’s using
higher values. Likewise, because you can press the B-button at any time, it’s pos-
sible to feather the button and adjust speed very precisely. Try it now in the applet;
start running and then try tapping B or holding it at various points in the accel-
eration to see how many different speeds there are between going from standing
to walking, from walking to running and from standing to running. The number of
different possible speeds is huge, adding surprising expressivity just with this one
small change in response.

 Finally, horizontal acceleration in the air is different than on the ground. This
brings out a further contrast, one between acceleration speed on the ground, in the
air and when running. When you’re on the ground, you accelerate at a certain rate,
which is different from the acceleration in the air. It’s simply a different number
that gets applied as a force each frame. As soon as you enter the air state, the hori-
zontal acceleration number changes. Note that pressing and holding B has no effect
in this instance—in the air state, all horizontal movement happens at the same rate.
Also, this is acceleration, not speed, so you can be running as you jump and still

RESPONSE

CHAPTER THIRTEEN • SUPER MARIO BROTHERS

210

retain that speedy horizontal movement. What’s reduced is your ability to modify
that velocity by accelerating one way or another.

 To sum up, the important values to the feel of Mario’s horizontal movement are:

 ● Acceleration left

 ● Acceleration right

 ● Max speed

 ● Deceleration

 ● Running acceleration left

 ● Running acceleration right

 ● Running max speed—deceleration always remains the same

 ● Air acceleration left

 ● Air acceleration right

 Note that deceleration remains the same regardless whether the run button is
held or not. At this point, we have a rectangle which will accelerate gradually left
and right to a maximum speed, slow down again gradually to a standstill, and accel-
erate faster to a higher top speed if the B-button is held (Figure 13.8).

 Vertical Movement
 The rectangle’s vertical motion, the jumping of Mario, is a more complex series of
relationships than those governing his movement on the ground. To start, there is a
constant application of gravity. When you’re moving left and right, gravity is always
pulling the character down. That’s simple enough: a constant downward force
applied to the character. But this gravity force is variable. At the moment the jump

F I G U R E 13.8 Horizontal movement in Mario.

211

button gets pressed, Mario is instantaneously imparted with a certain upward veloc-
ity, which counteracts the constant downward pull of gravity, launching him into
a soaring, graceful arc. This upward velocity is gradually reduced as gravity takes
hold again. At the apex of the jump, when velocity reaches 0, gravity is raised arti-
ficially by a factor of three, pulling Mario back to the ground with a much greater
force than the one he overcame to get airborne in the first place. This artificially
inflated gravity has a cap, however, as do all forces in Mario—there is a terminal
velocity that will limit its downward motion. In addition to all of that, there is an
artificial sensitivity created in the amount of time the jump button is held down.
A tiny tap on the button will yield a small hop, while holding the button down
extends the jump. This time sensitivity also has a range; there are minimum and
maximum jump heights, enforced by limits on the minimum and maximum amount
of time the jump will accept inputs.

 If this sounds surprisingly complex, it definitely is. Let’s step through each of the
individual rules and interactions one at a time.

 First, the rectangle needs a constant downward force. This is the force of grav-
ity, constantly pulling the rectangle back to the ground. This force is applied all the
time, even when the rectangle is pressed against the ground tiles. In each frame, the
collision code looks at the position of the rectangle and the forces applied to it. From
that, it infers what the rectangle’s position would be in the next frame. If it would be
inside a tile that’s supposed to be solid, it snaps the rectangle’s position to be flush
against that tile. Though there is a gravity force applied to the rectangle in all places
and at all times, the collision code keeps Mario from falling through the world.

F I G U R E 13.9 The collision code snaps Mario back outside of (but up against) any solid
object, gravity must otherwise push him through. This happens every frame.

RESPONSE

CHAPTER THIRTEEN • SUPER MARIO BROTHERS

212

 Next, the upward force. At the moment the jump button gets pressed, the Y com-
ponent of Mario’s velocity gets instantaneously set to a high value, which counter-
acts gravity, launching him into the sky. If this force were applied constantly as long
as the button was held, the rectangle would fly forever into the sky.

 Playable Example

 To experience this, try changing the “max jump force duration ” value to
10 seconds or so in example CH13 - 1.

 To mimic Mario, the rectangle needs to gradually slow down, losing upward
force as gravity takes hold. This is not a hard-coded set of values but is instead the
result of two relationships.

 The first relationship is between the initial upward velocity and gravity, which
reduces that value by a small amount every frame. The initial upward velocity has a
limited duration because gravity is always reducing it. After the initial burst of force,
there’s nothing to keep the rectangle moving up. As a result, gravity will take hold
and gradually slow the upward momentum until the rectangle is no longer moving
upward. The result, assuming the character is moving horizontally at the time of the
jump, is a graceful arc. This also has the effect of making the jump feel immediate,
responsive and quick because the moment the input is received there is big, visible
response.

 The second relationship is between the time the jump button is held and the
upward velocity. The jump is time-sensitive. A slight tap on the button will yield a
small hop, while holding the button down longer will extend the jump. This time
sensitivity also has a range constraining it; there are minimum and maximum jump
heights, enforced by limits on the amount of time the jump will accept inputs. In
terms of actual measurable response, if you hold the A-button for the full duration
of the jump, you’ll get a jump that’s about five tiles high. If you tap the A-button as
quickly as possible, the jump will be shallower, with a height of as little as one and
a half tiles. The result is an expressive range of jump height, anywhere between one
and a half tiles and about five tiles in height, which corresponds to releasing the
button somewhere between one frame and about half a second (Figure 13.10).

 The effect is a sort of early out for the jump. The player can choose to release the
button early and in so doing accomplish a shallower jump.

 At this point, with a time sensitive jump in place that applies the maximum
jumping force as long as the jump button is held, the rectangle will jump satisfacto-
rily. The only problem is in the height of the minimum jump: with this implementa-
tion, it is still very high. After all, the maximum jump power is still being applied to
it for a certain amount of time. So the expressive range between the shortest jump
and the tallest is very narrow.

 To make this jump feel right, we’ll need to artificially clamp the jump force in
a way that may seem like something of a hack. Rest assured, though, this is the

213

keystone to getting the good-feeling Mario jump. The hack is this: if the game is in
the jump state and it detects that the jump button is no longer being held, the game
then checks to see if the Y velocity, the jump force, is above a certain threshold. If
it is, it will artificially set the Y velocity to a specific, unchanging, lower value. The
value is close to zero but is not actually zero. Weird, eh? Even if you only tap the
jump button for one frame or two frames, it still receives the full upward velocity.
It’s just that when the button is released earlier, it artificially sets the jump force to
a lower number before it allows the jump to take its course. The effect is that you
float just a little bit more upward from the point of release and always fall with that
nice, flowing arc (Figure 13.11). It feels a lot better than the wide variation of arcs
you would get otherwise.

 An example with actual numbers will help visualize this more clearly. When the
button is held down for the maximum time allowed (giving the maximum jump
height), the progression of upward velocity might go something like the jump
shown in Figure 13.12 .

F I G U R E 13.10 Jump height in Mario depends on how long the button is held, but only to a
certain point.

F I G U R E 13.11 Upward velocity is artificially set lower when the player opts out by
releasing the button early (thus getting a much smaller jump).

RESPONSE

CHAPTER THIRTEEN • SUPER MARIO BROTHERS

214

 So on the first frame after the button is pressed, the jump force is 100 in the
Y direction. This large force will propel the rectangle upward quickly. In the next
frame, the force will have been reduced only slightly by gravity, to something like
90. In each subsequent frame, the force in the Y direction is lowered only slightly
until eventually the maximum jump time is hit. At this point, the input is no longer
important, and the jump force falls off gradually to zero, at which point the rectan-
gle begins to fall back to the ground (Figure 13.13).

 Contrast this with the shortest possible hop, where you’re effectively getting a
jump at the minimum power, which is much lower than the velocity of the full jump.
It will give you the full power jump (100) at the first frame, but by the second or
third frame, the jump force has already been set to the lower hard-coded value (20).

F I G U R E 13.13 Falloff in upward velocity when the player opts out early.

F I G U R E 13.12 Falloff in upward velocity over time.

215

Instead of setting the value to 90, 80, 70 and so on until the full height jump arc has
been completed, it sets it right to 20, the velocity at which the jump stops listening
to button input regardless. Similarly, if you hold the button for half of the range of
the jump, it might go 90, 80, 70, 60, 50 then to the preset 20. The result is that jump
will always have the same arc, especially at the end. The duration of the button just
changes how high (and consequently how far) it will go.

 Now back to the jump in progress. If you’ll recall, the rectangle has only reached
the apex of the jump, the point at which vertical component of velocity is reduced
to zero (by gravity acting on it over time). Now it has to fall back to the ground.
Interestingly, after the tipping point, gravity changes. If you’re running along and
you press jump, gravity is the same normal value it always was. You’re imparted
with a negative Y velocity and it sends you upward, temporarily overcoming the
weaker pull of gravity. The upward force will only be added for a certain amount
of time, though, as gravity gradually takes hold and slows you down until you have
no upward force. Once you reach the peak of your jump, instead of just allowing
the natural pull of gravity to bring you back to the ground, the gravity is artificially
increased, sucking you back down to the ground. It applies this stronger gravity
whenever you’re falling, whether you’ve just reached the peak of a jump, walked
off the edge of a platform or bumped into an overhead block (which sets your
vertical velocity to zero).

 Try setting the fall gravity to the same level as the negative gravity and see what
happens. The jump seems to take far too long and you begin to feel as though
you’ve been out of control of the character for far too long. The impression of
weight is also affected, making the rectangle seem far lighter than it ought to. In a
word, it feels weird.

 The final piece of the fall is a clamp on the possible falling speed. Just as the hori-
zontal speed has a maximum, so too does the vertical. When you’re falling, there’s
a terminal velocity that is definable by code. It’s hard-coded. If you don’t limit it,
you can really feel the difference. When you jump from somewhere high, you’ll get
going really quickly before you hit the ground and it’ll feel weird. If instead you set
this number very low, it will feel like opening an umbrella in a cartoon or some-
thing, where you can actually feel the artificial clamp take hold. You can tell it’s not
the natural arc of the fall. Try both—setting the terminal velocity to something very
high or very low—to get a sense of it.

 At this point, we have a rectangle that has gravity applied to it and will jump to
different heights when the jump button is held down for shorter or longer periods.
These periods are limited by maximum and minimum time values, however, which
define a certain expressive range of possible jump heights. The arc of the jump will
always feel the same, however, because if the game detects that the jump button is
no longer held while the jump force is being applied, it will artificially set the value
to a lower value. This value never changes, so the end of every jump will have
approximately the same arc. When the arc has completed, an artificially high gravity
value pulls the rectangle back to the ground quickly and efficiently, decreasing the
time during which the player has reduced control of the character and enhancing

RESPONSE

CHAPTER THIRTEEN • SUPER MARIO BROTHERS

216

the perception of weighty, close to real-world gravity (even if the character is leap-
ing around like a flea). Finally, the speed at which it is possible for the rectangle to
fall is clamped to prevent it from getting too high and feeling unnatural.

 To sum up, the important values to the feel of Mario’s vertical movement are:

 ● Gravity

 ● Initial jump force

 ● Minimum jump button hold time

 ● Maximum jump button hold time

 ● Reduced jump velocity

 ● Falling gravity (about three times normal gravity)

 ● Terminal velocity (maximum falling speed)

 Finally, there is one small crossover between vertical and horizontal movement.
In Super Mario Brothers, if you press jump while you’re moving faster than the
normal walk speed, you’ll get a small extra jump boost. The initial jump force will
be slightly higher, so the height of the overall jump will go up slightly. If you’re
anywhere between the full, running maximum speed and the normal walking maxi-
mum speed, you get a little bit of extra jump velocity. Jumping from a standstill,
you can reach a height just under five tiles. If you get a running start (holding B)
you can just about get over and land on a five-tile-high surface. This height boost
is not commensurate to the speed at which you’re moving at the time of takeoff;
you get the height boost or not, depending on whether you’re over the normal max
speed when the jump button is pressed.

 Collision and Interaction
 Next comes collision, where Mario’s world becomes solid.

 Mario is a rectangle, one tile high. A tile is a nice way to simplify the layout,
position and properties of things in a 2D game. Instead of having to store detailed
positions for each object, we can create a grid of tiles and reference their position
with simple two-number combinations. Typically, tile (0,0) is in the upper left hand
corner of the screen. The tile below it is (0,1), the tile to the right of it is (1,0) and
so on. If we store a list of all these tiles, we can easily find out where a tile is in
relation to any other tile (Figure 13.14). If, when you make your list, you specify
the type of tile it is—sky or brick or pipe or whatever—you can then check to see
whether or not Mario can pass through that tile.

 So, to make Mario collide with things, we look at his velocity. By knowing his
direction and speed, we can tell which tile he will be in the next frame. If the tile
is, say, a brick tile which Mario is unable to pass through, we place him on top of it
instead of allowing him to go through (Figure 13.15).

 This is pertinent when you have, say, an air tile below Mario in one frame and a
ground tile the next. If you know this, you know that Mario should be falling, but

217

that he’s just about to land back on the ground again. This is how simple collisions
are done. Without getting into unnecessary detail, the feel of a simple tile-based
collision system like this is very slippery. Because there is no simulation of fric-
tion—the dampening that slows Mario back down again —applied based on what
material he’s sliding across, the feels is that of a bar of soap sliding across wet tile.
He won’t get caught or hung up on anything, and the overall sensation is very loose
and sloppy. In the case of Mario, this is a huge part of the appeal. This is, of course,
not always the case. To create the satisfying carving motion of a car or bike turning
is to simulate the friction between tire and ground. But Mario essentially has no
friction. Being pressed against a wall of blocks does not slow his jump force; he’s
free to slip slide across everything.

F I G U R E 13.14 Tiles in Mario.

F I G U R E 13.15 Instead of going through the tile Mario is placed on top of it.

RESPONSE

CHAPTER THIRTEEN • SUPER MARIO BROTHERS

218

 So now we have a rectangle that slips and slides across the environment, never
getting stuck and always feeling perfectly solid. Only the rare spring platforms feel
as though they have a bit of give. The rest of the objects in the world are like pol-
ished marble, and Mario himself is equally unyielding and smooth.

 The next little particular that the rectangle needs is to have its Y velocity set to
zero in every frame. As noted earlier, gravity gets applied to every frame, even when
Mario is colliding with the ground. In each frame, his collision places him up a lit-
tle bit, back on top of the block, and in each frame his Y velocity gets set back to
zero. When falling, the gravity force will set the Y velocity to something very high
(the fall gravity) to pull the rectangle downward. If you don’t set that Y velocity to
zero when he’s in contact with a tile, a great deal of force gets built up and “ stored ”
in a weird way. The collision still keeps you out of the ground but if you walk off
the cliff, you plummet down because you have this huge negative velocity built up.
It feels really weird. Instead, you want your Y velocity to be guaranteed to be zero
when a fall starts so gravity will pull the rectangle gradually and appropriately to
the ground.

 The opposite case (when the character jumps and hits a tile above) also needs
the Y velocity set to zero. If you hit the ceiling and the Y velocity is not zero, you’ll
stick to the ceiling (as you do in Super Contra). Mario still wants to move up every
frame. The collision will stop him from moving through the tile, but it will have no
effect on his upward velocity. To get the right feel, you have to set Y velocity to zero
whenever a collision is detected, whether it’s from above or below.

 Another little behavior particular to the original Mario is the lack of height
boosts for bouncing off an enemy’s back. When you hit a turtle’s back, it sets you
to the same state as if you’d released the jump button after the minimum amount of
time. The rebound off a turtle or Goomba is a tiny little hop, as with the minimum
strength jump. This changed in later games such as Super Mario World, where hold-
ing down the jump button while bouncing off the back of an enemy would give you
a massive height boost, much higher than that afforded by a regular jump.

 The only objects in the game that give Mario a height boost are the springy plat-
forms. But you must jump just at the right time. It’s wicked hard, though, because
the window for doing it properly is extremely small. In the later games, simply hold-
ing down jump while bouncing off an enemy or jump platform will give you the
extra boost, which to me feels better as an implementation.

 To wrap up the movement of the primary Mario avatar, there is one particularly
rare special case that’s worth mentioning. If you get a mushroom and you’re too tall
to walk under a one-tile-high brick, you can slide under it. If you’re small, you can
just run through. But if you’re big Mario, you have to build up a head of steam and
slide in there. The case the game has to deal with is: what do you do when you stop
ducking? In some games, you just can’t stop ducking—you’re forced to remain in
the duck state. Mario enables you to stand up, which puts you in a weird, unique,
single case game state where you can’t move or do anything (even duck). It pushes
you right, locked out of input, until you’re free of any collisions. It’s a bit stopgap,
but I guess it covers a weird case that Mario can get into.

219

 Finally, we come to the movement of the camera, which functions as a second,
if indirectly controlled, avatar. Clearly, the feel of Mario includes the motion of the
camera and the game would not feel quite correct unless the camera moves prop-
erly with the avatar. First, the camera moves only to the right. Once it has moved
right, it cannot be moved back to the left. To me, this feels a bit oppressive and it’s
unclear whether this was a technically motivated decision or a design one. Either
way, it has the effect of cramping up the screen and encouraging constant forward
motion. If the player goes to the left, the fact that the camera does not move feels
abrupt, halting and unyielding. When moving to the right, the screen scrolls at the
same speed as the character. The only small, important thing for feel is the small
zone extending from about 25 per cent of the screen width from the left edge to
the center. Inside this zone, the scrolling speed is reduced. The effect is a gradual,
though rough, speeding up of the camera as the character accelerates from a stand-
still (Figure 13.16).

 And there you have it! This is the simulation that creates the feel of Mario in all
its dirty, exhaustive details. What strikes me about it is just how seat-of-the-pants
many of the decisions and particulars are. Stuff like manually setting the Y veloc-
ity to a lower, artificial value when the jump button is released early and swapping
out the normal gravity value for one three times higher seems like it would have
the opposite of the intended outcome. Why do those particular changes make the
game feel better? I’ll attempt to address such questions at a more general level in the
Principles of Game Feel section. For now, though, I recommend fiddling around with
the final, composed applet a bit. Really dig in and change some of the parameters.

F I G U R E 13.16 Camera scrolling zones in Mario.

RESPONSE

CHAPTER THIRTEEN • SUPER MARIO BROTHERS

220

At the end of this chapter, I’ve listed the tunings for Super Mario World and Mario 2.
See if you can arrive at them on your own, just by tweaking the numbers.

 States
 States are the final piece of the Mario feel puzzle from the standpoint of someone
trying to construct a perfect-feeling Mario stand-in. By state I mean a specific set
of instructions about how the game will respond to input. When a game has more
than one state it means that the same input might result in a different response from
the game, depending on what the character is doing at the time of the input. A sim-
ple example from Mario is illustrated by different horizontal acceleration in jumping
state versus the running state. In the running state, the acceleration is a very high
value, speeding Mario up very quickly from a standstill. In the air state, that value is
drastically reduced. Effectively, the change in state maps the same input to multiple
responses in the game. As long as the player has a way to conceptualize a change
in state, such as when Mario leaps into the air, the fact that the result for a particu-
lar input has changed is not jarring or distracting. In fact, it offers more expressive
potential.

 The states in Super Mario Brothers are idle, walking, running, jumping, stuck
and dead (Figure 13.17).

 For the record, this is how things are organized under the hood in Mario. More
or less. As long as the relationships are maintained, the implementation is more or
less irrelevant, but structuring things this way certainly makes it easier to get the
desired feel.

 Context
 Our rectangle is now happily sliding around. It feels great to leap around and run
and change directions. Right? Well, perhaps. Returning to example CH13-1, run

F I G U R E 13.17 States in Mario—stuck and dead are special cases.

221

around a bit. Notice anything weird? Right, there’s nothing in the level. It’s an end-
less field of blankness. Time to add context.

 A level design trick that originated with Super Mario Brothers or was at least
used heavily in it is the “Fortune Favors the Bold ” approach. Running full speed
to the right and attempting to quickly adjust to changes in the environment makes
the game much easier by virtue of the level design itself. The levels are set up to
encourage (and in many later levels, necessitate) this kind of bullish charge-ahead
play. It’s simply how the level is laid out: the jumps and obstacles are easier when
the player is moving at the maximum speed possible. Since that speed was predict-
able once the mechanic was complete, it was possible to design the levels to match.

 It seems to me that this was the intended experience of the game, as a whole.
Even the camera avatar’s behavior seems to encourage this behavior, by constantly
blocking the path behind the player. You can’t go back, the game seems to say, so
you might as well go forward as quick as possible.

 As a general rule, the spacing of the objects in Super Mario Brothers is about
four tiles high. To accurately recreate the feel of Mario, you need a level that’s built
this way. This is because while the character can actually jump close to five tiles
in height, jumping to an object four tiles high is much easier and drops the char-
acter onto the platform just at the shallow part of the jumping arc. Jumping to a
platform that’s just below the maximum height of the character’s highest jump just
feels better.

 Playable Example

 To experiment, try placing platforms at various heights in example CH13 - 1.
There are platforms of various heights to jump up to. Notice how the four-high
platform matches the jump best. Like Goldilocks ’ porridge. Best reference ever.

 The relative imprecision of the Mario mechanic makes it necessary to give the
player plenty of room for overshoot, in both the horizontal and vertical directions.
Part of that is making most platforms ’ height about four tiles apart. The other part
is stretching all platforms in the game horizontally. Now try removing some sec-
tions of ground in example CH13-1 to see what happens if you construct a level that
has mostly single-tile wide platforms to land on. Again, this hooks into the overall
design goal that the player should be running full speed to the right at all times.
Tiny, single-tile platforms encourage a more plodding approach, where each jump is
considered carefully before it’s executed.

 Another aspect of the context that plays heavily into the tuning of the rectan-
gle’s motion is the movement of enemies in the game. This is something we don’t
normally think of with respect to level design, but the motion of the AI characters
actually has a huge bearing on the way the mechanic will feel. Their motion domi-
nates certain areas of the screen space, changing the player’s ideas about the spatial
topology. An area enclosed by two tiles suddenly becomes a bit of a death trap

RESPONSE

CHAPTER THIRTEEN • SUPER MARIO BROTHERS

222

if there are two turtles wandering around in there. Similarly, jumping up a set of
stairs becomes an entirely different interaction when there’s a hammer brother at
the top. For a striking example, look at the first level in which 10 (the floating cloud
guy who tosses those red spiny bug-turtles) appears. Most of the level is flat with
almost no skillful jumping required, but the entire thing feels hurried and oppres-
sive because of the ceaseless shower of enemies raining down from on high.

 Enemies, and this is no accident, move along the ground at approximately the
same rate as Mario’s maximum walking speed. You can sync up with the speed of
the enemies ’ movement if you drop out of running. The result is that you can jump
into the midst of a group of enemies, walk temporarily for a precise amount of time
and then jump out again without feeling too out of control and without plowing
into the enemies themselves.

 Challenge is also defined by context, as it is in most heavily spatially oriented
games. In the later levels, the jumps become a bit wider, requiring more specific,
precise landings. To further ratchet up the difficulty, you must do a large number of
these precise jumps in rapid succession. At the same time, there are far more ene-
mies. Where once there was one Goomba, there will be three in a row followed by
two turtles. Then things like bullet bills and hammer brothers begin to appear, and
the meaning of even the simplest jump and motion changes. It may seem an obvi-
ous point, but it’s interesting to examine the ways in which challenge is constructed
via the addition of enemies. There’s almost always an optimal path that, if the play-
er’s running full speed, will take him or her through unscathed without too much
hassle. The game feels like a course to be run and perfected rather than like a space
to explore slowly and methodically.

 To get the feel of Mario, you need blocks that are four tiles high and are spaced
far apart horizontally. Pits in the ground are in a range from two blocks wide to six,
with six feeling quite risky to jump across. The difficultly ramp up happens based
on adding more of these wide, difficult jumps. They require a great deal of preci-
sion and force the player to do them in rapid succession. In addition, the later levels
become littered with increasing numbers and increasingly fast and unpredictably
moving enemies. These enemies serve, by their motion, to dominate areas of the
screen space and make it feel more unsafe and oppressive. In the game’s later lev-
els, no place feels safe, and it seems a mad dash of survival to reach the end.

 Indeed, there are lots of one-tile-wide blocks on 8-1 and 8-2, as well as lots of
single-tile pits you can run across. In addition, many pits get as wide as five or
six tiles, which leaves very little margin for error. Technically, Mario can jump 10
horizontal tiles at a full run, but it’s almost never used in the game because it’s so
difficult to do.

 Polish
 Up to this point, what we have is a bunch of rectangles moving and sliding around.
To examine the various polish effects, let’s turn on the character-based treatment.
So as not to infringe, I’ve created “ Scarfman ” as a Mario stand-in.

223

 Playable Example

 Open CH13 - 2 to see the rectangle replaced with a character and the various
tiles and enemies given some kind of representation.

RESPONSE

 First, animation effects. The character has a run cycle. When the motion of the
rectangle is activated, the visual representation now sitting on top of it plays back a
series of frames. It’s a very short and simple series of frames, but it’s an animation
nonetheless, and it conveys some new and different things to the players about the
nature of the object they’re controlling.

 One of the crucial parts of the feel of Mario is that the playback of the frames of
this running animation are synced up perfectly with the simulated motion under-
neath it. This was and is a big deal where feel is concerned; even today many games
don’t successfully accomplish the sense that the avatar is truly and accurately repre-
sentative of the simulated object underneath it. This is typically called “foot slip ” by
animators and is a particular problem in video games because of the unpredictable,
participatory nature of avatar movement.

 The fact that Mario really nailed this relationship between animation and avatar
movement was a big deal, even in this primitive, 8-bit context. The perception con-
veyed is that this is a little guy running along the ground and his feet are planting
at each step because the speed of animation is perfectly matched to the speed of
movement of the object.

 If the underlying simulated object is moving faster or slower than the ani-
mated object, it’s very easy to pick up on that discrepancy. It’s a very subtle clue
but it’s something that humans are very good at observing. We have a lot of prac-
tice observing and coping with our immediate physical surroundings at this tactile,
interactive level, so as soon as something doesn’t match up, it becomes immediately
obvious. The net result is that, in the player’s mind, the animated character and the
moving object beneath become separate entities, which makes it more difficult for
the player to engage in and believe in the reality of the game world. Something is
lost because you can see behind the curtain, see the simulation.

 Another important animated effect is the little slide that Mario does when he’s in
the process of reversing direction. If you reverse direction while Mario’s running, he
puts his hand up and assumes a little sliding pose. In the case of the Super Mario
Brothers, this is not a separate animation that gets played back. Rather, when you
apply the acceleration in the opposite direction, the character slows down. This is
another consequence of Mario’s simulated approach; instead of having a canned set
of frames played back for, say, a foot plant and direction change, the natural force
of the acceleration gradually counteracts the current velocity and Mario slows to a
halt, reverses direction and slowly speeds up going the other way. The animated
effect occurs if and only if the player is holding down a direction which is opposite
from the current direction of the character. So the underlying simulation has not
changed, but the animated effect on top of it is emphasizing and enhancing the

CHAPTER THIRTEEN • SUPER MARIO BROTHERS

224

perception of what’s going on physically with the simulated objects. The character
is running in one direction, the player presses the other direction, the character goes
into a slide until the direction change is complete, and then the character resumes
the run animation (albeit at the lowest speed, speeding up gradually to match the
speed increase of the simulated rectangle). To put it another way, the animation
effects are there to enhance and emphasize what’s happening with the underlying
simulation, rather than wagging the dog the way the animations in, say, Prince of
Persia did.

 Another animated effect that’s crucial to the feel of Mario is the jiggle of bricks.
It seems like such a silly thing, but when you’re small Mario and you hit a brick
from underneath, it sort of jiggles. It jiggles in a very satisfying, very cartoony sort
of way, but it adds a lot to the sensation of interaction. It doesn’t actually affect
the simulation—it doesn’t move the brick, changing its permanent position—it’s
just a layered on animated effect that gives an impression of mass to the character.
This is especially true in the contrast between hitting a brick when you’re small as
opposed to when you’re large Mario. Small Mario causes the brick to seem loose
and jiggly when it’s hit, but that interaction also tells you that small Mario has a
certain amount of mass. If he can jiggle a brick loose, he’s striking with some force,
clearly. When you’re large and you can smash the bricks, it shows you that the
larger Mario is quite a bit more massive. It shows you that where diminutive Mario
simply loosened the brick, big Mario has the force to smash it spectacularly, causing
brick detritus to rain down.

 Playable Example

 Check out how the feel changes if you turn off both of these effects in example
CH13 - 2 to see just how much they sell the notion that this is a physical, malle-
able world.

 Visual Effects
 As we have defined them, there are very few visual effects in Mario. There was very
little processing power to work with on the NES, so there couldn’t be sprays of par-
ticles everywhere to emphasize every interaction. The trend over the years has been
toward more and more visual effects in the Mario game—the recent New Super
Mario Brothers and Mario Galaxy have almost ludicrous amounts of particles flying
everywhere all the time. In the original Mario, everything seems clean and smooth.
There aren’t even modest little puffs of dust or smoke when Mario enters the slide
pose to change directions. It seems as though every surface is pristine and smooth,
without a hint of dust or gravel. The only visual effect of note is the broken brick
particles that spawn and fly down when a tile is smashed. Again, though, look at just
how much is lost if this effect is removed. It just doesn’t feel satisfying to smash
bricks when they simply disappear. Removing this effect removes one of the few,

225

highly important clues the player has to derive notions about the physical nature of
this world.

 Sound Effects
 The sound effects in Mario are paramount. I’ve replaced them in my demos to
avoid infringing on Nintendo’s intellectual property, but note their nature. The ris-
ing, slide-whistle noise for jumping roughly matches the height change of Mario as
he flies upward, further harmonizing with the motion and the sensation of holding
down the button in emphasis to get a higher jump.

 There’s one collision noise—when Mario’s head hits a block or when a fireball
hits a wall—that sounds like a large rubber band being tweaked. It varies slightly in
pitch to stay fresh-sounding, but the impression it conveys is one of a silly, rubbery
world. It fits very well with the jiggle of the blocks when they’re hit by small Mario
and in general convey a sense of jiggly, bouncy movement. This would seem to be
selling a different impression than the smooth, frictionless collision simulation, but
because of the jiggle of the bricks, it matches well and makes the world seem more
alive and the physics more exaggerated than the more staid collision interactions
would suggest.

 The brick breaking sound is particularly satisfying—it truly does convey the sense
of a crumbling stone object, even with the limitations of the NES sound board.

 Metaphor
 Being as iconic as it is, it’s a little weird to look at Super Mario Brothers with an eye
to examining how the metaphorical representation it presents affects our expecta-
tions about how things will behave and act in its world. But humor me here, let’s
take a poke and see what we can see.

 First, let’s give Mario’s treatment a place on the three-axis scale between real-
istic, iconic and abstract. Obviously, Mario’s not realistic. The treatment, such as
it is, is far toward the iconic side of the diagram and indeed begins to creep up
toward pure abstraction. It’s very surreal. What, for example, is a Goomba? What
does it represent? A turtle in Mario looks something like a turtle, but it’s clearly
not attempting to meaningfully convey turtleness, if that makes sense. These turtles
are fast-moving, dangerous creatures. In general, the creatures and objects repre-
sented have very little grounding in meaning or reality. Their meaning is conveyed
by their functionality in the game, which is to present danger and to dominate areas
of space. They’re not abstract shapes and lines either, though. They’re definitely
meant to be creatures of some kind who obey their own bizarre rules of physics and
behavior. They simply tend toward the surreal. There’s very little meaning imbued
in these objects other than the function they serve in the game.

 What does that imply for the way that we expect things in this world to behave?
Well, we’re not grounded in expectations about how these things should behave.

RESPONSE

CHAPTER THIRTEEN • SUPER MARIO BROTHERS

226

We don’t expect that because Mario is slightly portly that when he comes up to a
pipe or some wall that’s taller than he is that he’ll have to heft and sweat his way
laboriously over the top. Because the treatment is so surreal, we aren’t bound by
that expectation. He’s not a photorealistic representation of a plumber. He doesn’t
look like the plumber who came and cleared that hair clog from your shower. We
can accept that he leaps like a flea.

 In its abstractness and surrealness, Mario plays very well into the type of physi-
cal interactions and movements that it sets up. Mario flies through the air like a
flea getting this gigantic, spontaneous upward force and yet needs no wind up, no
anticipation, no pole to vault with. It’s very organic and expressive but it has very
little to do with the way that things behave in our own physical reality.

 But that’s okay because both the metaphor and treatment are surreal. The
abstract and surreal motions of the objects and the way things feel and function
don’t seem odd. Even the interactions between objects, which so often seem like a
block of ice sliding across a gymnasium floor, fit in just fine because of the dream-
like metaphor and lo-fi treatment. The metaphor is setting up very few expectations,
so all bets are off.

 The one place that Mario does actually lean into expectations is in the use of an
iconic human to represent states. Because Mario appears identifiably human, we
can look at him and say ah, yes, he’s on the ground running now, or hey, he’s in
the air jumping now. When he’s on the ground and running along, it’s apparent to
the player that he’s in a different state than when he’s in the air or when he’s swim-
ming. It’s easy to accept that when he’s in the air, he has less control, because it’s
obvious to the player that a different state has been entered. It’s odd that there’s any
control in the air, as this is not the way that things work in the real world, but the
visual cue effectively conveys the change and maintains a sort of logical cohesion,
even if it is rather surreal. You can definitely tell that Mario, as an iconic human, is
in a different state of being when he’s in the air than when he’s on the ground. It’s
a nice visual metaphor for changes in state. It uses the fact that he appears human
to tie in the logic of the states and how they function.

 Rules
 At the lowest level, there are a lot of really interesting rules about enemy interac-
tions that give the player clues about the physical nature of Mario and the world in
which he exists, which ultimately change the feel of interacting with that world. For
example, Goombas are weaker and less substantial than turtles. A Goomba is killed
in one stomp and gets wiped out of existence. A turtle can be stomped and killed in
one hit but leaves behind a shell. The fact that the shell remains seems to indicate
that it is more massive than the body of a Goomba. A shell can’t be destroyed as
easily as a Goomba can be stomped. By the same token, winged turtles seem more
powerful and massive than those without. You have to stomp them twice: once to
knock their wings off—the wings are not very well attached, apparently—and once

227

to knock them out of their shells. There’s this sort of hierarchy of powerfulness
amongst the creatures, from Goomba to turtle to winged turtle. Bowser is the most
powerful creature of all; he can’t be stomped. You have to drop him into lava.

 The other thing all these interactions tell us is that Mario himself is quite mas-
sive. These creatures are all about the same size as him, but he can stomp anything
in the game to death with relative ease. One assumes that his apartment is free of
cockroaches.

 At the medium level, there are three power-ups that have an immediate effect on
the spatial topology. You see them and you want them for the immediate benefits
they convey. So you focus in on grabbing that star, mushroom or fire flower. You’re
going to go out of your way to get it. Unless, of course, you already have the fully
powered up fire flower, in which case the flower and mushroom become meaning-
less and can be ignored. These are temporary effects but each changes the feel of
the game significantly. Going from small to big, you can smash bricks and you can
be less afraid of enemies because if they hit you, you simply turn small again. Fire
flowers enable you to run forward with impunity, dispatching enemies left and right
without having to stomp them. The whole feel and flow of the game are altered
because you no longer have to fear most standard enemies. They no longer domi-
nate certain areas of space, so the game suddenly feels more open. The star is the
ultimate temporary power-up, enabling you to run through enemies at leisure. With
the star, the challenge is temporarily reduced to jumping exclusively. This feels more
open, more free.

 Finally, at the highest level of long-period rules, there are 1-ups and coins. Score
in the game is mostly irrelevant, a throwback to an earlier age of arcade gaming. I
never pay attention to or try to beat my score in Super Mario Brothers. Extra lives,
however, I’m very interested in. Super Mario Brothers is a difficult game and you
are given only three lives at the outset, leaving very little margin of error. When I
see a 1-up mushroom, then, I get very excited and immediately focus all my atten-
tion toward attaining it. But the desire is tempered by the knowledge that if I die in
the attempt, the effort will have been wasted. The reward is almost directly propor-
tional to the risk. It feels like walking on eggshells. By virtue of the rules—lives are
the rarest commodity and there are very few of them—it seems like the highest pos-
sible reward, so I’m willing to undertake a huge risk to get it.

 Coins give a low-level sense of constant reward. Because collecting 100 coins
gives you a huge reward, an extra life, it always feels like you’re doing something
useful as you collect them. Useful, but mundane. It’s not like the excitement of the
fast-moving extra life mushroom. You might go a little out of your way to collect a
coin, but you wouldn’t risk dying over it.

 So in order for a game to feel like Mario, the metaphor should be surreal. It
doesn’t have to be an Italian plumber running around huge pipes and dealing with
abstract, surreal monsters that vaguely resemble turtles and bullets, but putting
Mario with the movement he has on a street corner in downtown New York will
seem a bit off. Similarly, a photorealistic treatment will clash with the surrealism
of the movement and interactions. To have that Mario feel, the treatment should be

RESPONSE

CHAPTER THIRTEEN • SUPER MARIO BROTHERS

228

iconic, bordering on the purely abstract. Again, it doesn’t have to be Mario specifi-
cally. As Scarfman shows, though, it ought to be a little guy.

 Summary
 Bet you’ll never look at Mario the same way, eh? I know that I certainly don’t after
such an in-depth examination. The other major takeaway here is that game feel,
even in a seemingly simple game like Super Mario Brothers, is really freaking com-
plex. All the tiny little decisions that meld together to comprise the feel of Mario
boggle the mind. Especially in the area of simulation and response to input, there
are a surprising number of small but important decisions. This examination gives us
a nice vocabulary for addressing things like whether the game keeps track of accel-
eration and velocity or whether it’s simply tracking and updating position and how
that will change feel.

 At this point, then, you should have a very clear idea of the depth of detail that
goes into creating a good-feeling game. If you’re creating a game from scratch, you
must be prepared. Keep your mind open to the possibility of changing any part of
the system with the goal of improving the feel, the perception. As Mario proves,
even things that seem hacky, such as artificially setting a jump velocity in the
middle of a jump, may turn out to feel better than a more pedantic approach to
simulation.

229

CHAPTER
 Bionic Commando

 Bionic Commando was released in December 1988 for the Nintendo Entertainment
System. At the time, the notion of the “ platformer ” game had been so well established
by Super Mario Brothers, it was difficult to imagine a similar game that was not, at
some level, a Mario clone.

 Many companies scrambled to capitalize on the apparent gold rush by differenti-
ating without deviating; they created their own characters and worlds in an attempt
to separate them from the hoards of similar product, but always emulated the feel
and functionality of Mario. The recipe for a platformer, as set down by Mario,
seemed clear and immutable and woe to those who tried to stray too far from it.
The one staple, the one ingredient that seemed non-negotiable, was jumping.

 Then came Bionic Commando. Not only is it one of the best-feeling games ever
created for the Nintendo Entertainment System, but it asks a fascinating “what if ”
question: What if we made a platformer where the avatar couldn’t jump? What
would that be like?

 Bionic Commando answers this question with the eponymous bionic arm.
Instead of jumping, the character can make a fulcrum of anything, connecting to
and swinging from most objects in the game. The construction of the bionic grap-
pling claw and exactly how it’s meant to integrate with Ladd, the commando in
question, is unclear. But as a means of transportation it enables the character to
swing around with a loping, easy grace. This is especially apparent when contrasted
with the rigid movement of the character on the ground. On the ground, he feels
like a lump, an unappealing blocky chunk of matter that ambles along without
inertia or appeal. As soon as he starts swinging, he comes to life. In swinging, the
control feels expressive, improvisational and liberating. It feels like a continuous
process of cheating gravity, saving yourself from falling at the last possible moment
over and over again. In that respect, it’s similar to juggling, unicycling or riding
a bike.

 It’s almost as though the character is a performer in Cirque de Soleil. While
everything else in the world seems bound by the simple, boring rules of reality,
Ladd is free to break through with unexpected skill, soaring around the world in a
way that seems improbable but not impossible. That sense translates to the player’s
impression of control. Personally, as I play the game, I feel as though I’m learning a

229

 FOURTEEN

CHAPTER FOURTEEN • BIONIC COMMANDO

230

complex skill, but one that is grounded in a mundane reality. The feeling is analo-
gous to learning a new skill, like juggling, in the real world.

 Now let’s see how this effect was achieved, applying our taxonomy of game feel.

 Input
 In Bionic Commando, the NES controller is used in a way very similar to that of
Super Mario Brothers. There is a lot less chording of inputs and a lot more empha-
sis on states, but the usage is similar enough to gloss over. Just recall that the NES
controller has the directional pad and two buttons, A and B, and is a simple input
device (Figure 14.1). There are six buttons used for active gameplay, and each of
those buttons is very low sensitivity. Taken as a whole, it’s a very low-sensitivity
input device.

 The shape feels good to hold, it has a satisfying weight, and the smooth texture
is pleasing to the touch.

 Response
 As with Mario, if you want to create a game that feels the same as Bionic
Commando, you’re going to be dealing primarily with response. Unlike Mario, how-
ever, Bionic Commando relies on animation more than simulation for its expres-
sive feel. This illustrates once again our principle that game feel exists in the player
rather than in the computer. It’s all about how the player perceives the motion and
control rather than the accuracy or robustness of the simulation. This is particularly
evident in Bionic Commando, where there is almost no simulation of the sort found
in Super Mario Brothers.

 F I G U R E 14.1 Each input on the NES controller is a simple button with two states, “ on ” or “ off. ”

231

 As always, the first things to examine are the objects that move in response to
a player’s input. What are the avatars and how do they move? Like Mario, Bionic
Commando has two avatars: the main character, which is directly controlled, and
the camera, which is indirectly controlled.

 The character, Ladd, has freedom of movement in the same XY plane as Mario
(Figure 14.2). He moves horizontally, left and right, and he’s able to swing up and
drop down. The motion is relative to the view; pressing left on the directional pad
moves the character to the left of the screen and vice versa, and there is no rotation.

 Horizontal Movement
 With respect to horizontal X-axis movement, the game is only tracking the position
of the avatar. Unlike the rudimentary simulation of Newtonian physics that Mario
uses, there’s no acceleration or velocity. When you press left on the directional pad
button, the character goes immediately from standstill to his maximum speed run,
with zero acceleration. On or off, full speed or standstill, just like Donkey Kong. So
there’s very little simulation here. The input passes directly into the motion of the
character. Hold down the button, he’ll move at his maximum speed in one direc-
tion. Press the other direction, he doesn’t decelerate or accelerate, he just moves full
speed in the other direction. That’s where the sort of stiff, robotic feel comes from.
You release the button and he stops immediately with no semblance of an organic,
fluid motion (Figure 14.3). Nothing in our world moves like this, so the impression
can only seem robotic. There’s a certain tradeoff in the precise, per-pixel position-
ing of the character that’s possible, but there’s certainly no intrinsic appeal to this
motion. By itself, this motion could not carry a game.

RESPONSE

F I G U R E 14.2 Ladd moves in two dimensions, X and Y.

CHAPTER FOURTEEN • BIONIC COMMANDO

232

 In terms of vertical movement, the character can move in Y direction by falling
and by using the grappling claw. There is no jump. All vertical movement happens
via the grapple, which shoots out in one of three possible directions relative to the
character: vertically, horizontally or diagonally (Figure 14.4).

 Vertically, the motion is fairly staid. If the claw latches onto something, you can
pull yourself directly up. If the thing you’re latched onto is a particular type of tile,
the character will pull through the platform and end up standing on top of it. It’s a
predetermined, animated motion, with no player control other than initializing it at

 F I G U R E 14.3 There is almost no attack phase in the horizontal movement of Bionic
Commando.

F I G U R E 14.4 The grappling claw can shoot out in three directions relative to Ladd.

233

the start. Horizontally, you can attach the grapple to barrels and certain walls and
pull yourself toward them. In the case of both of these grapple directions, when you
hook onto something, the result is not very dynamic. There are interesting-feeling
interactions between the claw and enemies, which we’ll get to when talking about
polish and collision, but the default, connect-to-something interaction feels plain,
rigid, dull. The real expressivity of Bionic Commando comes from the diagonal
firing of the grappling hook.

 When the grappling hook is fired diagonally and connects to something, the
character enters the swinging state. The swing state is what the feel of Bionic
Commando is all about. Interestingly, the swing is not at all simulated. There are no
parameters being tracked for acceleration or velocity. It’s just a predetermined set of
frames, played back linearly, which show the Bionic Commando character swings
back and forth like a pendulum.

 At the apex of the swing, the frames are closer together, indicating a change in
speed as he reaches the end of the arc, reverses direction and swings the other way.

F I G U R E 14.5 The feel of swinging comes from the playback of animation rather than
simulated parameters.

RESPONSE

CHAPTER FOURTEEN • BIONIC COMMANDO

234

Likewise, he accelerates through the swipe of the arc. This is nothing particularly
revolutionary; the same effect is used to convey the acceleration and slowdown of
an animated ball bouncing (Figure 14.6).

 This is how animation works. An animator makes things appear to speed up or
slow down by grouping drawings closer together or pushing them further apart. If
the drawings are grouped closer together, the impression is that the object is slow-
ing down. As they separate, the object seems to speed up. This is a great-looking
motion because it’s well animated. The perception is of a fluid, arcing motion. What
differentiates the swinging in Bionic Commando is the fact that the predetermined
frames contain information about position. As the swinging frames are shown, the
game maintains information about the position of the character at each frame of the
swing, which is used for things like damage and collision. The feel, though, is of a
smooth, hypnotic pendulum.

 The character will exit the swinging state if the corresponding directional pad but-
ton is held during the apex frame. That is, if you’re swinging from left to right and
you hold down the right directional pad button, the character will release and fly off
to the right. The horizontal velocity is not variable, mind you. You don’t get more
or less velocity for swinging more or less, but you do get launched in the direction
you were moving which, because the release always happens on the same frame of
the swing animation, is a slightly upward horizontal trajectory. From the player’s
perspective, you hold the button for the direction you want to release for some time
before the actual release happens. The result of this pre-holding is a sense of push-
ing the character in the direction you want him to go, anticipating the release. This
is very interesting, as holding the button has no ramification for the playback of the
swinging state frames unless it happens on one of the two apex frames and is in

F I G U R E 14.6 The appearance of a ball bouncing as conveyed by frames of animation
played back in sequence.

235

the proper direction. But the sense is that you’re pushing the character the way you
want to go, nudging the pendulum in the right direction. It’s sort of a placebo sen-
sation, something akin to waving your hands at a bowling ball after you’ve thrown
it down the lane. Again, it’s all about the player’s perception. It feels as though
pushing on the directional pad affects the momentum of the character, so the
reality—that the game could care less about input unless it’s at the apex frames—
is irrelevant. It is at this point, at the moment the character releases from the swing,
that gravity takes hold.

 What’s interesting about the application of gravity in Bionic Commando is that it
is the only truly simulated parameter in the entire game. Unlike when the character
is running on the ground (having only his position set each frame or swinging back
and forth with predetermined frames of animation), when the character is affected
by gravity, he has velocity, downward acceleration and position. This is the only
motion that uses any sort of simulated Newtonian physics. Even when he walks
off a platform, the fall is slightly artificial. The character accelerates downward
when he walks off the edge of a platform, eventually reaching the terminal velocity,
but the game is setting that value artificially high as soon as you step off the plat-
form. So when you step off the platform, immediately you are sort of flying at this
artificially high speed. As soon as you step off the edge, it gets set higher than
it normally would be. It doesn’t start at zero and ramp up slowly. And that feels
pretty weird.

 When you release from the grappling hook and you’re flying through the air,
though, the gravity takes hold very gradually, very naturally, and feels organic.
Eventually, as with Mario, the fall caps out at a terminal velocity to prevent weird,
uneven-feeling falls from various heights. In a sort of inversion of the way gravity
in Mario functions, you’re soaring through the air in a beautiful arc, flowing up and
down with different wavelengths. And once you’ve released, you’re immediately
free to attach to the next point. Any other valid object, any other pixel on the entire
screen can be connected to as long as it’s flagged as such. So there’s this wonder-
ful expressivity in swinging, releasing, swinging, releasing, as you fly around, and
you can connect to almost anything. The sense is one of masterful improvisation, of
freedom to use the environment as you see fit. If you were to play the first level 100
times and trace the paths of motion each time, the results would be different curves,
different motions each time. As they would be with Super Mario Brothers.

 Again, this all comes from the simulation of vertical motion. The simulation of
this one parameter—gravity—serves to create a graceful, flowing feeling. The speed
of horizontal motion is hard coded, as it is in all other instances.

 Another thing that adds to this feeling of expressivity is that the swing, the arc
of the pendulum, is based on the length of the chain. The grapple fires outward
at a certain rate, and as soon as it contacts a surface, it either attaches or retracts.
So as you are flying through the air or if you are sitting on the ground and you fire
the grappling hook out, it can connect at a shorter or longer length, depending on
how far away the object is that you’ve connected to. If it’s far away you get the
full swing, and it will be a large sweeping arc. When it’s a shorter chain, you get

RESPONSE

CHAPTER FOURTEEN • BIONIC COMMANDO

236

a much smaller arc. It still plays back the exact same frames of animation but it
reduces the horizontal distance between the frames proportional to the length of the
cable. The result is that a short swing back and forth takes the same amount of time
and it plays back the same frames as the maximum length swing. It simply travels
less distance horizontally. You even get the same amount of vertical and horizontal
movement upon release. The reason this is more expressive is because as you are
swinging around, the arc that you are flowing through can be less or more, greater
or smaller depending on the length of the grapple. You have a lot of choice about
when you fire the grappling hook, and you can really use that ability to choose the
length of the swing as you move from one connection to the next.

 Collision
 The collision model in Bionic Commando is fundamentally the same as the collision
model in Mario. The implementation is more or less identical, but the feel is totally
different. While Mario feels like a block of ice gliding along smooth wood flooring,
the character-to-ground interaction in Bionic Commando feels sticky and somewhat
unnatural. The collision code still checks to see where the character is going to be
in the next frame and places him on top of tiles he’s not supposed to be able to go
through, but because the basic horizontal movement is not loose at all, the sensation
is difficult to reconcile with an everyday experience. Instead of a block of ice sliding
loosely across a smooth surface, it’s like trying to slide a box of Arm and Hammer
across a patch of carpet. But even less physical-feeling than that: there’s no sense of
friction, no matter how small. Nothing in our experience of everyday life behaves
the way Ladd does when he runs horizontally across his environment.

 The main difference between the collision of Mario and that of Bionic Commando
is that there are tiles which Ladd can pass through under certain circumstances. This
happens because there are two types of tiles that can be collided with: connectable
and impassable. A tile can be “ flagged ” as one, the other or both simultaneously.

 A connectible tile is one the grappling hook can attach to. You can’t walk through
it—it’s considered solid when you’re running on the ground—but any pixel on a
connectible tile is a valid connection point for the grapple claw. In this sense, all
tiles are considered solid when you’re on the ground. In the air, on the other hand,
all bets are off. If you are running around left and right on the ground and you bonk
into a barrel or a wall, the collision code will stop you. If you connect to that same
connectable-flagged tile, start swinging and then release such that your trajectory
takes you up into the tile, you can swing partially through it. If the platform’s thick,
you can swing, release to boost up into it, and then connect again to a higher point
even as the character is overlapping it, inside it. Once you reach a certain height
within the object, if you detach from your swing again, the collision will think your
feet are colliding with the platform you’re currently in and you’ll snap to the nearest
valid ground tile above it, landing on it as though you’d fallen from above. You can
use this to climb through platforms.

237

 Impassable tiles can’t be connected to or penetrated under any circumstances.
Even the swinging trick will not allow Ladd to pass. This makes for cave and tunnel
ceilings that feel extraordinarily thick and solid. Assuming that the tiles are flagged
as both connectable and impassible, of course. If tiles are flagged just as impassable,
the grappling hook will ricochet off of them without connecting. If you flag a tile as
both connectible and impassable, the result will be that the character can connect
to it, can swing off of it, but if he tries to swing up into it, his head will just bang
against it and he’ll fall off.

 Another factor, which is an aspect of the collision system, is that because the
collisions are turned off while you’re swinging, if you are swinging in a horizontal
arc and your arc takes you to the point where you would be inside an impassably
flagged tile, the character will bounce off and go into a special state where you
cannot fire the grappling hook at all. You can’t control him again until he touches
solid ground.

 Camera
 In Bionic Commando, as in Mario, the camera is indirectly controlled. The cam-
era follows the position of the character avatar, which is controlled by the player.
The levels scroll much farther vertically and horizontally than in Mario, however,
so there’s a high-level sense of freedom, of unbounded motion. This is crucial to the
feel of Bionic Commando. Without this freedom, the swinging mechanic becomes
cramped and claustrophobic; the context is wrong for the tuning of the avatar. This
was a problem for the feel of the 2004 swinging/grappling game Wik and the Fable
of Souls by Reflexive Entertainment. The treatment, metaphor, highly polished ani-
mations and visuals and mouse-driven control are all much more expressive and
beautiful than those of Bionic Commando. But the screen in Wik and the Fable of
Souls does not scroll, constraining all motion to a single unmoving frame.

 A swinging mechanic of this type needs room to breathe, room to roam. This
is a context concern, as it’s all about how the spatial layout affects the feel of the
mechanic, but I mention it here because the camera in Bionic Commando moves
freely most of the time so the contrast is difficult to imagine. The camera will pan
happily up, down, left and right unless it reaches what is defined as a screen edge
zone, at which point it will stop scrolling and the character can run all the way to
the edge of the screen and push against it as though it were a solid bank of tiles,
which it effectively is.

 The only special behavior of the camera, apart from stopping at the various
screen edges (vertical or horizontal), is a dead zone at the center of the screen.
When Ladd is within this zone, the camera does not track his motion at all. As soon
as he crosses the threshold and moves out of the zone, the camera begins tracking
on his position again. In the running state, this dead zone of non-movement for
the camera extends to take up about a third of the screen, centered horizontally
(Figure 14.7).

RESPONSE

CHAPTER FOURTEEN • BIONIC COMMANDO

238

 If you stand in the dead center of the screen, you can run about one-sixth of
the total screen distance to the left or right before the camera starts panning with
Ladd and tracking on him. So from the center of the screen, there’s a rather large
area where the camera simply won’t track on the character at all, but as soon as he
crosses that threshold, the camera will track on him at exactly his movement speed,
keeping him in exactly the same relative position on the screen.

 This horizontal dead zone affects the horizontal motion of the camera only.
There is a separate dead zone affecting the vertical motion of the camera. The verti-
cal dead zone does not affect the horizontal-only motion of running left and right.
Instead it comes into play when the character is falling or swinging (the only times
when the character can move vertically, either up or down). When the character
swings upward, he can fly upward a ways before the camera starts tracking on him,
and the same when he falls. If you walk off a platform, or if you are dropping from
a swinging state, it will take a little while for the camera to track on the character
as he falls first through the dead zone, which doesn’t move the camera, and then
when he hits the edge of the dead zone, at which point the camera will start track-
ing on him at the speed he’s moving. Compared to the horizontal dead zone, how-
ever, the vertical one is narrow (Figure 14.8).

 The last small detail that affects camera behavior is the changing size of the dead
zones. As soon as you connect the grappling hook to a point and start swinging, the
horizontal dead zone gets a lot larger, so you can swing almost all the way out to
the edge of the screen. It’s a much larger dead zone than simply the one-third of the
screen. The resulting feel of these dead zones and their changes relative to states

F I G U R E 14.7 There is a “ dead zone ” for camera movement in the center of the screen. When
the avatar is inside it, the camera does not move.

239

is twofold. First, because the dead zone when swinging is much larger, the camera
often goes from moving to stopped at the moment the grapple attaches. This serves
to improve the feeling that the grapple is anchoring the character to a particular
spot. Second, the potential for nausea with such a lively character is surprisingly
high. If the camera were to track on the character at all times—during the pendu-
lum swinging motion, especially—the game would be nearly unplayable.

F I G U R E 14.8 The dead zone for vertical movement is much narrower in the vertical (Y)
dimension.

 Playable Example

 To experience this, try changing the horizontal and vertical dead zones in
example CH14 - 1 to zero.

 Context
 The high-level layout of levels in Bionic Commando conveys a sense of openness
and freedom. The camera is fixed from a side perspective, meaning the player can’t
see what’s past the edge of the screen, but because the motion of the camera is free-
scrolling, the feel is open, unbounded. The camera keeps scrolling and scrolling, up
and down, left and right, as Ladd moves, giving the impression that the world goes
on forever. Or for some distance, at least.

 This gives a sense of exploration and discovery, of freedom. Knytt, a side-
scrolling game by indie auteur Nifflas, takes this type of freedom to its beautiful

CONTEXT

CHAPTER FOURTEEN • BIONIC COMMANDO

240

extreme by creating a world that seems to go on forever, screen after screen, world
after world. However, this is different from the sense conveyed by games such as
Shadow of the Colossus or Oblivion, which enable you to stare at a point in the dis-
tance and then ride off to find that point. The view in Bionic Commando is narrow,
focused. The impression of a large, sprawling area is there, but you must view it
with blinders, one screen at a time.

 As noted earlier, this sense is bounded by the edge of the screen, but only in cer-
tain places. Within the game itself, it’s possible to get a sense of how a constrained,
claustrophobic arrangement of space affects the overall feel—in each Neutral Zone,
there is a single-screen room. Try swinging freely around this room. It just isn’t hap-
pening. Even when you get connected to a surface, anywhere you swing will take
you right into a wall. Now imagine if every level were constrained to one screen like
this. Yowch. Thankfully, most of the levels are laid out in a long, stretched horizon-
tal pattern without much to constrain the character’s motion or to limit his or her
space. The overall feel is one of openness and freedom. The levels that embrace this
type of layout, like the first level, are the best feeling levels. Those that stray, hem-
ming the player in and taking away the freedom to improvise and swing around,
take away much of what makes the game feel good.

 At the level of immediate object avoidance and path plotting, Bionic Commando
generally feels more like a sparsely attended mall than a crowded sidewalk. There
are the occasional things to be avoided, but there’s no real need for constant
worry about what’s moving toward you and how to avoid it. Because the swinging
mechanic in itself requires so much focus, adding other objects to avoid and deal
with is not strictly necessary. Accordingly, though they often appear cluttered with
obstacles, most of the levels are deceptively open due to the fact that, when swing-
ing, the character can move through many vertical platforms. Unless something is
flagged as impassable, it’s more of a resource to be utilized than an obstacle to be
avoided. This means that the only things that really provide mid-level spatial con-
text, changing the feel at the level of immediate spatial avoidance and path-plotting,
are impassable tiles, enemies and enemy projectiles.

 As the levels progress, the trend is toward providing fewer and fewer connect
points and toward enemies that dominate larger and larger areas of space. For exam-
ple, one later level features a purely upward climb, ascending a tall tower. The higher
you get, the fewer places to connect are provided. Fewer connection points mean a
greater chance that you’ll fall and have to start climbing all over again. At the same
time, there are flying enemies whose attack is a lightning beam of sorts that swipes
across the top of the screen, taking away most available possible connection points
in the places the player most wants to go. This may be a bit of a mistake on the
part of the designers; the best levels are those which provide a lot of texture, a lot
of places to connect the grapple. On the earlier levels, especially the very first level,
there are a huge number of possible connection points relative to where you’re try-
ing to get. What this does is give you a huge amount of expressivity and improvisa-
tion. Functionally, if you have an entire area where all the platforms are flagged just
as “connect ” and not as “ impassable, ” you can go and swing anywhere and it feels

241

great, it’s awesome. It’s by far the best-feeling part of the entire game when you
can approach an enemy who’s shooting at you from behind a barrel in any number
of different ways. You could do it 100 times and each time it would be something
slightly different.

 In the later levels, you end up in situations where you have to do a whole series
of swings connecting to nothing but loud speakers or lights or whatever those tall
things are at the top of poles, meaning that your potential connection area is very
small relative to the total area of the screen. These things detract from the pure,
improvisational feel on display in the earlier levels. You have to think about what
you’re doing so you time things correctly, but they dominate such a huge area of
the screen that you lose that expressive feel. As soon as you start taking away con-
nection points and screen space, you lose the ability to improvise and do all these
other interesting, expressive things.

 The impression of speed in the game comes from the motion of the static back-
ground objects, which have a great deal of texture and variety. Things in the envi-
ronment move quickly, relative to the character, creating the illusion of motion.
There’s not much to tell besides that, apart from the difference between the hori-
zontal and vertical motions. When swinging, grapple after grapple, at the longest
length of the grapple, the player moves much more quickly horizontally than verti-
cally. You can pull quickly upward with a purely vertical grapple, but in general, the
perception is that the horizontal speed of the character is much faster than the verti-
cal. Except for falling, of course, which seems quicker than any motion in the game.

 We discussed the lowest level of context, the physical collisions and interactions
between objects, earlier. Again, on the ground it’s like a box of Arm and Hammer
on rough carpet or something. In the air, the character only collides with impassible
tiles, so the impression is one of being above or apart from the world, soaring past
it. When you do collide with an impassable tile in the air, it’s like having your wings
torn off. I always feel a bit like Icarus as I come crashing down. Mythological, this
is, not Kid.

 Polish
 In terms of polish effects, the real selling point for the impression of physicality of
Bionic Commando lies in the character’s animations and the sound effects triggered
by the grapple claw. The animations of the character include subtle clues like stand-
ing on tiptoe and reacting in an appropriate and satisfying way when the grappling
hook gets fired upward. These animations alone sell the sense that this character is
solid and real, made of flesh and metal. You can really feel him shift his weight on
his feet, even though all that’s happening visually is a three-pixel change. The sub-
tle weight shift enables us to see the results of launching the grapple and it seems a
hefty, solid, metal object.

 Another great animation is in the firing of the grapple. As the grapple is
launched, the character counterbalances by raising his back foot up as he fires.

POLISH

CHAPTER FOURTEEN • BIONIC COMMANDO

242

As soon as the grappling hook gets attached to something, he immediately plants
his foot down and seems to shift his weight back again. It’s a very subtle visual cue,
but it’s masterfully executed and it conveys perfectly the sense of physicality of the
character. (I had always assumed—based on the animations, really—that the reason
Ladd couldn’t jump was because of the weight of his giant metal arm. Ten frames
of animation, and I’m inferring that his body has so much metal in it that he can’t
jump. Talk about bang for buck!)

 Another animation that goes a long way toward selling this world and the objects
in it as real and physical is the pendulum animation. Ladd swings back and forth,
easing out at each apex before doing a snappy about-face and swinging back the
other direction. Tremendous. It’s just a series of positions defining space, but also
the shape of the character as he moves through there really conveys the sense of
swing and motion, and it’s all being done through this series of frames. Kudos go
to the animator for getting the most out of very few pixels, conveying the sense
that the character is swinging back and forth, slowing down at the apex of the arc,
reversing direction, and swinging back.

 Another great animation effect is the satisfying bounce of the green and white
collectibles that are spawned when you destroy certain enemies. They bounce sat-
isfyingly with a parabolic arc that’s similar to the bouncing-ball animation that we
looked at earlier. They slow at the top of the arc and gradually bounce to the floor
as they lose momentum. The fact that you can grab these out of the air with the
grappling hook feels wonderful even though it is essentially just a proximity check
that snaps the object to the grappling hook. The impression that you get is this
wonderfully tactile sense that you’ve reached out and grabbed this thing and you’re
pulling it back to yourself, making the little grappling hook a surrogate for your own
hand. It feels like reaching out to grab a bouncy ball you’ve dropped onto concrete.

 Sound effects also sell the physical nature of this world. There are no visual
effects to speak of—most likely because of a processing power deficit—so it’s up to
the animations and sounds to convey everything.

 The most important sounds are those caused by the grapple itself. The sequence
starts with the grapple extend sound which, like the jump noise in Mario, is a rising
tone. It matches the animation of the grapple cable extending outward in the same
way that the rising slide whistle tone in Super Mario Brothers matches his upward
movement as he jumps. If the grapple does not connect to anything, there are no
further sounds. If it does connect to something, the result is an extremely satisfying
“ ka-chink! ” As simple as it is, it still manages to convey a sort of reverberation, a
series of two quick sounds. Most players interpret it as an impact followed by the
claw closing and digging into the surface. It’s awesomely effective for what it is. It
makes the claw feel like metal and the surfaces feel like crumbly stone. Finally, if
the grapple hits a surface it cannot connect to, the result is a dull, rubbery thud.
These three sounds will be heard hundreds of times over the course of the game.
Every time the character moves, the noises indicating that the grapple is extend-
ing and connecting or rebounding play. In the case of Bionic Commando, these
sounds sell a heavy, metallic set of interactions very effectively. There isn’t a whole

243

wonderful palate of sound effects to work with on the Nintendo soundboard, but
they really nailed it with these three sounds.

 Overall, the few polish elements in Bionic Commando convey what they have
to: a sense that the character has some weight and heft, that he’s made of flesh and
steel, and that his bionic claw interacts with the environment at a powerful tactile
level. Things that seem to me conspicuously absent are a reasonable grunting noise
for when the character is hit (he squeaks like a kitten), a noise for destroying large
objects such as walls and cranes (there is no sound whatsoever) as well as footsteps
for the character and enemies.

 Metaphor
 Conceptually, the character in the game appears to be a little army man. He hap-
pens to have a metallic, bionic arm, though, so one assumes that the character is
not intended to be realistic. Later in the game, this impression is reinforced by the
fact that you encounter crane-riding midget soldiers, bizarre insects and animals,
and flying jetpack soldiers with what appear to be Ghostbusters-style proton back-
packs. Everything’s a bit absurd.

 Harmonizing with what’s conveyed conceptually, the treatment matches this sur-
real-but-real metaphor with a colorful, blocky, iconic aesthetic. The characters and
enemies are distorted icons of themselves with no particular attempt toward real-
ism. Most things are identifiable—a moth monster, a soldier dressed in red, a soldier
throwing grenades—but they’re far toward the “ meaning ” side of the scale. That
said, the representation is less surreal than that of Mario, and so there are a few
more expectations set up for the player about the way that they’re going to behave.

 In terms of expectations, one expects that a cartoony army guy will run around
with some weight and presence, but that his physics may be commensurately car-
tooned. In other words, because the treatment is so colorful, there’s not much set
up about expectations beyond the basics of moving and running around, and the
effects of gravity and so on. It’s a little bit inexplicable that he wouldn’t be able to
make a little tiny hop over a small barrel, but the way they’re selling it, it almost
looks as though he’s huge and heavy and is not only imbued with a large, heavy
grappling hook arm thing but also might have a body made of metal or some part
of him is bionic and made out of metal. Perhaps he needs to use the grappling hook
to move himself around because he’s so heavy and ponderous. The air seems to
be his natural environment. This is the element of metaphor which makes Bionic
Commando so satisfying—Ladd swings through the air like a monkey, Tarzan or
Spiderman, tapping into a common childhood fantasy about cheating gravity.

 Rules
 Bionic Commando, like Mario, features a hierarchy of power, based on the relative
health of the various enemies. Like Goombas, the army guys that run left and right

RULES

CHAPTER FOURTEEN • BIONIC COMMANDO

244

or parachute in are very weak. You blast through them in one shot of any weapon.
The enemies who crouch behind barrels take three hits to kill with your most basic
weapon, so they seem immediately more powerful through the low-level rule of
having more health. And so it goes, up to the larger bosses who take many shots
to kill with the most basic weapon. As you move through the game, you find that
there are these different classes of guys. You’ve got your guys who take one hit to
kill (the most basic and simple guys), and then you have stuff that takes a couple of
hits to kill and it makes sort of a different noise when it gets hit before you are able
to destroy it, so those guys seem a lot more powerful. Through the low-level rule of
health, you have a lot of interesting indications about the sort of mass and solidity
and physical nature of the objects that you’re shooting at and eventually destroying.
Certain enemies appear throughout the game, and each enemy type will always take
the same number of shots to destroy, so they provide a benchmark for how power-
ful your weapon is. If your weapon is more powerful, they take fewer hits to kill.

 At this same low level of interaction, the player has health. This is an arbitrary
rule that lends a sense of toughness—or fragility—to the player. It’s very interesting
that at the start of the game, the character can be killed in one hit. He is “ green ”
both literally and figuratively. As you destroy enemies, they drop small packets.
Collecting enough of these will add a health box, a small green icon, at the top
left. From the point at which you’re awarded your first health box, when you’re hit
by an enemy or enemy bullet, you lose a health box rather than an all important
continue (or life, if you like), which will be lost if damage is received and there are
no remaining health boxes. You can have as many as 10 of these health boxes, so
they can be a powerful bulwark against damage. Interestingly, the amount of dam-
age an enemy inflicts on the character with a particular interaction gives a sense
of the power of that interaction. Running into an enemy or being hit by an enemy
bullet subtracts only one health box, where hitting spikes will cost you three. It’s
odd, but bullets hurt as much as running into an enemy’s foot. Pits make you lose
a lot of health. They are a lot more dangerous than being shot by or colliding with
an enemy.

 This health system extends upward to a higher-level rule about continues. If you
run out of lives, it’s game over. This makes you think very carefully about your
immediate environment when your health has dropped to zero, because lives
are the rarest commodity in the game. You can find them, but they’re quite rare.
They’re important because if you lose all of your lives, you lose and have to start
over. There’s no such thing as a save game in Bionic Commando. To defeat the
game, you must play through the whole thing, beginning to end, in one session. So
when you start to get low on health, it really heightens your senses and makes you
think a little more closely about what you’re doing.

 Hooked into the health of enemies are the rules related to weapons and their
relative strengths. Certain weapons of yours do more damage and so seem more
powerful. For example, the rocket launcher destroys things that the normal rifle
takes two or three hits to destroy. In the contrast between the two results, the rocket
launcher is given a sense of being more powerful.

245

 The final thing to look at with respect to rules is the feel of shooting. The
B-button is mapped to a basic shooting mechanic, which creates a new object each
time the button is pressed. The new object is a bullet, which launches in the direc-
tion the character is facing and fires off in the direction of that velocity at a con-
stant, predetermined speed. The “ rule ” that changes the feel is the same one in
Megaman: only an arbitrary, finite number of shots can be on the screen at a given
time. For example, if you fire two shots and they have to travel the full width of the
screen before disappearing, you’re not going to be able to fire another shot until
the first of those shots has traveled off the screen, which can take a substantial
amount of time. Whereas if you are standing one or two tiles away from the thing
that you’re shooting at, both of those shots will be destroyed and cleared from the
imposed constraint on the total number of shots very quickly, and you’ll be able
to shoot again immediately. The practical upshot of this is that when you’re much
closer to the object that you’re shooting at, you can fire much more rapidly. The
interesting feel here is that the farther away your target is, the more precise you
have to be with the shots, while when you get really close, you can just really mash
on the shot button and get a quick reaction, about as quickly as you can press
the button.

 Summary
 Bionic Commando broke new ground and showed that a “ platformer ” game didn’t
have to be a Mario clone to have great game feel. It achieved this with a character,
Ladd, who couldn’t jump, and who seemed bulky and clumsy on the ground, but
who could move effortlessly through the air by swinging on his bionic grappling
claw. In swinging, Ladd comes to life. The control feels expressive, improvisational
and liberating, a continuous process of cheating gravity, saving yourself from falling
at the last possible moment over and over again. Like an albatross, on the ground
he was clumsy and outside of his “ natural ” environment—but in the air, he was an
absolute joy to experience.

 The designer of Bionic Commando, Tokuro Fujiwara, achieved an optimal
mix of game feel elements. In particular, the expressive feel of Bionic Commando
comes from the diagonal firing of the grappling hook and the vertical movement of
the character. The perception of a fluid, arcing motion is very powerful. Fujiwara
achieved a wonderful sense of freedom in swinging and releasing as you fly around.
And the fact that you can connect to almost anything gives the game a sense of
masterful improvisation, of being able to use the environment as you see fit.

 Bionic Commando proved that it was possible to have flowing, organic sensa-
tions of control using the low-sensitive inputs of the NES controller and without
directly cloning Mario. That the feel is so good is a remarkable testament to the fact
that game feel ultimately lives in the mind of the player. The playback of a series of
10 animated frames combined with the ability to attach to any point on the screen
gave the game its great feel.

SUMMARY

This page intentionally left blank

247

CHAPTER
 Super Mario 64

 My first act as a newly licensed driver was to drive around town tracking down a
Nintendo 64. The North American release of the Nintendo 64 system happened just
after my sixteenth birthday, and the only thing I wanted more than a driver’s license
was a copy of Super Mario 64. In my mind, the car was simply a way to quickly get
from store to store, an expedient for tracking down the elusive console. I told my
girlfriend at the time that, so sorry, we’ll have to do the movie thing another time.
I have a date with an Italian plumber.

 When I sat down with the game, I was transported back in time. I was sitting
cross-legged and red-faced at my friend’s house down the block, playing Super
Mario Brothers for the first time. Even as I struggled to come to terms with the
skills needed to traverse this new and vibrant world, I felt that it was OK to suck
because it was fun just to noodle around and bump into things. It was difficult and
disorienting, as Super Mario Brothers had been when I was 9, but it was beyond
doubt that the time spent learning would pay huge dividends. The world was physi-
cal, tactile and self-consistent. Learning to control Mario felt like learning to drive,
something I’d just experienced. It was overwhelming and complex but also engen-
dered with new, liberating possibility. Any amount of frustration seemed worth the
effort. I couldn’t stop playing. Around every corner there were new kinds of tactile
interactions and each one seemed to jibe with the others, building and reinforcing
my impression that this world has its own physics. Here was a reality, whole and
consistent, but with different laws governing it. Through the highly sensitive Mario
tool, it was possible to interact with this world tactilely and physically, the way
I interacted with my world. But it was so much more interesting because in this
world I could jump and side somersault, spin and kick. I could fly. Every bit of skill
I gained made the world seem that much larger, that much more robust.

 Even today, the game still has the ability to capture me. I check the timing of a
jump or look at how the character speeds up over time and find myself, five min-
utes later, trying to get just one more star so I can unlock the flying cap.

 Picking apart the mechanics makes the cohesive nature of Mario 64’s world seem
all the more remarkable. The physics are an illusion. Bizarre, improbable relation-
ships are set up between variables, forces and the behaviors of objects. Gravity dou-
bles when the character reaches the apex of his jump, for example, and if you duck

247

 FIFTEEN

CHAPTER FIFTEEN • SUPER MARIO 64

248

while running above a certain speed, the character begins to slide. Yet these rela-
tionships are what define the feel of Mario 64; a litany of odd, seemingly arbitrary,
interdependent relationships that improbably improve the feel of control and inter-
action. Giles Goddard wrote, “Mario’s movement is based on good physics, but you
have bits on top that you plug in so you can do things you shouldn’t be able to do. ” 1

 What’s Important?
 What’s going on here? Why does Mario 64 feel the way it does? What are the clues,
effects and relationships that define the feel of Mario 64?

 The most important relationship is between the camera and the character. In
Mario 64, the basic movement is camera-relative. The forces added by thumbstick
input to drive the running and steering movements are applied with respect to the
position and orientation of the camera. Unlike Tomb Raider, Resident Evil and other
early forays into 3D freedom of movement, Mario’s movement always depends on
the position and orientation of the camera. You can see this in action by simply
holding down the N64 controller. When Mario reaches a point just under the cam-
era, he begins freaking out, running in an endless circle. This is because down-
ward movement always moves Mario toward the camera. When he reaches a point
directly beneath it, he ends up running in circles.

 Another relationship is between the displacement of the analog stick and the
speed of Mario’s movement. Mario 64 was the first game to nail rate-based 3D con-
trol with an analog stick. Displacing the thumbstick farther from center changes the
speed at which Mario moves. It’s not acceleration, but a mapping directly to the
rate at which he’ll move. Interestingly, because it will always take a certain amount
of time to displace the thumbstick from center, there is a slight speeding up effect as
the thumbstick goes from center to a direction.

 Animation is another huge part of the feel of Mario 64. When Mario runs, his
feet never slip. The animation seems to match perfectly to the speed at which he’s
moving, grounding him, making him and every piece of ground beneath him seem
more real, more vivid. In changing direction, Mario arcs slightly. When the thumb-
stick rapidly changes position, the character will not follow it one to one but will
rather arc around to follow at a slight distance. As this happens, the Mario character
leans slightly into the turn, as if shifting his weight to compensate. If the thumb-
stick goes from one direction to the direction roughly opposite it—left to right, for
example—the character appears to plant his foot, slide slightly and reverse direc-
tion. The simulation is just doing its thing, unchanged, but this foot-plant ani-
mation sells the impression that Mario is a physical being, albeit a cartoony one,
walking across a real environment. These animations are applied across every
possible interaction, enhancing the feel of control and interaction between Mario
and his environment.

 1 http://www.miyamotoshrine.com/kong/features/mario64/

249

 Another important relationship to the feel of Mario 64 is the one between the
movement of the avatar and the spacing of objects in the world. The spacing of objects
relative to jump distances and heights in Mario 64 is immaculately tuned. It’s clear
that a set of guidelines for the basic spatial relationships between objects was set down
and rigorously followed throughout the game. Objects are spaced and sized to match
perfectly the height and distance of Mario’s jump. This is especially apparent using
the wall kick mechanic, which requires the player to jump back and forth between
two walls repeatedly. These relationships are perfectly tuned throughout the game.

 The levels in Mario 64 also tend to avoid places that will cause camera trouble by
creating large, self-contained worlds that primarily feature tall, round structures. The
camera can always look inward and is generally free of obstructions. This has the
added benefits of focusing players on the important objects and areas, showing
them their objectives ahead of time, and of providing a powerful sense of high-level
space by enabling players to climb to the top of massive structures and look down,
as if from the top of a mountain or tall building. The layouts of the levels play into
the strengths of the mechanics, camera and free-roaming 3D perspective in the best
possible way. When the environments become tight, closed-in caves, the camera is
often switched to a fixed position “security cam ” to compensate. These levels, while
nice for contrast, often seem weak by comparison.

 Also related to the spacing of objects and how it feels to move between them, the
design of challenges in the game emphasizes the best parts of the feel. I notice that
there aren’t many goals that require precise stomping of things, especially moving
things. Stomping a Goomba was a casualty of the transition to 3D for this reason;
relative to how the character moves, it’s very difficult to precisely place a butt-stomp.
Stuff like pounding the pole to release the Chain Whomp on Bomb-Omb Battlefield
feels awkward and isn’t used much as a result. This effect is mitigated to some
degree by placing a shadow beneath Mario wherever he goes, but it’s rare that the
player is challenged to land on anything smaller than about five Marios in width. If
it’s smaller than that, it’s just too difficult to ever be enjoyable.

 The feel of Mario 64 is a conceptual, if not literal, translation of Super Mario
Brothers into a new, 3D context. It still offers a relatively simple interface to a highly
complex system of physical, tactile interactions. The input space is much more com-
plex than the one that controlled the earlier 2D Mario games, but it accesses a set of
loose-feeling, physically satisfying maneuvers of great depth and complexity.

 Once again we’ll examine the input device, the N64 controller, and the individual
inputs on that device, as well as the types of signals those inputs send to the game.
From there, we’ll look at what each modulates in the game and how this happens
over time and space. Next, we’ll examine the relationships and interdependencies
between those modulations and examine the simulation that gives rise to them in
detail. The relationships between this simulated motion and the spatial context that
gives it meaning are next, followed by a look at how polish effects sell the feel of
physical, tactile interaction. We’ll also look at Mario 64 as a metaphorical represen-
tation and what expectations it sets up for the player about the interactions between
Mario and his environment. To close, we’ll look at the ways in which rules profoundly

WHAT’S IMPORTANT?

CHAPTER FIFTEEN • SUPER MARIO 64

250

affect the player’s perception of the value and physical properties of the various
objects and enemies in the world, and how this changes feel by emphasizing cer-
tain interactions and mechanics.

 Input
 The input for Super Mario 64 is the Nintendo 64 controller, which has 10 standard
buttons, one directional pad and one thumbstick (Figure 15.1).

 Despite its odd shape, the controller fits comfortably in the hands and feels good
to hold. The plastic is smooth, and the standard buttons have a nice, spongy quality.
They are functional, if not as crisp and lively as those used in modern controllers. The
shoulder buttons and Z-button on the bottom of the controller are slightly poppier
than those on the front of the controller, reaching their depressed state more quickly.
The analog thumbstick, the first of its kind to be included in a mass produced
highly successful controller, feels a little crusty by today’s standards, almost like there’s
fine sandpaper in the base of it. It’s also longer and includes a much more powerful

F I G U R E 15.1 The various inputs on the N64 controller.

251

spring than modern controllers ’ thumbsticks. Compared to the thumbsticks in my
Xbox 360 and Playstation 2 controllers, the spring seems to take roughly twice as much
force to displace. Movements feel much more emphatic and the pushback of the
stick against my thumb is much more noticeable. As a result, players receive more
proprioceptive feedback (see Chapter 1) and can more accurately gauge movements
between full on and full off. This is used to great effect in Mario 64, especially in the
sections where Mario needs to tiptoe past sleeping enemies. It doesn’t feel as
smooth as a modern thumbstick and it’s weirdly loose in its socket when at rest, but
there is a stronger sense of its position in space. Finally, the housing of the thumb-
stick is not smooth. Instead, it has eight points or grooves, as seen in Figure 15.2 .

 This is something Nintendo has done consistently with each of their thumb-
sticks, right up to the modern Wii nunchuck controller. This causes the thumbstick
to come to rest in one of these eight cardinal directions when it’s pulled or pushed
against the housing. There is some benefit in guiding the player to one of eight
directions, but the cost is in feel. It feels weirdly jarring to roll the thumbstick in
circles, and some sensitivity is lost in the space between the grooves. The clicking
noise the thumbstick makes as the thumbstick is rolled across the grooves is pleas-
urable, but I prefer the tactile feel of a smooth circular housing.

 Applying our taxonomy for input devices, we see that there are 14 discrete buttons:

 ● A

 ● B

 ● C-buttons

 1. up, down, left, right

 ● Directional Pad

 1. up, left, down, right

 ● Z

 ● Shoulder L

 ● Shoulder R

 ● Start

F I G U R E 15.2 The grooved thumbstick housing on the N64 controller provides a different
sensation than a smooth housing (such as on a Playstation 2 controller).

INPUT

CHAPTER FIFTEEN • SUPER MARIO 64

252

 The one continuous input is the thumbstick. The motion of the thumbstick is
linear rather than rotational, and it moves along the X- and Z-axes. The X- and
Z-motion of the thumbstick is integrated; it moves in both axes at the same
time. Being spring-loaded, the device measures force rather than position, and it
is an indirect control input. You don’t touch where you want to indicate, like a
touchscreen.

 In terms of signals, the buttons send the usual binary signals of “ up, ” “ pressed, ”
“ down ” or “ released. ” The thumbstick sends a continuous stream of input based on
its displacement from center in the form of two axis values, one for X and one for Z.
These values will be a float between � 1 and 1 (Figure 15.3).

 Response
 Super Mario 64 has two avatars, Mario and Lakitu (the cameraman). Both can be
directly controlled, though Lakitu defaults to being indirectly controlled when his
movement is not being overridden by player input.

 The Mario avatar maps input signals to modulation in many of the same ways as
its predecessors did, using basic button presses, multi-button chorded inputs, time-
sensitive inputs and state-sensitive inputs to add forces to a simple simulation. It
doesn’t have any mapping of button presses to modulation of simulation param-
eters, though. You can’t hold down B to run faster than you did in Super Mario
Brothers. Basic jumping is almost identical, however, with an upward force being
added over time to a maximum depending on how long the button is held. Like
the original Super Mario Brothers, being in the air is a separate state in which the
steering force is present but reduced. In Mario 64, this jump also “ locks ” Mario
into facing a particular direction once he’s left the ground, and the steering changes
slightly. Rather than arcing and turning when left and right are pressed, the steering
forces are applied laterally (Figure 15.4).

F I G U R E 15.3 The signals sent by the N64 thumbstick.

253

 Recipe and Simulation
 In addition to the basic jump, there are various jumps of different trajectories trig-
gered by different button combinations, by pressing buttons in sequence over time,
or under particular circumstances such as being in contact with a wall (for a Wall
Kick) or moving at a certain speed and having just landed (for a Triple Jump). In
each case, the jumps can be steered in the air at the same reduced rate in directions
relative to the way the player was facing when the initial jump happened. Let’s look
under the hood, at the simulation driving these motions and at the ways in which
input signals modulate the parameters of this simulation.

 The simulation of driving the controllable motion in Mario 64 is constructed
using a top-down approach. Each parameter that’s modulated by input is simulated
very simply, with clearly defined, hard-coded relationships. Apart from the colli-
sion, there’s no general-purpose, applicable-everywhere code. It’s all about specific
esoteric relationships between inputs, motion and time. Because these relationships
are defined specifically and only in as much as they need to be, it’s possible to talk
about motions and the simulation that drive them as one.

 To build the feel of Mario 64, the first ingredients are a capsule and a flat plane
(Figure 15.5).

 Playable Example

 To follow along, open example CH15 - 1.

F I G U R E 15.4 The in-air steering force of Mario 64 becomes side to side rather than
rotational (as it is on the ground).

RESPONSE

CHAPTER FIFTEEN • SUPER MARIO 64

254

F I G U R E 15.5 The starting point for Mario 64—a capsule and a plane.

 The basis of the simulation is gravity and collision. The capsule should be pulled
down each frame and, upon coming into contact with the ground, sit on top of it.
Once in contact with the ground, the capsule behaves as though it has a great deal
of friction. Standing still, it will not slip or slide around, and it will remain rooted
to the spot. In motion, the result is the same, except when the incline of the ground
underneath the capsule is greater than about 45 degrees. Running uphill when the
incline is greater than a 45-degree angle relative to the horizontal will slow the cap-
sule down, applying a force against the forward running force corresponding to the
angle of the incline. As long as the resulting velocity keeps going forward, the cap-
sule can still run up the hill, albeit slowly. At about a 60-degree angle, for example,
the capsule still makes it up the hill. At some point—around 75 degrees of incline—
the forward force will be insufficient to overcome the incline-added opposite force.
When this happens, the capsule enters a new state, the slide. In the slide state,
there is much less friction, and the capsule slides down the hill at a rate and direc-
tion corresponding to the angle of the incline. The steeper the incline, the faster the
slide, and if the incline leans to one direction or another, the capsule will slide
that way. It is possible to steer slightly left or right while in this sliding mode,
a reduced-force version of the normal steering, which we will address presently.
This sliding state will also be triggered if Mario steps onto a steep incline from the
top and is moving in a downhill direction.

 The result of all this is that there is a constantly reinforced impression of texture.
The interactions between capsule and ground are subtle, and they sell the impres-
sion that there is a slip threshold for the bottom of Mario’s shoes, where he will
lose his footing, break loose and slide and that despite his highly cartoony motions,
there is a nuanced reality to the way his feet interact with the ground. He can slide

255

down a hill he was able to climb up, just as may happen if you scale the steep side
of a gravel-covered mountain while hiking. In addition, the relative incline of terrain
becomes very important in terms of spatial context, creating a soft boundary for the
edges of levels, and giving a more satisfying aspect to the climbing of high moun-
taintops and structures. You can’t just run up a steep incline, so being at the top of
a treacherous mountain feels more like an accomplishment. There are also whole
sections of the game devoted to the sliding and steering mechanics, such as the
penguin race segments on the Cool, Cool Mountain level.

 The sides of the capsule slide across objects with almost no friction whatsoever.
As with most racing games and other games we’ve discussed, collisions with the
side of the capsule are waterslide-like. Instead of being hung up or caught, the cap-
sule flows over objects with grace and ease. As in other games, this has nothing
to do with accurately modeling our physical reality and everything to do with
how annoying it would be to constantly get hung up on every object you came into
contact with.

 The final result of the basic collision interactions is an object with a constantly
changing feel of momentum and friction. The incline and sliding stuff is a delight-
fully cheap trick in this respect, reinforcing the tactile, physical relationship between
Mario and the ground every time there is a variation in the incline of the terrain
beneath him. This lends a subtlety and nuance to these interactions, and the level
design exploits this feel masterfully by providing much variation in types and lay-
outs of terrain.

 As the capsule moves across the landscape, it is mostly unimpeded by objects
it runs into. Unless it’s a head-on collision, the lack of side friction will enable it to
slide past. This enables players to very often be “close enough, ” without having to
be exact in their steering. The impression is simply that the character goes where
you want. The reality, as far as the simulation is concerned, is a lot of weird colli-
sions with objects that are resolved by simply redirecting the player to flow along
the edge of the object that was collided with. Again, the level design does a great
job of playing into this by providing more flowing, angular, waterside-like passages
than blocky, hard edged things that might stop the capsule in its tracks.

 As a final note on collision, it’s worth saying that there are many different
ways to achieve this same result, none of which will be addressed here. There are
many excellent books that address the technical details of implementing a collision
system, such as Real Time Collision Detection by Christer Ericson (Morgan
Kaufmann, ISBN 1558607323).

 Running Speed and Direction
 The thumbstick creates a velocity, relative to the camera, from a combination of
the X- and Y-axis data. This gives Mario a direction in which to run. Once he has
this direction, he will run in this direction at a rate of speed corresponding to how a
thumbstick is displaced (Figure 15.6).

RUNNING SPEED AND DIRECTION

CHAPTER FIFTEEN • SUPER MARIO 64

256

 When the direction he’s headed in changes and he has a forward speed of zero,
he simply snaps to that new direction with zero frames in between. If his speed
is greater than zero, though, it will take him a short time to go from his current
direction to a new direction (Figure 15.7). This is not a time-based relationship; the
desired direction gets blended with the current direction every frame until they’re
identical. This is what gives Mario a slightly smooth, carving motion when he
changes direction. Without this, Mario’s movement feels stiff and robotic.

 If a rapid change in his direction is greater than a certain angle, however, he will
enter a different state, stop for a few frames, plant his foot, then take off in the new
direction, as shown in Figure 15.8 .

 If you press the A-button during this time, the result is a special jump, the side
somersault, which always produces the same upward force (it is not time sensitive).
 Figure 15.9 shows the arc of this side somersault.

 Units of Measurement
 As we’ve said, there’s no standard unit for measurement in a video game. For
vertical measurements of height, I’m using Mario as a ruler. He’s a good point
of reference because he’s always on screen, and his height is consis tent to the
distance we’re trying to measure regardless of camera position. We could also
measure jump heights in castle bricks, trees, standard blocks or anything else,
but using Mario makes the most sense.

F I G U R E 15.6 Spatial displacement of the thumbstick versus forward speed of Mario.

F I G U R E 15.7 The result of blending between current and desired direction each frame;
Mario takes a short time to reach his new direction, causing a carving motion.

257

F I G U R E 15.8 If the direction change in a single frame is greater than about 90 degrees, the
result is a foot plant, slide and direction reversal. Otherwise, Mario turns gradually.

F I G U R E 15.9 The Side Somersault jump. Note that force is only applied once (it doesn’t
matter if the button is held down) and that velocity is set to zero at the jump’s apex.

RUNNING SPEED AND DIRECTION

CHAPTER FIFTEEN • SUPER MARIO 64

258

 The Side Somersault jump is one of the four special jumps in the game, along
with the Long Jump Triple Jump and Back Somersault. In these jumps, the modula-
tion of the upward and horizontal forces is different from the basic jump. Instead of
adding an initial upward force and then enabling the player to opt out by releasing
the button before the maximum jump height is reached, the special jumps give a
specific, consistent upward trajectory each time. This is crucial to the feel of Mario
64 because it gives a predictable result when attempting long, precise jumps. A spe-
cial jump will always be the same in terms of height, so all the player has to worry
about is whether the platform he or she is trying to reach is low enough or close
enough. This, coupled with the fastidious spacing of objects in the level (to be just
the right distance apart for the special jump trajectories), enables the player to accu-
rately navigate this otherwise overly complex space, made so by the addition of the
third dimension. In the case of the Side Somersault jump, the arc is much higher
than the basic jump (Figure 15.9) enabling the player to stay airborne for more than
a second while reaching a height five times as tall as the character.

 Modulating Upward Velocity
 The basic jump in Mario 64, triggered by the A-button, functions almost exactly the
way it did in earlier incarnations of Mario, adjusting the velocity based on how long
the button is held. The binary signal from the A-button modulates upward velocity,
causing the avatar to accelerate upward, countering the constant pull of gravity.

 The attack part of the envelope is affected by holding the button down for more
or less time, up to a maximum. The initial upward force is always the same; releas-
ing the button sets the upward velocity immediately to an artificially low level. This
continues the upward trajectory (which continues to be affected by gravity) for a
certain time, the delay. At the apex of the jump, when the code sees that the upward
Y-speed is zero or less, a much higher gravity force is applied to pull the character
quickly back down to the ground.

 The end result of all these subtle modifications is that, as with the earlier Mario
games, Mario’s jump is variable in height based on how long the “A-button held down ”

F I G U R E 15.10 Mario’s basic jump.

259

input signal is received. In addition, the jump always has the same shallow arc for
its delay, has little if any sustain, and has a much higher gravity force pulling it
downward during its release. The feel is an illusion of satisfying emphasis. Hold the
button down longer and you get a higher jump. Tap or feather it to get a shallower,
more sensitive hop. Even though the maximum jump will terminate its upward
force at a certain point no matter what (the limit point at which the max jump
height is defined), when you want the maximum you will find yourself holding the
button down for almost the entire duration of the jump. Also, you press the but-
ton more emphatically when you want a higher jump. In terms of what happens
in the game, how hard you press the button makes no difference, but because of
the setup of upward thrust with a small window for opt out, you feel as though
you’re emphasizing the desire for a higher jump and that the game is responding
appropriately.

 When the character hits the ground after a jump, there is a short window in
which pressing the button again will cause another, different jump. In the game’s
manual, this is called the continuous jump. This jump is accompanied by a differ-
ent, more vertically stretched character animation but functions identically to the
normal jump, with the exception of the initial upward velocity. The initial jump
force is much higher, causing the character to move more quickly upward and to
have a higher potential height. This jump is still time sensitive, enabling the user
to opt out by releasing the button, and also requiring that the button be held to
achieve the maximum height (Figure 15.11).

 The Continuous Jump has the same modified gravity applied to it at its apex and
opt out points, but because the initial force is higher, it takes longer to complete and
affords both higher and longer jump trajectories.

 The Continuous Jump can be triggered regardless of how fast the character is
moving in a direction. From the Continuous Jump, it’s possible to do the Triple
Jump. To do the Triple Jump, the character must be moving greater than about half
speed, just at the transition point where the walking and running animations switch.

F I G U R E 15.11 The ADSR envelope of the Continuous Jump.

MODULATING UPWARD VELOCITY

CHAPTER FIFTEEN • SUPER MARIO 64

260

The principle is the same as with the Continuous Jump—press the button in a short
window after landing—but it requires that the character be moving more than a
certain speed. Slower than that and the third jump in the sequence will be another
basic jump.

 Unlike the Continuous Jump, the Triple Jump (Figure 15.12) is not time sensi-
tive, eschewing the opt-out control for a predictable trajectory, like the Long Jump
or Side Somersault. It is the second highest jump after the Back Somersault and the
second farthest horizontally after the Long Jump.

 Once in the air state, the modulations mapped to each buttons ’ signal change.
Pressing B and Z take on different meanings. In each case, the response is another
“move ” consisting of a specific animation and a predetermined motion. The ben-
efits of these special moves are very similar to those conveyed by the special jumps;
because their result is a very predictable movement in space, they prune complexity
and enable the player to get a more predictable result for their input.

 When in the air state, the Z-button on input triggers the “ground pound ” move,
where the capsule loses all horizontal momentum, freezes in mid-air for a short
time while playing an animation, then drops to the ground with greater gravity than
even the normal increased gravity. This move feels particularly emphatic, includ-
ing a screen shake, spray of yellow stars and concussion wave of dust particles on
impact. The really interesting thing about it, from a control standpoint, is that it
brings precision to the otherwise imprecise act of jumping. It halts all horizontal
momentum, enabling the player to land on a very specific spot beneath him or her.
The result is still somewhat sloppy—hitting small targets like the post that releases
the Chain Whomp is difficult and fiddly—but it provides much more precision in
landing than steering in the air offers.

 If the jump was triggered while the character was running at any speed less than
his or her maximum, pressing B while in the air state triggers the Jump Kick move.
It’s a move with limited utility. It’s useful for hitting enemies that are elevated
slightly off the ground, such as the “ Boo ” enemies in the Big Boo’s Haunt level, and

F I G U R E 15.12 The ADSR envelope of the Triple Jump.

261

not much else. It’s remarkable for its animation effect—Mario’s foot gets dispropor-
tionately large to emphasize the impact of the kick.

 If the jump was triggered while the character was running at maximum speed,
the resulting move is a Dive Attack. The Dive Attack has a long horizontal trajectory,
similar to the Long Jump, but it is instead triggered in the air. It also counts as an
attack, meaning that hitting an enemy in the resulting slide state will damage them
instead of you. At the end of it, after landing on the ground, Mario enters the same
slide state as is caused by the basic slide attack. The Dive Attack can be triggered
from any jump except the Triple Jump and Long Jump, presumably to prevent the
player from getting too far in one jump and circumventing too much of the chal-
lenge. From the simulation’s point of view, the Dive Attack halts all vertical Y-axis
motion the moment the input is received, setting it immediately to zero. A horizontal
force is then added in the direction the character is facing. Once the character comes
back into contact with the ground, the state is set to slide instead of the default run-
ning state. This gives the controls an “aftertouch. ” Using the Dive Attack can get
you that last little bit of horizontal momentum you need, or it can convert to attack
mode on the fly if you’re about to land dangerously close to an enemy. Because
it goes back to the slide state, it feels a bit like a crash landing. It can take quite
a while for the stand back up animation to play and return control to the player,
furthering the impression that this is a bit of haphazard maneuver. It is possible to
jump back out of this slide with a small hop, however, which can be triggered from
this attack slide state by input from either the A- or B-button. This little hop seems a
compromise, meant to mitigate the problem of seeming unresponsiveness caused by
locking the player out of control for so long after the slide state.

 There is one other type of jump possible in Mario, the Wall Kick. The Wall Kick
is by far the most complex move to pull off in Super Mario 64, requiring the follow-
ing conditions be met:

 ● Character moving at a certain speed horizontally

 ● Character in the Air State

 ● Character in contact with a wall within the last 20 ms

 ● Thumbstick quickly pulled in the direction from the momentum that carried it
into the wall (similar to the trigger for the Side Somersault)

 ● A-button pressed

 This requires that the player run the character quickly toward a wall, jump into
that wall with sufficient force and within about a fifth of a second, press the oppo-
site direction on the thumbstick and tap the A-button quickly. Talk about your hand-
cramping maneuvers! The mapping, however, is very natural. The player pulls the
thumbstick immediately away from the wall in the direction he or she wants to go
and press A to jump, the same function that is always mapped to the A-button. The
window for completion is fairly wide, enabling the player a degree of leeway. For
example, if the player hits the wall with great force, pressing the thumbstick in

MODULATING UPWARD VELOCITY

CHAPTER FIFTEEN • SUPER MARIO 64

262

a direction roughly away from the wall and pressing A somewhere close to that
motion will still cause the Wall Kick to occur. Even if the star particles and fall ani-
mation for a strong collision have started, the Wall Kick will take priority.

 Switches to Ducking or Sliding States
 When the signal for “Z-button held ” is received, it always corresponds to a state
change. The switch happens as soon as the input for “button on ” is received,
though the animation of the character going from standing to ducking takes about a
tenth of a second to complete.

 If the capsule has zero velocity, the character enters the normal ducking state.
From here, the thumbstick motion enables crawling. Crawling functions similar to
running, with extremely slow forward motion, more looseness between desired
and actual direction, and no concept of foot plant or direction change. The feel is
very plodding but it is precise, providing a great amount of spatial accuracy. This
is emphasized by the level construction in areas with long, thin planks across large
precipitous drops. The crawl enables slow but steady progress that is all but guar-
anteed to take the player safely across. To me, this always represented a risk/reward
tradeoff. Impatient, I always opt for the risk of running full speed across the planks
rather than having to crawl laboriously.

 Also noteworthy is the progression of behaviors when the player presses the
jump button while in the crawling state. First, the character transitions directly from
crawling to jumping. After landing, the character goes back into the running state
and will continue running around as normal—Z-button still held—until the thumb-
stick input stops entirely, at which point the standing to ducking animation will
play again, and the character will return to the ducking state. This is a nod to the
fact that crawling is rarely used. The designer assumes that if the player jumps, he
or she would always rather go back to running first. Crawling takes a back seat to
all other motions, so doing so must be very deliberate on the part of the player.

 Pressing the B-button in the normal ducking state triggers the Trip Attack, a
rarely used stationary attack that will destroy some enemies within a very short
radius. It’s almost never used.

 Finally, pressing the A-button in the normal ducking state triggers the Back
Somersault special jump. The Back Somersault is the highest jump in Mario’s acro-
batic repertoire, enabling him to accomplish very high jumps with very little hori-
zontal motion. It’s useful when you want to move mostly vertically, onto a small
shelf, outcropping or platform high above. The drawback of this jump is that its
horizontal movement is backward relative to the direction Mario is facing. The
player cannot use this jump to leap up and grab onto a ledge; to do this, the charac-
ter must face toward the ledge.

 If the Z-button is pressed while the character is moving, the slide state is entered.
We discussed the slide state earlier with respect to collision; now let’s examine

263

the steering possible in the slide state, the various forms it can take and the feel
of each.

 There are three way to enter the slide state: by intentionally pressing duck while
moving at speed, by running up a hill that is too steep and sliding back down, and
by running forward onto a steep incline.

 When the slide state is entered into intentionally, the result is the character ani-
mating into a crouching position, like Figure 15.13 .

 This happens when the character’s speed is greater than zero when the
Z-button input is received. In the slide state, there is a high friction value applied
to each frame, which will quickly slow the character to stop on flat ground. At very
low speeds, the character will enter the slide state very briefly before quickly slow-
ing to a halt and transitioning back into the crawling state. Running at full speed,
the slide will last just longer than one second.

 From this sliding state, the A-button input triggers the Long Jump, a jump which
emphasizes horizontal speed rather than vertical height. It’s the opposite from the
Back Somersault in that it’s all about traversing long distances horizontally, making
huge flying leaps from platform to platform. Like the Back Somersault, the Long
Jump is not time sensitive. It’s still steerable in the air, but initial jump force added
is unaffected by how long the button is held. One height, one distance, and again,
much of the level geometry plays into this predictability, giving the player a better
chance of accurately judging and correctly completing particular jumps. The main
difference between this jump and the other jumps is that it receives not only a verti-
cal but a horizontal force at the time it’s triggered.

 Pressing B from the sliding state triggers the Slide Tackle maneuver, which is
rarely used. It adds a certain amount of horizontal force and sees the character
bounce up and down twice before coming to rest. It is an attack move, though,
so any enemies hit while the character is in this state will be damaged. This is
the same attack slide state caused by the Dive Attack, so it’s also possible to can-
cel out of this slide with a small hop that can be triggered by either A- or B-button
presses.

F I G U R E 15.13 Running to duck-sliding.

SWITCHES TO DUCKING OR SLIDING STATES

CHAPTER FIFTEEN • SUPER MARIO 64

264

 Triggering Attack Moves
 Pressing the B-button triggers a simple punch attack. Accompanying this is a very
small amount of forward movement, mostly for emphasis. Like the Jump Kick,
Mario’s fist expands at the completion of his punch to emphasize the power of
the move. Also like the kick, this move looks a bit odd under close examination;
it seems as though Mario’s gaining volume in his fist rather than squashing and
stretching properly.

 Though it has limited utility in fighting enemies or getting around, this move is
used more frequently than things like the Trip and Jump Kick because it is often
required in boss fights. Pressing B when near something will make the character
grab it or pick it up. While holding something, Mario moves much more slowly
and has a weighed-down animation, giving the thing he’s holding a terrific sense of
weight and presence.

 Pressing the B-button three times in rapid succession causes first an additional
punch and then a Jump Kick. Again, these are rarely used and so do not contribute
significantly to the game’s feel.

 If the B-button is pressed when the character is moving at full speed in a par-
ticular direction, a Slide Attack is the result. The Slide Attack is the most basic
form of the slide attack state that happens after a Dive Attack. The character gets a
small amount of additional horizontal force but enters the slide state, quickly being
slowed down by friction. This is an attack, so it will damage enemies that are hit
while in this state. It is possible to cancel out of this state with the small hop, as
with the Dive Attack and Slide Tackle.

 The big picture is very much a top-down simulation in which each parameter
is simulated only with the detail it needs to be. A bunch of special cases strung
together with specially defined relationships. You can almost feel the design-
ers plugging holes, saying things like “hmmm, well, it feels too cheap to climb up
hills without resistance, so let’s make him slide back down. Oh, this sliding is kind
of cool, what happens if we enable the player to steer it? Ah, okay, just grab the
steering from the running state and plug it in with reduced values. Cool, okay, that
feels good … ”

 Many times, it seems like the designers were simply asking “what if ” questions
and then answering them with mechanics. What if Mario could grab Bowser by the
tail and swing him? What if you could ride a turtle shell around like a skateboard?
I’ve glossed over many of these supporting mechanics, including flying, swimming
and walking underwater with the Metal Cap. This is because I have limited space;
I wanted to cover the basics. However, the impact of these supporting mechanics
should not be underestimated. They add a great deal of texture and variety to the
feel of Mario 64, which would lose much if they were removed. Especially important
is the crossover sensations caused by the contrast between mechanics. Swimming
seems floaty because it’s different from running. One of the most important parts of
the feel of Mario 64, however, is the fact that each mechanic seems to maintain the
same laws of physics. The controls for flying may have nothing to do with running

265

around on the ground or swimming, but they feel as though they do. Flying feels as
though it’s defying the same gravity that pulls you downward when completing a
Long Jump. This is perhaps one of the most overlooked aspects of game feel: the
crossover sensation. If there are multiple separate mechanics in play, do they seem
beholden to the same laws of physics. Do they seem to be part of the same world?

 To summarize, the thumbstick provides the bulk of the moment to moment
input, mapping as it does physical displacement to both direction and rate of the
character. This relationship is camera-relative and therefore is an intuitive, natu-
ral mapping, though it also includes a slight looseness that gives Mario a certain
amount of carving motion. Also, the relationship between terrain incline, friction
and thumbstick-driven motion creates a great sense of interaction between char-
acter and ground, and is constantly updating the impression in the player’s mind
via changes in incline and terrain. The rest of the inputs serve to put Mario in
different states, such as ducking or jumping, but the relationships of importance
are between how fast he moves forward, how much thrust gets applied in his
Y-direction, and the resulting trajectories, which are precise but highly malleable,
enabling in-air steering. The end result provides a huge number of moves which
feed in predictable ways into a simple physics system. Each of these moves can be
steered by thumbstick input after having been triggered, and many moves can be
chained and combined, giving the user a great expressivity both in the choice of
moves and in the way those moves play out. Combined with the layout of levels,
this enables just the right amount of freedom for the player.

 Lakitu the Cameraman
 The second avatar is “ Lakitu, ” also known as the camera. The camera is indirectly
controlled most of the time. Even when directly controlled, the camera has two cru-
cial relationships: between Mario’s position and its own and between Mario’s orien-
tation and its own (Figure 15.14).

 There is a circular area of influence between Mario and camera. From the cam-
era’s position, a circular zone spreads outward for a certain distance. When Mario
reaches the outside of this radius, the default behavior of the camera avatar is to fol-
low Mario’s position at a slight remove.

 If he’s running straight away from the camera, the camera will follow at the
same speed, maintaining the distance relationship.

 If he runs directly at the camera by holding down on the thumbstick, the camera
will pull backward, away from the onrushing Mario (Figure 15.15). This pull back
is limited to a very slow rate, however, and if the character is running at full speed
toward the camera, he’ll quickly close the distance. When this happens, when the
Mario avatar gets within a certain, short radius of the camera, the camera will freeze
in place, tracking on the avatar from a stationary position. Because all character
motion is camera-relative, however, once he gets beneath the camera, he runs in an
odd looping pattern around the camera as though it were an invisible maypole.

TRIGGERING ATTACK MOVES

CHAPTER FIFTEEN • SUPER MARIO 64

266

 If the movement of the Mario avatar is purely side to side, neither running
toward nor away from the camera but parallel to it, the motion of the camera is rota-
tional only. Again like a security camera, it will rotate to look at the Mario avatar,
but never change its position in space. This rotation starts by tracking on Mario’s
exact position, but gradually interpolates into tracking a position ahead of him,
shifting him to the right or left of the frame and showing more of what’s coming up
in front of him as he runs.

 These two effects, positional changes based on character-camera distance and
rotational changes based on left-to-right movement, blend together. The result is
that running at a diagonal will slowly turn the camera in the direction that Mario is
running and it will do a reasonably good job of showing objects in that direction. In
addition, if the player presses the left or right C-button, the camera will be pushed
about 20 degrees in the direction indicated. It will slowly drift back to its original
orientation, but it momentarily provides additional angles of view.

 When Mario jumps, the camera attempts to stay still as long as possible. Mario
64 lead designer Yoshiaki Koizumi addressed this problem in his talk at the Montreal

F I G U R E 15.14 There are two camera zones in Mario 64, stationary and following.

267

International Games Summit in 2008, as reported in Gamasutra: “In Mario games,
players press a button to jump and camera follows. Koizumi noted that this camera
pitch can make some people ill. There are various theories, he explained, about
why this occurs—for example, a disconnect between the sense of motion and the
lack of motion sensed by the inner ear. In the case of Mario, Koizumi continued,
rapid and repeated screen scrolling was most likely to cause this discomfort, so he
thought of ways to minimize this. Nintendo’s solution was to implement a ‘ vertical
shake cushion ’—when Mario’s in the center of the screen, the camera won’t pan,
but if he’s about to go off, it will. ” 2

 When at rest, the camera, using the Mario avatar as its pivot point, slowly ori-
ents itself to face the direction the avatar is currently facing.

 2 http://www.gamasutra.com/php-bin/news_index.php?story � 16386

F I G U R E 15.15 The camera’s small “ pull back ” zone.

TRIGGERING ATTACK MOVES

CHAPTER FIFTEEN • SUPER MARIO 64

268

 Apart from the default behavior described above, the camera avatar has many
special case solutions that change its motions. First, it collides with walls and
other surfaces. When it does so, its motion in that direction stops, the same essen-
tial effect as when the character is moving only side to side under normal circum-
stances. In some areas, such as the main castle foyer, the camera switches to a fixed
perspective from a specific, preset vantage point.

 This blending of direct and indirect control over the camera is admittedly clumsy
and would probably be labeled as irretrievably broken by modern standards. The
problems with the system, though, are mostly mitigated by specific case hole-plugging
(as with predefined security camera vantage points) and through judicious level design,
which emphasized mostly large, open areas with towering central landmarks.

 In general, the approach of camera motion in Super Mario 64 attempts to avoid
superfluous motion and to show players what’s ahead in the direction they’re
traveling as much as possible. Though quite sophisticated for the time, experienced
today it can seem jarring, frenetic and inadequate.

 Control Ambiguities
 Up to this point, the feel of Mario 64 has been characterized as unambiguously
wonderful. But it is not all sunshine and mushrooms. Here’s the rub: there are
some rather glaring control ambiguities in Mario 64’s setup that should have been
resolved. As Mick West points out in his most excellent “Pushing Buttons ” article, 3
there is a troubling crossover between the Ground Pound, Back Somersault (here
called backflip) and Long Jump moves in Super Mario 64:

 In Nintendo’s Super Mario 64, when playing as Mario, pressing A to jump
then R1will trigger a ground pound. Pressing R1 then A will trigger a backflip.
Pressing them both at the same time will cause one of: a ground pound, a
backflip or a normal jump, seemingly at random. This is bad because the user
has no control; they are doing the same thing over and over, yet getting differ-
ent results.

 This problem also shows up in Mario when you try to do a long jump,
which is done by running, then jumping by pressing A � R1. Sometimes while
attempting this you will do a Ground Pound by accident. This is not the fault
of the player. To the player it appeared they did everything right, but the results
were not what they expected.

 Context
 As has been alluded to, the spacing of the objects in the levels of Super Mario 64
has a hugely positive effect on the overall feel of the game. Relative to the avatar’s

 3 http://cowboyprogramming.com/2007/01/02/pushhing-buttons/

269

movement, levels were constructed with three specific spatial relationships in mind:
vertical height, horizontal distance and the size of platforms.

 It’s fine and well to say that the spatial context of Mario 64 matches perfectly
with the tuning of its mechanic, but what does this actually mean? From the stand-
point of the pragmatic level designer, what did this mean in terms of actually plac-
ing polygons? And how was the mechanic tuned, relative to the movement of the
character? What was the mechanic designer’s role in this process? First, I believe
that in the case of Mario 64, as in most high profile Nintendo games, these two
were one and the same. At least, initially. Anecdotally, the prototype form of Mario
64 was a “gameplay garden, ” a test level which included a near-final version of
Mario, complete with animations and moves, and a wealth of different things for
him to interact with. As the jump heights and trajectories were tuned, so were the
distances between objects. The Wall Kick and walls spaced the right amount apart
were created simultaneously. This meant that as the mechanics were evolving, so
too were the general rules about how far apart objects should be spaced, how big or
small they should be, and what kinds of environments would be built around them
and out of them. Simply put, the size, nature and spacing of objects were part of the
same system as the height of Mario’s jumps and the speed of his running and turn-
ing. These guidelines seem to consist of four primary spatial relationships: vertical
height, horizontal distance, the X/Z dimensions of each walkable platform and the
angle of incline of each piece of terrain.

 By vertical height I mean the distance between a given current position of the
character and some other, higher position. The vertical height of objects relative
to one another comes in three distinct and premeditated flavors. First there are
objects which can be scaled by a basic jump. Many blocks are spaced at just the
right height for the basic jump. They’re lower than the apex of the jump to enable a
wide range of jumps to land on them, as were the blocks in Super Mario Brothers.
Other jumps are clearly just right for the Back Somersault, Side Somersault or Triple
Jump. For example, at the beginning of Whomp’s Fortress, there’s a wall that is
the perfect height for a Side Somersault. On the Shifting Sand Land level, there’s a
platform with a Flying Cap block on top of it that is perfectly spaced for the Triple
Jump. Throughout the levels in Mario 64, these relationships are maintained. As
you play, you quickly become accustomed to not only the predictable height of the
various jumps at your disposal, but the fact that the environment seems tailor-made
for the heights of these jumps. It becomes easy to walk around a level to see which
ledges are basic jump height, which are Triple Jump or Back Somersault height, and
which are too high to reach by jumping. I also note that there are many unforced
opportunities to use higher jumps. Especially in the earlier levels such as Whomp’s
Fortress; Cool, Cool Mountain; and Bomb-Omb Battlefield, there always seems to
be a way to circumvent the normal path—which emphasizes jumps at the basic
height—by using a Side Somersault or Back Somersault to get higher earlier.

 When I say horizontal distance, I mean the distance from one point to another
along the same plane. Rather than trying to ascend to a higher platform, the hori-
zontal distance of a jump dictates how wide a chasm Mario can cross. Can I make

CONTEXT

CHAPTER FIFTEEN • SUPER MARIO 64

270

it across this gorge or patch of lava in one Long Jump or Triple Jump? Or do I need
to use a basic jump and pull back slightly on the stick because I need to land on the
small portion of a moving platform that isn’t currently covered with scalding lava?
As with the relationships between vertical objects, there are various specific rela-
tionships between the position of horizontal objects in space that are maintained
throughout the levels in Mario 64. Some platforms are clearly spaced to be just the
right distance relative to the basic jump, where others can only be accomplished
with the Long Jump. In each case, it becomes easier and easier for players to eye-
ball these relationships as they play through the game. If a jump looks to be just the
right distance to clear with a Long Jump, it almost always is. And, as was the case
with earlier Mario games, increasing challenge usually means longer, more precise
horizontal jumps.

 Of course, each jump represents a trajectory, including both horizontal and verti-
cal movement. To land on a platform, whether it’s a tiny shelf of rock far above and
behind the character or whether it’s a wide platform over a gorge directly ahead,
requires movement in both the vertical and horizontal. What Mario 64 does won-
derfully is to present the player with consistent vertical and horizontal relationships
throughout the game, regardless of what else is going on in the level. As a result,
the complex, imprecise motions of Mario through 3D space become manageable,
predictable skills that can be learned and mastered. This feels great; the player
almost always gets the result he or she was after. The onus, then, is on the player to
plan and execute maneuvers more accurately and skillfully.

 A platform’s dimension refers to how much landing or maneuvering space it
provides.

 Relative to the speed at which the character runs when on the ground, the levels
are very open, without much obstruction. The running is a very precise, respon-
sive motion with no floatiness or looseness, so there is little emphasis in the design
of most levels on running very precise patterns. Releasing the thumbstick brings
the character to a halt immediately, so there’s no real risk of unintentionally run-
ning into or falling off of something. The game says: wait until you’re ready. It’s
supposed to feel easy and safe just to move around the world by running, and it
does. The levels in which it is not so safe—Lethal Lava Land and the three Bowser
stages—are genuinely unnerving by comparison, requiring an unaccustomed
amount of focus on the character’s exact position on the ground. Keeping the player
scrambling forward for extended periods of time and taking away the safety net
makes the game feel very different. That both feels exist in the same game speaks
to the fact that the designers had a deep understanding of what they were doing in
constructing each type of level. More than that, the different sensations create an
excellent and rich contrast which enhances each.

 As we noted when talking about collision and response, Mario 64 models fric-
tion, especially with respect to the angle of incline of the terrain beneath him. The
character has a certain coefficient of friction, which can be overcome and send him
slipping and sliding. In this way, incline is used throughout the levels as soft bound-
ary and soft punishment. If you’re not supposed to go somewhere, there will be a

271

steep incline to turn you back. It’s a gentle, negative reinforcement with a clear,
logical physical relationship. You can’t climb up and over the wall in Bomb-Omb
Battlefield because you start to slip and slide back down if you try. It feels futile,
quickly getting the message across without painfully overt constraints such as an
invisible wall or other contrived boundary. In this way, what’s been accomplished is
a victimless blame shift, a hallmark of good level design. Player don’t feel the direct
intervention of the designer like some deus ex machina dipping in to wag a disap-
proving finger and tell them where they can and can’t go. The physical relationship
between incline and slide is consistent throughout the game, so the limit feels like a
logical consequence rather than an overt constraint.

 Finally, it’s worth noting the overall spatial layouts of most Mario 64 levels and
the effect that has on the high-level spatial feel of traversing them. For the most
part, the spatial layouts of Mario 64 levels are like zones of a theme park, with the
important features poking prominently above the landscape, visible from any vantage
point. The tower in Whomp’s Fortress, the central spire in Bomb-Omb Battlefield, and
the giant snowman central to Snowman’s land are all designed to provide an instant
point of reference and include many of the level’s important star-giving interactions.
Two benefits of this landmark-focused approach are improved camera behavior and
a delightful sense of vastness and exploration. The camera motion in Mario 64 was
a sore point for many players and critics, but one of the instances in which it always
works well is in following the Mario avatar around a spire or pillar. Once at the
top of a huge structure, the camera is free to look around and down, surveying the
ant-like surroundings far below. This feels great, like hiking Superstition Mountain,
El Capitan in Yosemite or the Space Needle and peering down on all the places
you’ve just been. This doesn’t affect the moment-to-moment feel of interaction, but it
certainly lends a highly positive high-level sense of space to the proceedings.

 Polish
 The primary area of emphasis for all polish effects in Mario 64 is the interaction
between Mario’s body and the ground beneath him. Generally speaking, the per-
tinent polish effects are the animations, which are mostly in sync with the speed
at which the avatar moves, jumps and otherwise interacts with the environment
and which show the character leaning into turns, planting his feet and other-
wise being a believable physical being. In harmony with these detailed and excel-
lent animations, the sounds and visual effects adhere to a three-tiered structure,
corresponding across senses. Impacts come in three varieties: light, medium and
hard, and each type of interaction has a special animation, visual effect and sound
effect. Combined with the ubiquitous footstep sounds and sliding noise, these
effects serve to convince us of a Mario who exists in a believable, physical world of
his own and who interacts with it in a logical, law-driven way.

 Because it made the most sense for this particular game, I have pointed out many
of the important polish effects as they occurred, while discussing the simulation.

POLISH

CHAPTER FIFTEEN • SUPER MARIO 64

272

 Animation
 To begin, uncheck the animated character in the Mario 64 example, and examine
the change in feel. Without the animation, much of the sense of weight and pres-
ence is lost. The grey capsule doesn’t seem to arc, turn or carve when moving, nor
does it feel as satisfying to launch it into the air. In addition, moves like the Ground
Pound and foot plant seem downright odd without a character animation on top of
them to give them meaning.

 Visual Effects
 The primary visual effects are puffs of dust and sprays of yellow stars. The white
dust particles happen when Mario slides or plants a foot to reverse direction, and in
a concussive wave spreading out from the point of impact after a Ground Pound. In
the case of the sliding over terrain, the dust kicking up sells the impression that fric-
tion has been overcome briefly and that the surface of Mario’s feet is sliding loosely
across gravel or dirt, kicking up dust. After the Ground Pound move, the particles
spread outward quickly, further emphasizing the power of the impact.

 The yellow stars happen wherever Mario collides with a solid object at a high
velocity. This is the highest tier of impact, and the stars spray out with correspond-
ing force. The effect has very little basis in reality, but because the motion of the
particles is so violent, the impression is sufficiently emphatic. Regardless what the
things flying out are, they move quickly so the feel is of a powerful impact.

 Sound Effects
 Try unchecking sound effects in the Super Mario 64 example, and observe how
much of the impression of physicality is lost. I find it difficult, even with the sounds
disabled, not to fill them in with my mind. The most important sound effects to the
feel of Mario 64 are the three-tiered impact sounds, Mario’s footsteps and the satis-
fying whissssshing sound of sliding.

 Like the visual effects, the sounds accompanying impacts come in three varie-
ties: low, medium and hard. The low sound is high pitched and click-like, while the
medium sound has much more bass, sounding almost like a drum. The hard impact
is over the top, a cartoony, rubbery twang. The relationship between these sounds,
though they are not especially realistic, is one of increasing power and emphasis.
This correlates well to the corresponding animations and visual effects, selling an
impression of subtlety and nuance in interaction. When he punches, you hear this
sort of Doppler effect, the swinging of his fists going through the air. When he does
the butt stomp, when he hits the ground, it has a sort of reverberating crash noise.
So in general, the sound effects of Mario are huge and they’re trending a lot more
realistic and this is probably a factor of the capacity of the hardware as much as it

273

is the artistic intent. But the sound effects are really selling this as a physical world
that you can really interact with.

 Mario’s footsteps happen in time with the playback of his animation, empha-
sizing his interaction with the ground at every step. The sounds change based on
the material he’s currently standing on, offering additional clues as to what that
material might be (it looks like metal and, thanks to clanking footsteps, sounds like
it as well).

 Finally, Mario’s bizarre ululations, grunts and exclamations. Mario’s rising
pitched yells correspond to his jumps the same way that the rising slide whistle-like
tone accompanied the jumping in earlier Mario games. As the pitch rises, so does
Mario. The feel is subconsciously satisfying, a further harmonizing between motion
and sound.

 So, in lieu of a lot of detailed visual polish effects which started to happen in the
later three Mario games, especially Mario Galaxy, the sound effects, combining as
they do with the animations, are what’s really selling the physical nature of interac-
tion in this world.

 Cinematic Effects
 The only noteworthy cinematic effect used is screen shake, which is applied exten-
sively to many objects throughout the world. It’s a very gentle shake to avoid jar-
ring the player overmuch, but it does a nice job of selling the weight of such objects
as Bowser, large metal cannonballs and King Thwomp.

 Metaphor
 The metaphorical representation is essentially the same as in previous Mario games.
We’ve got a sort of tubby Italian plumber running around a cartoony, oddly surreal,
but richly physical world. In the case of Mario 64, everything feels a lot more realis-
tic than it did in the original Super Mario Brothers. There are walls; there are bricks
that are definable as bricks. In some areas, there really appears to be marble floors
or wooden doors. Everything has been rendered at a much higher level of fidelity
and in that rendering has lost some of the surrealism it had in two dimensions.

 In terms of treatment, the transition to three dimensions has brought more real-
ism. The pipes, hillsides, castles and other structures with real-world analogies are
now much more representational than abstract. This is a necessary concession for
moving into 3D, but it is interesting to note that in order to match this new treat-
ment, the sounds really did need to be changed to sound more “ realistic. ” They
couldn’t just be the bizarre, chirp-type noises of the original Super Mario Brothers.
Mario’s physical interactions need to seem a little more sensible and logical. That
said, the treatment is still very bright, very smooth and very clearly more iconic
than realistic. Mario’s proportions are more iconic than ever, and most of the

METAPHOR

CHAPTER FIFTEEN • SUPER MARIO 64

274

textures on most of the objects are highly iconic. Trees are trees and water is water,
but only in the most generic, notional sense.

 The metaphorical representation is not setting a huge number of expectations
about behavior in the mind of the player because it’s obviously sort of absurdist
and surreal. The juxtaposition of the plumber and all the bizarre creatures that
really have no sense or meaning outside of the context of the game again works in
Mario’s favor, enabling his rich, detailed physical interactions to seem all the more
compelling because they exceed their treatment. But that treatment is turning a lot
more realistic and therefore to match with that, the game needed to have a feel of
control, a simulation and corresponding effects that were much more detailed than
in any previous Mario game.

 Rules
 The rules of Mario 64 are excellent and three stand out as affecting feel most pro-
foundly: the relationship between coins and health; the relationship between coins,
stars, star doors and boss levels; and the rule of threes as it is applied to boss
damage.

 Coins and slices of health correspond directly. Picking up one coin will restore
one empty slice of health. This makes coins desirable as a way to prolong life and
causes players to seek them out if their health is less than full. The danger of dying
due to health loss is remote—coins are so ubiquitous that it’s difficult to actually
end up with 0/8 health slices—but the affect on feel is to emphasize coin collection
whenever health is low. This puts more importance on specific navigation while
running and on precision jumping to claim coins floating in the air. In addition,
the fact that various objects cause Mario to lose more or less health creates a scale
of danger that feels quite physical. Lava, in addition to launching Mario screaming
upward while holding his backside, takes off two healths. Being hit by a Goomba
takes only one. Ipso facto, the lava is more dangerous, more physically damaging. It
feels more harmful.

 One hundred coins are worth one star. One star opens the first star door, granting
access to a new level. Three stars open two more levels. Eight stars enable you to
attack Bowser’s first stronghold and get access to an entirely new area of the castle,
complete with additional star doors. This cascade effect hooks coins into the highest
level of reward and achievement in the game, the unlocking of new areas of the cas-
tle. This, again, puts a premium on the low-level skills of precise steering and jump-
ing that will enable the player to effectively sour the level, collecting every coin.

 The system for enemy damage primarily sells the difference between bosses and
basic enemies. Bosses take three powerful hits, whether it’s Big Bomb-Omb being
tossed onto his big round butt, or Bowser being hurled into explosive landmines.
Small, simple enemies are destroyed in one or two hits. For this reason, regular
enemies such as Goombas feel fragile and insubstantial when compared to the
massive boss creatures.

275

 Finally, the high-level rules of Mario 64. The big one is the lack of time limit.
You’re free, essentially, to explore. Even the ordering of the goals and levels is
loosely enforced. You can choose to max out each world as you go, or to pick and
choose goals as you go. Even the linear progression of goals in the levels can be
circumventing in many cases. The overall sense is that around every corner, another
joyful discovery awaits, if only you’re skilled enough to get there.

 Summary
 In Super Mario 64, if you examine these relationships individually from a design
perspective, they seem to make no sense. Like squash and stretch in an animation,
“ realism ” is ignored in favor of player perception. But Mario 64 nevertheless man-
ages to feel powerfully tactile and cohesive. How? The secret is this: everything—
the effects, the relationships, the control—is tuned based on its impact on the play-
er’s perception. From tiny, subtle clues, the player infers broad generalizations
about the physics of this world. When these conceptions are ultimately confirmed
by additional interactions, the world begins to seem “ real. ” The polish is exactly
what it needs to be, selling a robust, nuanced sense of physical interaction with the
smallest possible clues. The size, spacing and nature of objects in Mario’s world are
almost perfectly balanced against his motion. In fact, nearly everything about Super
Mario 64 is in harmony with a single, cohesive vision of a unique physical reality.
The world is fantastic, but it’s self-consistent, and stands up to scrutiny, even when
perceived actively.

SUMMARY

This page intentionally left blank

277

CHAPTER
 Raptor Safari

 More than any other type of game, players go pants-on-head crazy over the feel of
driving games. This is, perhaps, unsurprising. People love cars, drive cars all day and
in some cases, fetishize them in rather dubious ways. Everyone in our society has a
huge amount of experiential background against which they compare the feel of driv-
ing a virtual car against. People, in short, have a lot of perceptual data about the feel of
driving and riding in cars, and this heavily influences their perception of driving
mechanics in games. More than any other type of game, people are critical of and sen-
sitive to the feel of controlling something that looks like a car. For this reason, there
has been a huge amount of energy spent perfecting various flavors of driving
mechanics over the years. To the layperson, games like Gran Turismo, Project Gotham
and Ridge Racer may not seem appreciably different. But to the enthusiast, there are
subtle differences in flavor, texture and feel that make all the difference in the world.
There are indeed people in this world who treat driving simulations like fine wine.

 Raptor Safari, a game by Flashbang Studios (Figure 16.1), provides a window into
just how difficult, intricate and time-consuming it can be to create and to give a leg
up toward creating your own good-feeling driving mechanic. But it should be noted
that of the popular retail games that feature a driving mechanic, Raptor Safari prob-
ably has the most in common with the tuning of cars in Grand Theft Auto 3. Many
of the ideas and structures, if not the specific implementations, can be generalized
and applied to all driving mechanics. Just bear in mind how deep the rabbit hole
goes in terms of the feel of driving games and players ’ sensitivity to subtle changes
in it. Whether the treatment is photorealistic or iconic, if you’re going to create a
game where the avatar is represented as a car, be prepared for an obscene amount
of tweaking and tuning to get it to a place where it feels right to players .

 Game Overview
 Off-Road Velociraptor Safari is a 3D browser-based game, created in about two
months by a team of six people. At the time this was written, three and a half mil-
lion raptors have been slaughtered by 90,000 users who’ve played the game 550,000
times. Many players commented on the especially enjoyable feel of the game and

277

 SIXTEEN

CHAPTER SIXTEEN • RAPTOR SAFARI

278

cited it as a reason for the game’s addictive quality. It uses a very simple interface
of six keyboard keys to control an advanced physical simulation including, among
other things, separate values for shock compression, per-tire forward and side fric-
tion, motor speed, velocity, mass, drag and angular dampening. Compare this to
the simplicity of simulation in a Bionic Commando or an Asteroids and you see
how quickly complexity can increase with just a few additional variables. You can
quickly find yourself in the realm of Excel spreadsheets, needing some visualization
to track all the relationships and interdependencies.

 Luckily, the design document for Raptor Safari was not complex and provided
a consistent vision to guide us through development. It consisted of the following,
scrawled on a whiteboard:

Physics-based Jeep � ragdoll raptors � awesome

 The final game matched the design document almost exactly. Driving the Jeep
around feels great; there’s a powerful sense of weight and mass as the large blocky
body of the Jeep compresses the shocks of each individual tire and as they squish
and push back. The Jeep does not flip over too easily, but it’s clear that rolling and
crashing the Jeep is not only possible but encouraged via the damage and stunt
systems. It has a sense of weight and presence and feels to players as though it is
a large and heavy vehicle with responsive steering with which they can navigate
the environment easily. Crunching tire sounds, engine revving and crashing noises
of various kinds further lend credibility to the impression of physicality, especially
supporting the sense of friction with pitch-modulated sounds of tires digging into
dirt. Slow-motion camerawork at moments of impact or during long jumps further
emphasizes the physical nature of the interactions. Crashing into trees and rocks
creates loud, metallic crunching noises and can cause pieces of the jeep to smash

F I G U R E 16.1 Off-Road Velociraptor Safari by Flashbang Studios.

279

and break off or be dislodged and left hanging. Hitting something at higher veloci-
ties causes louder sounds with more crashing and breaking of glass.

 At some point, the player will hit a raptor. The silly puff of feathers, the squeal-
ing noise, the satisfying thud and the fact the raptor then goes into “ ragdoll ” mode
all give the player positive feedback. The interaction has a sort of extreme sports
bloopers appeal, but with virtual ragdoll raptors instead of some poor motorcyclist
flying over hay bales, or a cowboy being gored by a bull. It’s a victimless pleasure.
The experience of hitting a raptor feels gratifying, interesting and worthwhile in and
of itself. The ragdoll raptors have “over the shoulder ” appeal. People walking by
someone playing the game often stop and want to know more about this irreverent
game in which you run over feathery ragdoll raptors that look like parrots in an off-
road Jeep. These interactions—flipping the jeep, destroying it, hitting raptors, cap-
turing them with tow cables—are all supported by the system’s rules. Our goal was
to have the game recognize, and reward, every possible permutation of interaction
the player could have with the world. A sampling of some of the special interactions
that the system recognizes:

 ● Raptor on raptor: hitting one raptor with another

 ● Live specimen: chasing a raptor into a capture point without knocking it out

 ● Clothesline: hitting a raptor with the chain only

GAME OVERVIEW

F I G U R E 16.2 The online popularity of Raptor Safari—the inimitable Derek Yu models an
oh-so-sexy Raptor Safari shirt.

CHAPTER SIXTEEN • RAPTOR SAFARI

280

 ● Pickup: snagging an unconscious raptor with the tow cable

 ● Barrel roll: flip the Jeep along its forward-facing axis

 In addition, there are high-level goals driven by an Xbox-Live-like achievement
system that gives the players specific goals to chase to encourage subsequent play-
throughs. For example, there are achievements for destroying the Jeep entirely, for
balancing on two wheels for 10 seconds and for throwing a raptor more than 50
meters into a capture point. Between this good-feeling, low-level interaction, the joy
of pummeling ragdoll raptors, and the varied and interesting high-level rules, we
built something that a lot of people enjoyed.

 Let’s take a look under the hood—if you’ll pardon the phrase—and see how the
feel of Raptor Safari was created.

 Input
 As a casual, downloadable game, we chose to use the standard computer keyboard.
Specifically, the W, A, S, D, B and space keys.

 The game uses only discrete inputs; there is no mouse or thumbstick providing
a continuous stream of input. Again, each of the six buttons sends a binary
signal. Taken alone, this input data can be interpreted as “ up ” or “ down. ” When
measured over time, the signal can be interpreted as “ up, ” “ pressed, ” “ down ” and
“ released. ”

F I G U R E 16.3 The input space for Raptor Safari.

281

 Response
 The simple binary signals for each button are fed into Unity’s input manager, where
they are parsed and processed before being mapped to specific parameters in the
game. The input manager interprets everything as an axis, even keyboard presses.
In so doing, it assigns the following properties:

 ● Gravity: Speed in units per second; the axis falls toward neutral when no buttons
are pressed.

 ● Sensitivity: Speed in units per second that the axis will move toward the target
value.

 ● Snap: If enabled, the axis value will reset to zero when pressing a button of the
opposite direction.

 What this means is that there’s already a softness applied to each input, filtering
it before it is fed into the simulation. The result of this filtering is envelopes for each
button that look like Figures 16.4 through 16.7 .

 Applying our taxonomy for response, we can see that the jeep moves linearly
in the Z-direction, while rotating around the Y-axis to turn left and right. It has
freedom of movement and rotation in all three axes, though, and can tumble, roll or
fly in any direction, X, Y or Z (Figure 16.8).

F I G U R E 16.4 Left/Right Turning (Gravity � 3, Dead � 0.001, Sensitivity � 2).

F I G U R E 16.5 Forward (Gravity � 3, Dead � 0.001, Sensitivity � 3).

RESPONSE

CHAPTER SIXTEEN • RAPTOR SAFARI

282

F I G U R E 16.6 Backward (Gravity � 3, Dead � 0.001, Sensitivity � 3).

F I G U R E 16.7 Backward (Gravity � 3, Dead � 0.001, Sensitivity � 3).

F I G U R E 16.8 Dimensions of movement in Raptor Safari.

283

 The Jeep’s motion is relative to itself; forces get applied in the direction it’s fac-
ing and using its own coordinate space as a reference. In addition, the rotational
and linear movements are controlled by separate buttons rather than one integrated
control for each.

 Simulation
 The body of the Jeep is a large box which has been defined as a “ rigidbody, ” mean-
ing that it has been registered as a physical object by the built-in Ageia PhysX™
physics engine. What this means is that its motions and interactions are already
being simulated in a very detailed, robust way. For example, the engine already
keeps track of the following parameters:

 ● Mass

 ● Drag

 ● Velocity

 ● Angular velocity

 ● Position

 ● Rotation

 So far, so simple. The system is still comprehensible and can be kept in one’s
mind with relative ease. If you’ll recall the simulation that drove Mario’s movement,
however, we’ve already eclipsed it in terms of the number of different things that
are being tracked.

 Each tire is tracked individually. Interestingly, there is no physical simulation of
the tires. At least, they’re not physically simulated objects the way that the body
of the Jeep is. They don’t have mass, nor do they collide with other objects in the
world. Instead, the position of the tires and their functionality are determined by
four raycasts, which start at each of the four wheel wells of the Jeep and extend
downward. A raycast is basically an arrow, starting at a certain point and going for
a certain distance in a particular direction. Visualize it like Figure 16.9 .

 The visualization of the tires (the 3D model representing each of them) has its
position set at the point where the raycast intersects the ground below it. That is,
the raycast will shoot down a certain amount from its starting point up in the wheel
well. If the raycast doesn’t hit anything, it doesn’t do anything and the wheel gets
set to the maximum distance beneath the Jeep, which is a predefined number.
In this case, it’s enough effect to make the Jeep look normal, with its tires situ-
ated properly in the wheel wells. If the raycast does hit something before reaching
its defined maximum distance—the ground, say—it has a programmed response.
Depending on how close the place that was hit is to the starting point of the ray up
in the wheel well, a force gets applied to the body of the Jeep, pushing it. The fur-
ther “compressed ” the suspension is, the larger the force.

RESPONSE

CHAPTER SIXTEEN • RAPTOR SAFARI

284

 The result is that forces are constantly acting on each of the four corners of the
Jeep, under the wheel wells, where the tires would be, pushing upward like a set
of shocks attached to tires. The only weirdness that’s caused by this is the fact that
when the Jeep passes over a rapid shift in terrain height, like a curb, you can actu-
ally see the tires snap up or down. If you watch closely, you can see this happen
even in Grand Theft Auto 4. To combat this small but potentially annoying move-
ment, Raptor Safari always interpolates between the current position of the tire and
its next desired position, guaranteeing that the motion will be relatively smooth.
There are still some cases where the tires seem to behave a bit weirdly, but overall
the effect is solid.

 Now, if you set up a system like this and just drop the Jeep onto some terrain, it
would start rocking back and forth with increasing force, eventually with such force
that it might get launched up into the air (Figure 16.10).

 To combat this effect, a dampening value must be applied to each upward sus-
pension force such that as it pushes upward from fully compressed, it quickly
decreases in force. As it approaches equilibrium, in other words, it applies less and
less force, like Figure 16.11 .

F I G U R E 16.9 The four raycasts going downward out of the Jeep’s wheel wells.

285

 So up to this point we have a big block representing a Jeep that, if dropped on
to some terrain, will float above it because of the counteracting forces of four tires
simulated by short raycasts. In terms of tweakable parameters we have:

 ● Global

 1. Gravity

 ● Jeep

 1. Mass

 2. Special Jeep gravity (some extra gravity applied only to the Jeep to make it
seem less like a hovercraft)

F I G U R E 16.10 Without dampening, the forces quickly send the Jeep spinning into oblivion.

F I G U R E 16.11 The force is reduced as the raycast returns to its normal length.

RESPONSE

CHAPTER SIXTEEN • RAPTOR SAFARI

286

 ● Tire

 1. Raycast max distance

 2. Raycast min distance

 3. Suspension force

 4. Suspension dampening.

 Yipe! Well, you can see how these things start to get mind-bendingly complex in a
big hurry. We don’t even have the Jeep moving yet and we’ve already got a much
more complicated simulation than anything we’ve talked about up to this point.

 Now, the movement of the Jeep. The Jeep actually tracks two values for its veloc-
ity: the actual current velocity of the physics object according to the physics engine
and a separate “ desired ” value, which could be thought of as motor speed. For
example, say the Jeep goes off a jump and gets launched into the air. Say its actual
horizontal velocity according to the physics engine in the air is 30 km/hr. Since it’s
flying through the air, it will have this same horizontal velocity until acted upon by
some other force. It’s still possible to hit the gas while in the air like this. The tires
will spin quickly and the engine will rev. The desired speed, the motor speed, of the
Jeep goes up to some amount above the actual horizontal speed. Let’s say it goes
as high as 50 km/hr. The Jeep is still flying through the air so the actual horizontal
speed remains the same, but the desired speed is now much higher. What happens
when the Jeep lands back on the ground?

 When the Jeep hits the ground, you don’t want to immediately set its velocity to
50. That would feel weird and artificial. You want it to have some kind of friction
simulation that causes it to “catch ” as it comes back in to contact with the ground.
But if the engine’s been revved up too much and the tires are spinning much more
quickly than the actual speed of the car, the tires “ slip ” if they’re above a certain
threshold, the way that real car tires on a real road will slip and peel out if they’re
accelerated too quickly. So this separation between actual and desired velocity gets
us two things. First, our Jeep can have a different desired heading and desired speed
when it’s in the air. You can go soaring through the air, gas it and turn, and have
those changes manifested as soon as the Jeep comes back into contact with the
ground. This is in line with players’ expectations. If it doesn’t happen this way, it
seems weird and artificial. Second, we can simulate the type of slipping that hap-
pens when friction is overcome by a tire that’s broken free.

 The way this is implemented in Raptor Safari is shown in Figure 16.12 . As you
can see, there are indeed two separate parameters for actual velocity and desired
velocity. Interestingly, the actual velocity is never reached, because of the friction
forces applied to each tire in both the front and side directions. In fact, all motion of
the Jeep is driven by the tires. Each tire maintains its own individual velocity and
two friction values that counteract it: side friction and forward friction.

 As the tires turn, the direction of their velocity may change. The friction forces
apply in amounts commensurate to the direction of each tire’s velocity, though
always more to the side than to the front. This is what creates the carving effect

287

when the Jeep begins to turn. Because the forward friction is much less than
the side friction, instead of spinning on its axis even as it turns like the ship in
Asteroids, the jeep seems to dig into the ground, creating an arcing, curving motion
rather than a floaty, sliding turn (Figure 16.13).

F I G U R E 16.12 The force is reduced as the raycast returns to its normal length.

F I G U R E 16.13 The feel of a car “ carving ” as it turns comes from a special, high friction value
applied sideways on the tires.

RESPONSE

CHAPTER SIXTEEN • RAPTOR SAFARI

288

 Finally, each friction value for each tire has a particular slip threshold. This sim-
ulates the effect we mentioned earlier, where the tires will get spinning so quickly
that they will break loose and slip, overcoming the friction that holds them to the
ground. Figure 16.14 shows the way it works.

 As with the Jeep body proper, each tire has both an actual and desired velocity.
In each frame, the game examines the difference between the desired velocity
and the actual velocity. If this number, the difference between motor speed
and actual speed, is above a certain threshold, the friction values, both side and
front, are adjusted according to the graph in Figure 16.14 . It’s a gradual application
but it produces the intended effect. If the motor speed is much, much higher than
the actual speed, the tires break loose and slide. Note that this effect also works
if the car is sliding sideways with great force, as when the jeep gets launched and
spun simultaneously, landing at an awkward angle. The overall effect is a sensation
of friction approximating what a player expects from a real car.

 The Tow Chain
 Deploying the chain is actually a physical process. It probably doesn’t have to be,
but it worked out so well that we stuck with it. The chain goes from being non-
simulated to being simulated, unfurling as the back door (also physically simu-
lated) pops out backward. The result is a sort of jiggling in of the whole jeep rig
in response to this change in mass and balance, one that looks appropriate and
satisfying.

 The center of gravity of the Jeep changes depending on whether the chain’s out
and depending on whether there’s a raptor attached to it. If you think the Jeep is
squirrely and difficult to control with a raptor attached now, you should see it when
the center of gravity isn’t shifted backward and down. Through this artificial center
of gravity shift, though, we were able to get the Jeep to a reasonably controllable
state with chain in or out and with or without raptors attached. The result is reason-
ably unwieldy without being overly so and promotes the development of high-level
skills involving prediction and intuition. You can, through lots of play, get a feel for

F I G U R E 16.14 The slip threshold—past a certain speed, the tires will break loose.

289

how to effectively swing raptors around and get them and the Jeep to do what you
want. There was one consequence, though: sometimes when the Jeep is flying and
spinning through the air, its behavior is a bit odd-looking. It’s clear that the center
of gravity is outside the Jeep. We decided that it was worth it to have stable driving.

 Finally, the chain will break under a large amount of stress. There’s a fine bal-
ance between having it break too easily and not easily enough. The tests we used
were accelerating from a standstill with a raptor attached and wrapping the chain
around a tree. The player had to be able to accelerate from a stop with the tow
cable unfurled and a heavy raptor attached without breaking the chain, but the
chain should almost always break if you swing it and wrap it around a tree.

 Context
 At the highest level of spatial context, we created a world that was very open. There
are lots of places to go, higher levels and lower levels, but in general, there’s a
sense that you’re in a vast, open area with lots of tall mountains surrounding it, but
there’s also an ocean and it sort of goes on forever. And the free-roaming, exploring
nature of the game with very little constraint further emphasizes this sensation.

 So in general, it feels much more like a large, open valley than any sort of
cloistered-in city (Figure 16.15). And there are a couple places where that impres-
sion is sort of part of the contrast, by having closed-in canyons or areas that are
under outcroppings of rocks or have lots and lots of trees in them. But in general,
the impression of space at the highest level is very open and wide.

 And if you see a place on the map, odds are you can find a way to travel there.
So it has that sort of high-level, exploratory appeal, like World of Warcraft or

F I G U R E 16.15 The wide open space of Raptor Safari.

CONTEXT

CHAPTER SIXTEEN • RAPTOR SAFARI

290

Oblivion, in microcosm. The entire gameplay field is about two kilometers square in
the measurement we use in the game itself for speed.

 At the medium level, we have a really nice impression of speed going on because
of all the textures on the ground and because of all the small plants and trees and
environmental object as the Jeep travels around. There’s a nice impression that it’s
moving fairly quickly as it’s rolling around the level and zipping between objects
(Figure 16.16).

 In terms of the number of objects, nature of the objects and the spacing of
objects, we’ve provided what I feel is a nice contrast between big, wide-open areas
and penned in, small areas, where you have to do a lot of obstacle avoidance.

 But again, since we’re not punishing players for running into stuff—in fact,
we’re rewarding them with points for damaging the Jeep. The sensation is positive,
regardless of whether you’re running into something or not. And of course, we cre-
ated the raptors as a reward for crashing into things. So you chase them down and
run into them.

 We’re giving a lot of meaning to the amount of turn that the car has relative to
its forward velocity because you have to chase down with a fairly high degree of
accuracy a moving target and the raptor who will always be fleeing away from you,
albeit at a slower speed than you.

 The game provides a variety of goals and well-spaced environment objects that
emphasize precise movement andluming. In addition, the goals provide incentive to
attempt huge jumps and to seek out areas that accommodate such launches. So in
that sense, it’s much more like an open street with sort of some very specific goals
in it that we’ve provided in terms of running into the raptor and steering around
things.

F I G U R E 16.16 Objects and textures in Raptor Safari create the impression of speed and
provide mid-level context.

291

 So in general, this affects the field by tuning your sensitivity to the medium level
of interaction primarily. You’re steering around things and you’re steering toward
raptors. And at the most basic level, this is primarily what we’re doing—object
avoidance or trying to accurately track down moving objects. So in that sense, the
focus of the mechanic through the context is put on the spacing of objects and how
to steer in and around the trees.

 We hit a fairly good balance here. Maybe we could have removed a couple of
trees to make it a bit easier just to drive across the environment, but the speed of
the forward motion of the Jeep and the amount that it turns are balanced relative to
the spacing of objects, which is fairly wide in general.

 At the lowest level of tactile interaction, the game does not do the typical
waterslide collision methodology of most racing games. Because we have a wide-
open world that flows and you can drive to any area, we didn’t feel it was necessary
to put so much emphasis on slip sliding away from objects.

 In fact, because you want to ram into raptors, we made the collisions a little bit
stickier than you typically find in a racing game, meaning that when you’ve collided
with a raptor, it really feels as though it’s interacting with the hood of the car and
sort of flying sideways and getting crunched around and mashed up against things.

 And this extends, perhaps, a little bit negatively to your interactions with trees
and other objects in the environment. It is possible to be going at the maximum
speed with a boost, crash into a tree and completely lose all momentum. We tried
to mitigate this with polish effects such as loud crashing sounds that get more
emphatic and sound more destructive depending on the velocity of the collision.
But there’s only so much you can do without actually simulating deformation of the
car or doing some more advanced particle effects than we did.

 So in general, the simulation, the tactile level of collision—the tactile context—
feels much like a real car with the caveat that it doesn’t get deformed or destroyed
past the superficial destruction of the doors and hood.

 Polish
 In terms of polish effects, most of the interactions are conveyed by the simulation
itself, so there’s not a huge amount being done. The primary work affecting the
feel of the game is in the sound effects, where a lot of attention was paid to what
the sound effects were conveying about the physical interactions of the car with its
environment, especially the tires with the ground.

 There are two layers of sound effects, the engine-revving noise and the crusty,
dirt-crumbling noise, and their pitch is modulated based on the angle of the
car turning, the amount of force that’s being applied, friction-wise, to the car’s
tires. Further, based on the overall speed of the car, the engine noise is modulated
as well.

 As a result, you really get a sense that the car is speeding up and revving up,
and this further enhances the impression of speed, but with respect to the pitch

POLISH

CHAPTER SIXTEEN • RAPTOR SAFARI

292

modulation of the turning, it really gives the sense that you’re carving into the dirt.
The pitch goes up and you can almost hear the tires spinning and squealing as they
crunch through the gravel dirt on the ground.

 In terms of collision, we did three levels of different sounds, and we’re pulling
randomly from a list of different sounds in order to avoid hearing the same sound
over and over again and fatiguing the player’s ear. But there are three levels of
sounds.

 At the lowest level of collision, there’s a threshold, and at the lowest level of col-
lision threshold, it’s a very low-velocity collision. It’s just sort of a plastic-sounding
thud, like if you bump your friend’s car in bumper-to-bumper while you’re waiting
at a light. If you give the car a love tap, that’s the kind of sound we got there.

 At the medium level, there’s a satisfying crash or crumpling sound with
some metal and maybe a little bit of glass breaking. It’s obviously a much more
powerful collision than the love tap, but it’s not over the top. And then we reserve
for the most destructive collisions—the highest velocity of collisions—a class of
sounds that includes metal rending and have a long after-effect sound of crunching
glass and breaking and smashing that goes on for quite some time.

 And even higher than that, we have a separate class of sounds that we trigger
when only a piece of the Jeep gets broken off, and that’s the most destructive and
violent-sounding noise. In addition, when the Jeep hits a raptor, we’re making a
special organic thudding noise. It sounds a little like hitting a side of beef with a
baseball bat; and that, as well, comes in different levels.

 It will be louder and more emphatic if the speed of the collision is much higher.
So in that respect, we’re giving additional sensitivity and conveying another power
sense of physicality through modulating the sound depending on the strength of
collision.

 In terms of visual effects, there are very few. And as the Jeep is driving around,
dust particles get kicked up under the tires. If the Jeep is carving with a certain
amount of force—if the amount of friction being applied to the wheels is above a
certain amount, then a tire mark graphic will be placed on the environment where
the tire was touching.

 In addition to these effects, we are also doing some cinematic trickery. Whenever
there’s a stunt—that is, whenever the Jeep flies a certain height above the envi-
ronment—a slow-motion cam occurs to emphasize that stunt, and the same thing
happens if you run into a raptor. The game goes into slow motion and the camera
zooms in on the point of interaction to further emphasize the weight and impact of
the collision.

 And that’s pretty much it. We’re doing some parametric animation stuff with a
main character in terms of animation effects, such as the visualization of the tire
spin according to the code, which technically could be considered an animated or
polish effect. And when the Jeep turns left or right, the monocled, pith-helmeted rap-
tor driver turns his head to the left and right, which is an animated effect driven by a
parameter, but not directly affecting it. And then when you start backing up, he sort
of puts one arm back and looks over his shoulder the way a normal driver would.

293

 And really, that’s all the polish effects there are in Raptor Safari. It’s fairly bar-
ren in terms of extraneous polish effects applied to improve the impression of
physicality and the interaction between objects. Pretty much everything is done in
simulation.

 So overall, the effects, or the limited number of effects—especially the sound
effects—serve just to improve the impression that this is a real car. In fact, the
sound effects were taken from actual car collisions. And that the raptors are big,
mushy pieces of flesh made out of meat, bone and feathers, and when they come
into contact with the much weightier, more massive car, they get owned, basically.

 Metaphor
 In terms of metaphorical representation, the metaphor is a nearly photorealistic
Jeep, or at least a Jeep that is properly proportioned and is clearly attempting to
be a somewhat realistic representation of a Jeep. It is not a cartooned Jeep and the
treatment is not intended to be iconic, particularly (Figure 16.17).

 The environment is much lower resolution and looks less like an attempt to be
realistic. There’s a bit of a disconnect between the Jeep and the environment, as
well as a slight disconnect between the Jeep and the raptors. The raptors look very
painterly and colorful, whereas the Jeep looks like it’s turning a little bit toward
realism, and the environment seems to be more fantastical.

 But overall, the expectation is that this car will behave like a real car. We’re miti-
gating this expectation in some degree by the silliness of what’s going on and the
absurdness of a monocled, pith-helmeted raptor driving a Jeep around and running
over other raptors, and especially by the silly sound effects and the puffs of feathers
and things that fly up.

F I G U R E 16.17 The Jeep in Raptor Safari is close to photorealistic.

METAPHOR

CHAPTER SIXTEEN • RAPTOR SAFARI

294

 We’re setting up the expectation that, though it kind of looks like a real Jeep,
don’t expect it to handle the same way with the same degree of accuracy as a Gran
Turismo. Don’t apply the highest level of simulation standard.

 So again, in terms of representation, we’ve got a Jeep driving around a some-
what fantastical world with some surreal elements in terms of big, feathery,
parrot-looking raptors being run over by another raptor in the Jeep (Figure 16.18).
The treatment on the Jeep is realistic, the treatment on the environment is more
fantastical and the treatment on the raptors is more painterly and iconic. So there’s
a little bit of a disconnect there, but it holds water reasonably well. This silliness
also makes the whole thing feel more abstract and surreal.

 Rules
 The high-level rules we created have a huge effect on the feel of Raptor Safari. You
can do no wrong. You get points for everything. Humorously, it is literally impos-
sible to score zero points. If you end a five minute round with zero points, you earn
an “A for Effort ” bonus, which gives you 50 points. That was our philosophy; to
recognize and reward every possible action. As a result, every possible action feels
rewarding to some degree.

 So hitting a raptor, you get a bonus; trashing the Jeep—destroying part of the
Jeep—you get bonus points for that. Doing stunts—launching yourself off of high
objects and doing flips and barrel rolls—you get rewarded for that.

 Every single possible combination of interaction, such as grabbing one raptor
with the tow cable and hitting another raptor with that, we emphasized with a
special bonus. And the reason we did this was to make the entire experience feels

F I G U R E 16.18 The protagonist of Raptor Safari: a raptor with a monocle and pith helmet.

295

always positively rewarding. The challenge is the timer. You have to score as many
points as possible within the allotted time, and the allotted time is very low—five
minutes.

 So you can never fail at Raptor Safari. The lowest possible score is 50 points (the
“A for Effort ” bonus). But we wanted to enable players to always compare their
score with their previous score and with everyone else’s score in the world through
the achievement system and high-score list.

 Every individual action feels rewarding to some degree, but the actions that you
take start to feel more and less rewarding. So for example, if you spend an entire
round focusing on running over raptors and your score is 200,000, that will feel like
a reasonable score because you’ve run over a lot of raptors and perhaps thrown
them into the raptor catchers and gotten points for it, and there’s a satisfaction
there.

 But if you do another play through the game of another five-minute round, and
you do a bunch of stunts and get these crazy high-flying jumps and spins (that
gives you a much higher score) then doing stunts is going to feel more rewarding
than capturing raptors. So it’s all about developing a scale of relative reward for the
player to model internally and experiment with.

 With the medium-level rules affecting feel, we’re steering the player toward
raptors and orbs and jumps that cause the Jeep to go flying huge distances and
do spins and so on. That’s essentially the behavior that we’re encouraging, and
because of that, the feel changes slightly.

 You always steer toward raptors and, because of the way the combo system is
structured, you always want to steer toward the next thing, whatever it is, as quickly
as possible to keep your current combo going because getting an orb continues your
raptor-hit combo, which would continue your stunt combo. All the different combo
systems are linked into one.

 The net result is that you feel that you’re trying to chain together these different
combo elements as you move throughout the level, and you’re always looking for
the next thing to hit and gravitating toward it, which makes you feel as though you
always want the Jeep to go faster and you don’t really care too much about running
into things. You’re always just focused on what the next thing is that you’re going
to try and steer toward and how you’re going to get there.

 And finally, at the lowest level, there isn’t really a concept of health of objects
in Raptor Safari past the fact that hitting the raptor once with your massive Jeep or
with the tow cable will stun it or kill it, depending on your perspective, and knock
it out. So the impression that’s conveyed there is that the Jeep is much more mas-
sive than the raptors.

 Summary
 Most of the feel of Raptor Safari resides in the complex physical simulation. The
high-level rules reward every behavior and guide the player toward ever higher

SUMMARY

CHAPTER SIXTEEN • RAPTOR SAFARI

296

levels of skill in a variety of different areas. We built the game very much with
a bottom-up mindset; first was the simulation of the Jeep and the ragdoll raptors.
That was tuned fastidiously. Then we built out a larger world, and populated
it with lots of ramps and raptors. When we were comfortable that the feel of
just driving around and smacking raptors felt satisfying, we emphasized every
possible physical interaction with bonuses and scoring events, including a dam-
age system, a stunt-reward system, a raptor reward system, and rewards for col-
lecting the random orbs scattered throughout the environment. On top of this, we
layered a combo system that provided rewards not only for doing many of the same
types of events in a row but rewarded across systems, giving extra bonus time to
all open combs whenever a new event was completed, regardless of its type. The
five-minute round timer combined with the all-skills-rewarded approach plus the
high-level achievement goals created a game that feels good and keeps players
coming back.

297

CHAPTER
 Principles of
Game Feel

 After exploring what game feel is and how to measure it, and stepping through a
number of examples using our taxonomy of game feel—input, response, context,
polish, metaphor and rules—it’s time to set forth some general principles for
creating games with good game feel. They are:

 ● Predictable results—When players take action, they get the response they expect.

 ● Instantaneous response—The player feels the response to their input is
immediate.

 ● Easy but deep—The game takes minutes to learn but a lifetime to master.

 ● Novelty—Though the result of an input is predictable, there is enough subtlety
and expressiveness to keep the controls feeling fresh and interesting through
hours and hours of play.

 ● Appealing response—The sensation of control is aesthetically appealing and com-
pelling, separate from context.

 ● Organic motion—Controlling the avatar creates appealing arcs of motion.

 ● Harmony—Each element of a game’s feel supports a single, cohesive perception
of a unique physical reality for the player.

 In many ways, these principles are similar to the principles of animation, which are
well known and well-proven. 1 The seven principles of game feel described here may
not be complete, but they are a good starting point.

297

 SEVENTEEN

 1 Once again, refer to Frank and Ollie: http://www.frankandollie.com/PhysicalAnimation.html

CHAPTER SEVENTEEN • PRINCIPLES OF GAME FEEL

298

 Predictable Results
 When players take action, they should get the response they expect. This doesn’t
mean that the game is easy or that the controls must be simple. What it means is
that there’s no interference between intent and outcome for the player. The result
of pressing a button or moving a Wiimote might be complex and difficult to man-
age, but this is different from feeling that the game is giving a different result for
the same input. When the result is predictable for the player, the controls can be
learned and mastered. Even if it seems exceedingly difficult, the player can engage
with the challenge of the game. When the controls seem random, continuing to
play seems pointless. There’s no point in practicing if the game just gives a random
result.

 Creating predictable results seems like an easy task from a game designer’s
point of view. But, as Mick West has said, “On the face of it, this appears a sim-
ple problem: you just map buttons to events. However, due to the non-precise
way that different players press buttons and perceive events, problems of ambigu-
ity arise, which lead to frustration and a feeling of unresponsiveness. The player
thinks he has hit the correct button at the correct time, but, as he’s not a robot, the
intent of his input is ambiguous and cannot be resolved satisfactorily with a simple
mapping.”

 To paraphrase Will Wright, designing a game is half computer programming and
half people programming. Creating real-time controls that always give the player the
result he or she expects is difficult because expectations live in the player’s mind.

 The problem is the difference between the hard precision of a computer and the
soft nature of human perception. To a computer everything is precise. The A-button
was pressed 14 ms after the Z-button or the player pressed jump 9 ms after the char-
acter walked off the cliff. The game can’t know what the player expects. So when
creating a system of real-time control, we as game designers must attempt to mold
player expectations indirectly through mapping, metaphorical representation and art
treatment. The player’s perception of what happened trumps the computer’s. We
have to program the player’s perception via the computer.

 Three pitfalls will cause players to feel that the results of their input are more
random than predictable: control ambiguity, state overwhelm and staging.

 Control Ambiguity
 When mapping input to response, game designers sometimes create unintentional
control ambiguities. In Mario 64, pressing the A- and Z-buttons at the same time
will give a random result, either a ground pound or a long jump. The game will see
inputs in terms of milliseconds, knowing which one came first. To the player, how-
ever, the result seems inconsistent. Mick West explains, “In [Super Mario 64] press-
ing [the A-button] to jump then R1 … triggers a ground pound. Pressing R1 before
A triggers a backflip. Pressing them at the same time causes either a ground pound,

299

a backflip or a normal jump, seemingly at random—the player has no control. The
player can press these two buttons simultaneously over and over, and never figure
out how to control each of these three actions properly. ”

 For a game to provide consistent, predictable results for input, these control
ambiguities must be resolved. Mick has some great strategies for identifying and
resolving these problems in his series of articles on responsiveness. 2

 State Overwhelm
 One way game designers make low-sensitivity inputs more expressive is by chang-
ing mappings depending on what’s happening in the game. For example, in Super
Mario Brothers, when Mario jumps, it’s easy for the player to perceive that he’s
in the air as opposed to the ground. Though the result of pressing left or right has
changed—the response is much less—it does not seem surprising or jarring because
Mario’s clearly in a different state. It doesn’t seem random.

 If I hand my mom the Playstation 2 controller and turn her loose on Tony Hawk ’s
Underground, however, she’s totally overwhelmed. This is because in Tony Hawk
there are many different states and it’s not clear to inexperienced players when the
state switches happen. When the player does not perceive the state change, inputs
begin to feel random. The skater in Tony Hawk ’s Underground can be in the air
state, the ground state, the manual state, the runout state, the grinding state or the
lip trick state. In each of these states, each of the 12 buttons on the Playstation
2 controller does something different. On top of that, there are many “chorded ”
inputs; pressing two buttons at the same time gives a different result than each indi-
vidually. Pressing left and the X-button at the same time is different from press-
ing left or X individually, for example. This means that there are literally dozens
of moves mapped to each button. It’s easy to understand why my mom feels over-
whelmed. There are so many results for input, her input might as well be random.

 If inputs seem to yield random results, the rational response is to mash buttons
randomly. This is what many first-time players of fighting games do, pressing ran-
dom buttons without a clear intent other than simply to do something. Eventually,
patterns emerge and you learn what input gives what response. But when you first
start playing, there are so many states, so many possible moves, that it might as
well be a random result for input.

 Staging
 If the result of an input is difficult for the player to perceive, it becomes unpre-
dictable and uncontrollable. When the player cannot process what the result of an
input was—if it happens too fast or gets lost in other motions—the player will not

PREDICTABLE RESULTS

 2 http://cowboyprogramming.com/2008/05/30/measuring-responsiveness-in-video-games/

CHAPTER SEVENTEEN • PRINCIPLES OF GAME FEEL

300

have a clear sense of what the result was and it will seem random. This is related to
the Staging principle of animation, explained by John Lasseter: “An action is staged
so that it is understood. To stage an idea clearly, the audience’s eye must be led to
exactly where it needs to be at the right moment. It is important that when staging
an action, that only one idea be seen by the audience at a time. ” 3

 In real-time control, this means providing clear, immediate feedback. This
often means exaggerating the result of an input with particle effects. The goal is to
make it clear to the player what the result of an input was so it can be reproduced
at-will.

 As game designers, we need to remember that we have very little time to hook
the players. If they don’t feel successful and oriented within the first couple min-
utes, we’ve lost them. The lowest-order feedback loop, the first thing they’ll
encounter, is game feel, the moment-to-moment control. If it doesn’t feel good at an
intuitive level, giving them predictable results they can sink their teeth into, they’ll
stop playing.

 Predictability also means inference. From the first few minutes of a game, the
player can extrapolate a clear picture of the structure of the entire game. This is a
good thing; it gives the player traction, mitigating the clumsy disorienting feeling of
learning a new mechanic. In Super Mario Brothers, I know that if I fall into a hole,
I will lose a life. It only takes one hole to figure that out; I’ll avoid holes for the rest
of the game. But just because something is reproducible doesn’t mean it’s predict-
able. A predictable result should reveal as much about the possibilities you haven’t
tried as about the ones you have.

 Instantaneous Response
 Games that feel good respond immediately to input. This doesn’t necessarily mean
a short attack phase. For example, the Warthog controls in Halo are loose and flow-
ing, but still feel responsive. When the player moves the reticule, the Warthog
immediately starts seeking on the new direction indicated (Figure 17.1).

 The farther the new direction is from the current direction the Warthog is fac-
ing, the faster it will move to try to get there. As a result, the largest, most obvious
response happens moments after the change in input. The response feels instanta-
neous, even if the release phase is long and drawn out (Figure 17.2).

 This closely relates to the Slow-In, Slow-Out principle of animation: “As action
starts, we have more drawings near the starting pose, one or two in the middle, and
more drawings near the next pose. Fewer drawings make the action faster and more
drawings make the action slower. Slow-ins and slow-outs soften the action, making
it more life-like. For a gag action, we may omit some slow-out or slow-ins for shock
appeal or the surprise element. This will give more snap to the scene. ” 4

 3 http://www.anticipation.info/texte/lasseter/principles2-4.html
 4 http://www.frankandollie.com/PhysicalAnimation.html

301

F I G U R E 17.1 The loose but responsive feel of the Warthog in Halo.

F I G U R E 17.2 The ADSR envelope of Warthog turning in Halo.

 The difference is that in a video game, response time is important. If easing in
takes too long, the player will perceive the game as sluggish and unresponsive.
What feels bad is when there is a delay longer than about 100 ms between when the
player tries to do something and when he or she perceives the result of that action.
To maintain the impression of responsiveness, the result of input must be perceived
by the player as immediate. The attack phase can take 10 seconds but will still feel
responsive as long as there is some obvious result within 70 to 100 ms of the input.

INSTANTANEOUS RESPONSE

CHAPTER SEVENTEEN • PRINCIPLES OF GAME FEEL

302

 Easy but Deep
 There’s an old game design maxim: good games take minutes to learn but a life-
time to master. Another way to say this is “low skill floor, high skill ceiling. ” The
basic skills are easy to learn, but there are always new levels of mastery to aspire to.
There’s always something new to learn. Good-feeling games often have this property.

 The most elegant way to make a game easy to learn is to exploit natural map-
pings. For example, the motion of the ship in Geometry Wars closely matches the
physical movement of the thumbstick input that drives it (Figure 17.3).

 The relationship between the input and the thing being controlled in the
game is obvious and intuitive. Similarly, exploiting standard mappings of input
to response leverages assumable common knowledge to avoid making the player
learn something new. A steering wheel turning a car; a mouse moving a cursor;

F I G U R E 17.3 The movement of the avatar in Geometry Wars: Retro Evolved is a natural
mapping.

303

and the W, A, S, D keys moving an avatar are examples of established cultural
standards for control.

 Other ways to make a game easy to learn are tutorials and “ helpers ” —auto aim,
dynamic difficulty adjustment, so-called “rubber banding ” rules (like the blue shell
in Mario Kart) and so on. Making a game easier to learn is a straightforward process
of iteration. The really difficult problem is how to make a game deep.

 Creating a game with depth is a difficult, unpredictable process. This is why
games that have this property are so valued; a game designer cannot predict which
combination of elements will give rise to a system that people spend endless hours
obsessively practicing. Fortunately, video game designers have control over not only
mapping of input to response, but challenges as well. We get to design the chal-
lenges that define the skills as well as the basic movements themselves.

 If the game seems to lack depth, it’s possible to change the relationship between
input and response sensitivity. Adding additional sensitivity to the controls enables
more subtlety and nuance to the interactions. Supporting these new, more expres-
sive interactions with rules (goals and challenges) and context (spatial layout) ena-
bles the designer to craft the feel of the game at various levels, making it deeper.
For example, tracking how long it takes to complete a specific action—racing from
point A to point B, for example—is one way to add depth. Even with a simple set
of controls, getting a better time is almost always possible. The first time the player
completes the race sets the benchmark. The next time he or she plays the race,
the knowledge gained from the first play through will probably make it easier to
get a better time. Each play through, though, it will become harder and harder to
improve. Eventually, the player will have to start changing and experimenting with
different strategies in order to improve his or her time. Figuring out new ways to
optimize his or her time, the player is reaching new levels of skill and unlocking
new sensations of control. In a deep game, this process can go on much longer than
in a shallow one. This simple rule—recording the time it took to complete an action
and showing the result to the player—unlocks whole layers of skill learning and
optimization the player would never have experienced otherwise.

 Another strategy is to enable multiple players to compete, directly or indirectly.
Examples of direct competition are games like Quake and Street Fighter II, where
players directly attack one another. Indirect competition happens when a game
has a leader board. Players are alone while playing the game but their scores get
recorded and posted for comparison.

 Enabling competition between players effectively makes the skill ceiling infinite.
You can never be complete—as when you get 120 stars in Mario 64—you can only
be better than someone else.

 Novelty
 Though the result of an input is predictable, there should be enough small, subtle
differences in response to keep controls feeling fresh and interesting.

NOVELTY

CHAPTER SEVENTEEN • PRINCIPLES OF GAME FEEL

304

 One enemy of novelty is linear animation. Even in a game like Jak and Daxter,
where the linear animation is of uncommonly high quality, it’s very easy to tell
that Jak is doing the same punch every time. The problem is that, once exhausted,
even quality content gets boring. Watching Jak punch for the ten thousandth time
is significantly less compelling than it was the first time. For a sensation of
control to hold the player’s interest, it needs to feel novel and interesting even
after hours of play. Even repetitive actions should feel fresh each time you trigger
them.

 Many games attempt to solve this problem with mountains of additional content,
running the player through a series of increasingly challenging and varied levels
that give new and interesting context to the virtual sensation to keep it from feeling
stale. Another approach is to introduce more mechanics—additions and modifica-
tions to virtual sensation—over the course of the game. For example, Castlevania:
Dawn of Sorrow does a great job of constantly adding new virtual sensations
through different “ souls ” and weapons, each of which adds a different feel to the
underlying movement or augments it with new states (such as the ability to jump
twice without landing) .

 Another approach is to increase the sophistication of the global physics
simulation. Physics games make control feel novel because the player will never
be able to offer the same input twice. While the player may be able to consist-
ently achieve the same result in Ski Stunt Simulator—jumping a ravine then doing
a backflip over a wooden hut, for example—no two runs will ever be the same.
The parameters that govern the simulation will react identically each time, play-
ers can’t perceive the subtle differences in their own input. The system is more
sensitive than the player’s perception, much like the real world. Because our
perception is keenly tuned to physical reality, we subconsciously expect certain
things to happen when objects interact and move. One thing we expect is that
no motion will ever be exactly the same twice. This is the nature of reality:
messy and imprecise. No one person can punch exactly the same way twice or
throw a discus or javelin the same way twice. If we see the same action happen-
ing in the same way over and over again without subtle variation, it starts to look
wrong.

 Appealing Response
 When completely removed from its context, real-time control should still be engag-
ing and aesthetically appealing. What’s important here is to separate meaning from
appeal. Context is very important to create meaning in a virtual sensation, as well
as to provide a point of reference for scale, speed and weight, but is separate from
naked appeal. A virtual sensation has appeal when it’s fun to play and tinker with
in a completely empty space.

305

 Playable Example

 Try each of the sensations of control in example CH17 - 2 to experience how
appealing they are without the benefit of spatial context. The “High Input, High
Reaction ” test has much more appeal because its motion is more complicated,
fluid and organic - looking than the other three. Indie game designer Kyle Gabler
does a fantastic job of making games with this kind of basic appeal; Attack of
the Killer Swarm and Gravity Head in particular are super appealing.

ORGANIC MOTION

 Additional effects and baked-on animation can also add to appeal. The animations
in Jak and Daxter add a lot of appeal to an otherwise bland sensation of control.
Most of the techniques used to animate Jak come from traditional animation—
squash and stretch and so on. But Jak’s movement, which is simple when separated
from the layer of animation on top of it, seems organic, complex and appealing. In
New Super Mario Brothers there is a similar effect: if Mario were just a cube, the
virtual sensation would not be as appealing. As it is, Mario’s run cycle speeds up
gradually and slows down again as he starts and stops, throwing up dust particles
both as he runs and if he quickly changes directions.

 The other part of appeal is making sure that no matter what input the player
gives the system, the result is compelling. This is especially important for things
like crashes and failure states. An enlightened approach is to spend more time on
the failure states, making them varied and interesting, since this is where the player
will spend most of the time. For example, in the game Ski Stunt Simulator, it’s fun
to crash and mangle the skier. Because the skier is a “ ragdoll ” physics rig, complete
with constraints to simulate joints and different, individual masses for each limb,
crashing him produces a satisfying, organic-looking result. It’s not just one canned
animation playing back every time. He’ll smack his head, tumble down a ravine or
impale himself on a cliff side. In a sort of extreme sports mishap kind of way, it’s
very appealing to watch him crash and go limp as his body contorts and tumbles.
There’s a very visceral “oooh daaaamn! ” kind of reaction, one that has a hugely
positive effect both on learning and capture. Because the failure state is so much
fun, learning is much easier and frustration mitigated. If you try a run numerous
times and still aren’t successful, you can always crash the skier intentionally a few
times to put a smile on your face. Likewise, observers will often be “captured ” by
Ski Stunt Simulator’s organic look, especially when the skier crashes, enticing them
to play.

 Organic Motion
 Good-feeling games produce flowing, organic motion (see Figure 17.4). This is true
of Asteroids, Super Mario Brothers, Half Life and Gran Turismo.

CHAPTER SEVENTEEN • PRINCIPLES OF GAME FEEL

306

 Whether it’s the motion of the avatar itself, animation that’s layered on top of
it or both, curved, arcing motions are more appealing. In fact, this is one of the
principles of animation, i.e., arcs. “All actions, with few exceptions (such as the
animation of a mechanical device), follow an arc or slightly circular path. This is
especially true of the human figure and the action of animals. Arcs give animation
a more natural action and better flow. Think of natural movements in the terms of
a pendulum swinging. All arm movement, head turns and even eye movements are
executed on an arc. ” 5

 In animation, this means arranging frames along a curved path. In a video game
it comes down to mapping and simulation.

 Setting the position of an avatar every frame, as with the horizontal movement
in Donkey Kong, Contra, and Ghosts and Goblins, produces a linear motion, which
will feel rigid and stilted. Changing an internally simulated velocity with forces,
such as using the thruster in Asteroids, creates a more flowing, organic motion.

 Harmony
 Each element of a game’s feel should support a single, cohesive perception of a
unique physical reality.

 Video game worlds are perceived actively, as we have said. Unfortunately for
game designers, active perception is more acute than passive. People are extremely
sensitive to perception at the level of everyday physical interactions. If something’s
even slightly off—a ball doesn’t bounce right, a book doesn’t tip over correctly, a
car doesn’t steer as expected—people will notice. We can’t help it. We spend all day
every day honing the skills of perception so that we can successfully navigate and
cope with the world around us. This makes designing game worlds very difficult
because any tiny inconsistency becomes glaringly obvious.

 5 http://www.frankandollie.com/PhysicalAnimation.html

F I G U R E 17.4 Flowing curves of motion in Asteroids and Super Mario Brothers.

307

 The best-feeling games maintain harmony across the six elements of game feel.
If an object in the game looks like a car, controlling it has to feel like steering a car.
It should grip the road properly, carving and tilting and bouncing over bumps. It
also has to sound like a car, from the revving of the engine to the crumbling noise
of tires on dirt to the screech of rubber against road. If the car runs into something,
that interaction most also be perfect. If it hits a building, it should crumble and
break, and the car should be twisted and mangled.

 If we attempt to make a game world appear photorealistic, we’re setting our-
selves up for failure. To be in harmony, the visuals must all behave just the way
they do in real life, and stand up to the deep, multi-sensory scrutiny of active per-
ception. Sounds must correspond to visuals that correspond to motion. And not just
passively perceived animated motion, as in a Pixar film. The object has to look,
sound, feel and move properly even as the player noodles it around and manipu-
lates it in unpredictable ways.

 Expectations about how things behave, however, are malleable. Even if we have
a very common object like a car, the expectations about how it will behave can be
toned down by the treatment. If it’s a cartoony, iconic car, the player will not expect
it to behave realistically. A good way to think of this is consistency of abstraction. If
the level of abstraction is the same across visuals; sounds; and motion, simulation
and rules, the game is in harmony. Making a game more iconic than realistic makes
it much easier to meet or exceed player expectations for harmony across all the ele-
ments of a game.

 The most difficult piece of harmony is motion. It’s very difficult for player-con-
trolled simulated motions to always produce perfectly cohesive motion. For exam-
ple, in most games that feature a running character, it’s possible to run the character
into a wall. Not only is it not hurt by this, but it continues to run while pressed
up against the wall in a silly way. The impression that it ’s a badass space marine
or whatever is lost. The game Gears of War surmounts this problem by turning

F I G U R E 17.5 Treatment changes expectations about sound, motion and behavior.

HARMONY

CHAPTER SEVENTEEN • PRINCIPLES OF GAME FEEL

308

pressing against surfaces into a mechanic, in a single stroke creating an interest-
ing game dynamic and an uncommonly cohesive physical reality. The sounds and
particles and animations all work together with the programmed rules about taking
cover and pressing against objects. Because of this, Gears of War’s unique physical
reality stands up well under the scrutiny of active perception.

 The pragmatic reality of game production means that some small inconsistencies
will creep into every game. Being aware of each element of the game’s feel and the
way it will change the player’s perception of the game’s unique physical reality can
help to avoid and mitigate these little annoyances. This is more important than most
game designers realize. Every time a character’s arm clips through a building or a
plank of wood goes sailing off into the distance at the slightest touch, the players’
impression of the game world as cohesive is further eroded. If this happens too
often, they may stop playing entirely.

 Ownership
 The best virtual sensations contribute significantly to the feeling of ownership.
This happens after the player has fully learned the mechanic and mastered most
of the challenges presented by the game, at the point most games get put down. In
the game industry, this is often termed “ replayability ” and is spoken of in hushed
tones because of the obvious correlation between games that have this quality and
games that do very well financially. Really, this phenomenon is all about owner-
ship: if players feels a personal investment in a game, they’ll keep playing it. If they
keep playing it, they will start to evangelize it. Once mastered, a virtual sensation
that has enough sensitivity enables improvisation, which often gives rise to unique
forms of self-expression.

 Improvisation in a game is the ability to create new and interesting combinations
of motion in real time, adapting and reacting to the game’s environment in a fluid,
organic way, without forethought. This is an intensely pleasurable experience, a
flow experience. When your skill is matching up well to the challenge you’ve under-
taken, you get into the flow state, which is universally described as being a wonder-
ful, life-enriching experience. To enable such improvisation, a mechanic needs to
have not only a lot of sensitivity (between its input and reaction) but to be very
flexible in how it interacts with objects in its environment.

 Some games, like Tony Hawk’s Underground, achieve a sense of ownership
through a huge number of states and a context that’s well spaced with a lot of
utility in a ton of different instances. The player can use any number of states to
traverse the environment, using each object in many different ways. All the objects
are well spaced relative to one another, which again fosters improvisation by mak-
ing it easy to transfer successfully between any two objects from any direction of
approach. Invariably, no two combinations will be the same because you’ll use dif-
ferent objects in different ways, and choose different paths to take depending on the
situation. You improvise, making snap judgments about which objects to traverse.

309

At the highest level of play, this becomes even more expressive, with players find-
ing and practicing long “ lines ” of chained moves used on certain objects. They seek
out aesthetically appealing states rather than high-scoring ones, recording videos of
their most appealing lines and uploading them to the Web to share. To these players,
Tony Hawk is a form of interpretive dance, enabled by the fact that all the objects
have a very high degree of utility from just about any state or relative position.

 Other games, like Ski Stunt Simulator, are more fluid and achieve ownership
through extremely high input sensitivity and subtlety. Minute differences in the
angle of skis to ground, for example, produce a totally different kind of landing.
Because there are global rules about object interaction in Ski Stunt—a crash occurs
if the skis hit at a certain angle or when the skier’s head hits the ground—there’s
a lot of space for interesting improvisation and expression. For example, when the
skier is extended, standing his full height, he raises his arms in the air. If you’re in
the air, about to hit your head and trigger a crash state, you can extend the skier’s
arms to prevent his head from hitting. This ability isn’t explicitly defined but,
instead, is a product of the recombination of a few simple rules (e.g., you can move
the skier’s arms up, crash is only triggered when his head hits).

 When multiple players are involved, expression becomes communication, which
opens a whole new realm of powerful social experiences. In Battlefield 2, for exam-
ple¸ if you sneak up on someone and stab him with a knife, his state goes from
alive to dead. In that context, knifing an enemy player is just playing the game, and
slightly embarrassing the enemy player who allowed himself to be snuck up on. If
once the player is dead, however, you continue to knife the corpse, this action has
a totally different meaning. It’s directly insulting and belittling to the player, who
has to watch from his corpse ’s perspective as he’s stabbed over and over again until
respawn.

 Summary
 The underlying goal of all the principles discussed in this chapter—predictable
results, instantaneous response, easy but deep, novelty, appealing response, organic
motion and harmony—is to create a feeling of control and mastery so strong that it
becomes a tool for self-expression. This feeling creates a strong sense of ownership,
which is what happens when players can express themselves in a meaningful way
through a game. Any artifacts the game creates based on their inputs (replays and
so forth) become an important commodity, and players begin to identify with the
game and their achievements in it in a very powerful, transparent way. Players start
to feel pride in their accomplishments, and develop a desire to share them with
others.

SUMMARY

This page intentionally left blank

311

CHAPTER
 Games I Want to
Make

 In his book Chris Crawford on Game Design, Chris Crawford provides a section enti-
tled “Games I’d Like to Make. ” I found that to be the most interesting and inspiring
part of the entire book, because it shows the principles he espouses throughout the
book in action. Here is this problem of creativity, he says, here is an approach to
solving it and here are some of my stabs at applying this approach. As I’ve been
writing this book, examining game feel, a number of ideas for games have occurred
to me. I’d like to share them, for better or worse, in the hope that someone someday
may make them or that they may give rise to an interesting idea. One of them, Tune,
I’ve already built a prototype of, and you can find it at http://www.steveswink
.com/tune/.

 1 , 000 Marios
 In examining games with respect to the number of avatars that the player controls,
something occurred to me: why so few? Why does the player control only one
object at a time? I began brainstorming examples of games that controlled more
than the usual two or three avatars and, interestingly, didn’t come up with much.
I’m talking about direct control, correction cycle control, real physical game feel
kind of control. I realize that there are plenty of real-time strategy games where the
player controls lots of little units indirectly. I’m talking about control at the respon-
sive, kinesthetic level.

 If you look for games where the player controls more than the staple character or
a camera there just isn’t much out there. A few obscure mini-games, perhaps, and
some awesome but abridged indie experiments like Kyle Gabler’s The Swarm and
Student Showcase finalist Empyreal Nocturne. Nothing large in scope or budget,
though. Perhaps complexity is the reason: Fusion Frenzy for the Xbox featured a
mini-game where the player controlled a character with one thumbstick and a bomb
with the other but it was gallingly, frustratingly difficult. I think this is because

311

 EIGHTEEN

CHAPTER EIGHTEEN • GAMES I WANT TO MAKE

312

the designers of that mini-game were asking the wrong questions, though. They
seemed to be asking, “How many different ways can we have the players attack one
another? ” The idea of controlling a bomb and a character separately was just one
experiment among many and if it was hard to control, so be it. We’re not hanging
the whole thing on this one control scheme. Players will choose the games they like
and ignore the rest anyway. On to the next idea!

 I think a better question is: what would controlling 1,000 Marios simultaneously
feel like? And what kind of game could you make from that? Notice that this is
more bottom-up than top-down. Instead of trying to impose the constraints of a
mini-game from the top down—short duration, multiple players, about killing one
another and so on—we’re simply asking what it would feel like to control all these
little guys at the same time. If you had direct, kinesthetic, good feeling control more
than 10, 100 or even 1,000 little Mario-like characters in a typical platforming level,
what would that feel like? I bet it would feel like controlling a fluid. A liquid made
of plumbers, if you will.

 It’s worth prototyping, I think, to find out what kind of gameplay would emerge.
Only actually making it and playing with it will yield that result, but I suspect there
could be a lot of interesting and very different challenges there. Getting all of the
characters to the end of the level unscathed seems like an obvious one. Or what if it
were a puzzle game where the objective was to kill all the little Marios? Pits would
fill in with Mario corpses, pipes would become clogged and enemies would be over-
whelmed. “How can I dispose of all these Marios?! ” the player would ask. Seems
worth exploring, no?

 In addition, it’s interesting to me that control over objects in a game always
seems to be either on or off. It’s a forgone conclusion that what the player controls
can’t change, or that if it does change, it must be a one-for-one swap. What if it
changed fluidly and organically, or if it could tolerate half tones? For example, what
if in the 1,000 Mario prototype there was also a cursor avatar, driven by the mouse.
As a visualization, it would be a circle, extending outward from the center of the
cursor. Things at the very center would be controlled 100 per cent by the player.
As the Marios were farther from the center, the amount of influence exerted by the
player’s controls would fall off (Figure 18.1).

 And why stop here? What would it be like to control 100 Asteroids ships, or
1,000 cars in Gran Turismo simultaneously? Or what if you controlled 100 Marios
and 100 Asteroids ships at the same time? Breaking free of the notion of one-avatar
control seems to yield a wealth of possibilities.

 For a couple games that challenge the notion of one-avatar control in their own
fascinating ways, check out Farbs ’ ROM CHECK FAIL (Figure 18.2) and Gamelab’s
Arcadia. In ROM CHECK FAIL, the avatar is constantly transforming, becoming
a new, recognizable avatar from a classic game every so often. One moment you
might be Link from The Legend of Zelda and the next you might be the ship from
Defender or the avatar from Space Invaders. The context and rules change as well,
with enemies and environments from various games randomly juxtaposed. I love

313

F I G U R E 18.1 Controlling a thousand Marios would feel weird, possibly awesome.

F I G U R E 18.2 ROM CHECK FAIL by Farbs.

1,000 MARIOS

CHAPTER EIGHTEEN • GAMES I WANT TO MAKE

314

how this game constantly changes the meaning of relationships between the move-
ment of the avatar, the spatial context and the rules that govern it.

 Arcadia (Figure 18.3) tasks the player with controlling four super simple
games (such as a platformer and a driving game) at once using a mouse cursor.
The meaning of the avatar changes as the cursor moves into each quadrant, seam-
lessly changing what the input is mapped to. By moving between each game, the
player can effectively—if spastically—control four separate little avatars with one
input.

 Window on the World
 Originally espoused by one of my students, Orion Burcham, this is a wonder-
ful idea about the potential for interplay between the tactile world of a game and
the real, physical world around us. It works like this: you take a handheld device,
such as a Nintendo DS or Sony PSP, and attach to it a device with highly sensitive
accelerometers that recognize subtle changes in both position and rotation. On the
screen appears a first-person view of a game world. As you move the handheld
device around, the view on the screen changes at the same rate, making it appear
as though it’s a view, a portal into another world. (You can see his proof-of-concept
video at http://www.youtube.com/watch?v � scmpg8AfOzE .)

 To play the game, the player would have to stand up, hold the device aloft and
walk around. Walking forward would move the avatar in the game world forward
at the same rate, and rotating the thing would rotate the avatar. The key is in a

F I G U R E 18.3 Arcadia by Gamelab.

315

one-to-one relationship between the physical movement of the handheld and
the apparent movement of the in-game avatar, which ultimately boils down to a
(nontrivial) technological problem.

 I’m reminded of a piece I saw at The San Francisco Museum of Modern Art
many years ago by video artist Janet Cardiff. You traded your credit card for a
handheld video camera with a built-in digital screen and were then ushered over
to a particular bench and told to sit down, put on your headphones, press play on
the video camera and be careful. The cryptic addendum to the instructions read
“ follow the motion of the camera. ”

 After pressing play, a video appeared on the screen, roughly from the perspec-
tive of the bench. By holding the camera up, you could match the onscreen image
to your current surroundings in the museum. And then, it started to move, up from
the bench, across the foyer and up the stairs to the second level of the museum.
I need hardly say that one felt compelled to follow, to keep the view on the screen
aligned with reality. The experience was unlike anything I’d ever felt before. Very
quickly, I lost track of who was real and who was in the video. Many times I almost
ran into a real person in front of me, and sidestepped to avoid a person who was
only in the video. The video led a winding trail up and out into the stairwell. The
blurring between my reality and that of the video was so striking that I can still
recall the exact path of the video nine years later. It was awesome and unlike any-
thing I’ve experienced before or since.

 I think the potential for the Window on the World concept is similar. Such an
interface could serve to make the ordinary extraordinary. If the line were blurred
between real-world tactile experience and virtual tactile experience, the result could
be quite compelling indeed. Virtual creatures and items could be hidden behind bus
stops and mailboxes. You might find a power-up embedded in your couch and have
to move the couch to reach it. This, I should think, would be awesome.

 Games like Eye of Judgment for the Playstation 3 and the surprisingly (or not—
heh) popular Eyetoy are beginning to explore the potential for inserting the virtual
into the real. This has a great potential for creating a new frontier of game feel.

 Spatial Relationships and Intimacy
 Another interesting question that comes to mind when looking at all the different
ways game feel is applied in the realm of game design is: why is it always about
skill, challenge and mastery? I think we have, as an industry, a pernicious mental
lock that prevents us from going to some interesting places. We have the ability
to create a simulated sense of physical, tactile interaction, right? Haven’t we just
spent an entire book talking about all the different ways we can and do sell the
impression that our virtual things are interacting at the kinesthetic level of everyday
life? So how come it’s always shooting accuracy, steering precision or other kinds of
skilled manipulation? Why don’t we try to represent the tactile sensation of dipping
your hand into a bag of beans or caressing someone’s neck?

SPATIAL RELATIONSHIPS AND INTIMACY

CHAPTER EIGHTEEN • GAMES I WANT TO MAKE

316

 Probably it’s because we need to grow up. In so doing, we might just unlock a
vast new realm of game feel, one that corresponds to the breadth of human tactile
experience instead of the tiny slice we address now.

 For whatever reason, and the reasons are many and well lamented, our little
industry is completely puerile when it comes to sex. We have big-bosomed vixens,
babes with guns and cutie-pie anime girls: fantasies for teenage boys. To claim oth-
erwise is intellectual dishonesty. Anyhow, what’s pertinent to our design challenge
is the fact that the sex we have in the games we have now isn’t sexy.

 For me, sexuality is much more about intimacy and sensuality. Pornography in
the traditional sense—ramming it home, as it were—is pretty horrifying. Though (as
my girlfriend points out) being “ravaged ” has a certain fantasy appeal, one wouldn’t
want to make a game where the focus was, ah, thrusty.

 So, putting aside the possibility of the game being about actual intercourse, and
limiting ourselves to a single player experience (the role of virtual chat rooms with
avatars who engage in animated sex being well covered), we’re left making a game
about intimacy. What, then, are the mechanics of personal intimacy?

 Proximity is a necessity, to be sure. It’s interesting, though, that it is possible to
be intimate without actual physical contact. The simple act of moving into another’s
personal space immediately heightens physical intimacy. As long the person is not a
stranger or unwelcome, simply being close can be intimate.

 For instance, there is a game in which a couple may try to see how close they
can get to each other without actually touching. Another game involves run-
ning hands along the contours of a person’s body without touching him or her.
These techniques often heighten sexual arousal. When a person enters someone
else’s personal space for the purpose of being intimate, it is physical intimacy,
regardless of the lack of actual physical contact. 1

 Recently, I went to see “The Departed, ” which I enjoyed. There is a sex scene in
the film which struck me as very sensual, very sexy and which included only some
kissing and mild undressing. In fact, the scene caused a friend of mine to, involuntar-
ily, shout out “Holy guacamole! ” in the middle of the theater, to general hilarity. The
moment at which the scene pivots from uncertainty to extreme sexiness is a moment
of physical intimacy without any touching. Vera Farmiga’s character is sitting on her
kitchen counter and Leonardo DiCaprio is face to face with her. Great moment. This
is not to say that touching should be omitted from consideration, I’m merely point-
ing out that the proximity of two people seems to be a prerequisite to intimacy.

 So that’s a possible direction, some kind of interpersonal simulator, where you
play as a guy or girl trying to become intimate with another person by making
advances in the right order or with the right finesse, with interesting control mechan-
ics related to eye contact, body position and language, proximity and picking up on
subtle cues. Sounds pretty boring, though, and similar to the territory Façade and
others are aiming for. Also—and this may constitute a significant heresy—I think

 1 http://europecasinoguide.com/index.php?option � com_datingguide & page � Physical_intimacy.html

317

trying to translate film or literature into interactive form is, as an approach, entirely
too complicated. The scene’s success depends almost entirely on context: the attach-
ment to those characters built across an hour of excellent film and the details of this
particular encounter (it’s raining and Leo was apparently without a jacket, Vera’s
moving out of her apartment so the lighting is diffuse and so on …) Even when
approached with powerful intelligence and determination—that kind of procedural
context generation being dutifully attacked by the Interactive Storytelling Battalion
who are bivouacked in what seems to be a relatively strong position—I think our
goal of making a sensual game could be much, much simpler.

 In fact, my solution to the problem of designing a game about intimacy hinges
on simple touch. Before I go there, though, I think it’s also important to note that
smell (candles or incense), sight (candles or low lighting) and sound (Barry White
or whatever) are also traditionally integral to “setting the mood ” for intimacy and
sensual enjoyment. We’re not going to get smell, but we can certainly hit sight
and sound. I think a great treatment would be something like Peter Miller’s “ Eros
Ex Math ” series. The goal would be to leverage the brain’s imaginative capacities,
offloading a goodly helping of sexy interpretation to the player’s mind. So, we’ve
got our look. For sound, simple breathing.

 Now to answer the heroic question posed of Harvey Smith by David Jaffee—
that’s all well and good … but how do we make a game of it?

 The Touch
 One mechanic of sensual pleasure which I’ve always found fascinating is touch.
Specifically, extremely light fingertip-to-skin touching. I find, without getting too
ribald, that touching a woman’s skin as lightly as possible while varying the speed
and pattern of the contact of each fingertip (so that there is no discernable pattern)
is extremely effective in providing sensual pleasure. As it turns out, there’s an inter-
esting scientific explanation having to do with the way the somatosensory system
interprets input over time—if it’s in a straight line the neurons are able to predict
and anticipate the stimulus and are prepared for it. If there’s no pattern, it’s much
more exciting and stimulating. This is why it’s difficult, if not impossible, to tickle
yourself.

 The game is very simple, requiring the player to touch the undulating Miller
forms as lightly as possible without breaking contact, without stopping and with-
out a discernable pattern. Shallow breathing in the background quickens in pace to
indicate system state, getting faster as you succeed, with an advancing round struc-
ture for pacing (complete one round, move on to the next). As an area is touched, it
lights up, a gradient glow expanding from the point of contact. Touching the same
area over and over again yields diminishing returns, with variations in surface and
movement speed providing additional difficulty.

 There are two control implementations that come to mind, one of which requires
some non-standard input device configurations. The non-standard configuration

SPATIAL RELATIONSHIPS AND INTIMACY

CHAPTER EIGHTEEN • GAMES I WANT TO MAKE

318

would be wearing the P5 Glove (degree of finger curl to indicate the strength of the
touch) while moving the mouse with the same hand (to indicate position).

 I’d simulate the skin as a series of spring hulls, each with slightly more stiffness
than the last, to create a sort of layer cake effect, and then test to see whether and
where each layer was depressed, touching the layer below as a gauge of pressure.

 A keyboard and mouse version of this would separate the touching pressure from
the pattern of movement. The touch pressure would be a separate, smaller picture-
in-picture window where the player would use the mouse to keep the appropriate
(light) pressure on the skin, which would scroll right to left to increase difficulty.
Meanwhile, the player would have to press keyboard buttons with the other hand
to indicate the area to be stimulated. An interesting idea I have here is that of a
keyboard “ mashing ” scheme, where instead of four buttons indicating directions to
steer in, the whole left side of the keyboard is active, from the � key in the upper
left to the B key in the lower right. Any key within this range is a valid press, but to
succeed you must press keys out of vertical or horizontal order and, again, hitting
the same area while it’s still illuminated produces diminishing returns.

 Invisible Avatars
 In separating polish effects from simulated interactions, an interesting question
occurred to me. Would it be possible to create an impression of physicality using
only polish effects? Could you create a game with good feel that featured an invis-
ible avatar. I pondered this for a while, and did up a couple small tests. I found it
felt best if the camera still tracked on the avatar and so gave a sense that it was run-
ning into things, represented by the view stopping. At the Experimental Gameplay
Sessions at the Game Developer’s Conference this year, I was delighted to see that a
gent named Matthew Korba was thinking along the same lines. He created a game
called Wrath of Transparentor about an invisible monster rampaging through vari-
ous environments. So, yes, it is possible to create feel without simulation, and yes,
it can feel good. This seems like a bit of a “no duh ” given the great feel of certain
first-person shooters (where the avatar is never seen) but I’d love to see this idea
explored further.

 What about a game where a complete simulation was running but the only visu-
alization was the polish effects, the interactions between objects? I’m picturing a
world that’s completely white, but that enables players to paint on surfaces when-
ever their avatar comes into contact with them. The game would be about building
an image of the world by exploring it tactilely.

 Tune
 My favorite part of creating a game is tuning a mechanic’s feel. I think that’s just
about the best thing in the world, apart from scoring a wicked breakaway goal and

319

eating my weight in naan bread. So I thought, hey, would it be possible to make a
game about game tuning? Would it be possible to give the experience of tuning a
mechanic to feel just right to other people, people who don’t care to program their
own game?

 Tune (Figure 18.4) is a game about game design, about tuning game mechanics.
Besides controlling the game in the typical way, the player must constantly change
the balance of parameters against one another. Depending on the current goal, dif-
ferent tunings of the mechanic will be more or less effective. The successful players
will be constantly experimenting with the various parameters, looking for the tun-
ing that best equips them to complete the current goal. Each goal brings a new chal-
lenge, and may require a different tuning.

 Tune began life as an assignment for my gameplay and game design students at
the Art Institute of Phoenix. One of the goals of my class is to give students a taste
of game design in a very real, practical way. This means, among other things, tak-
ing a series of abstract numbers and balancing them against each other—tuning
them—to achieve a specific, fun feel. In lieu of having students actually program a
game (the major at AIPX is “Game Art and Design, ” but the focus is primarily on
art), I created a simple physics-based jumping mechanic and exposed a few of the
most relevant parameters as simple text entry fields (Figure 18.5). I then told the
students simply, “ Here is a mechanic; make it fun, ” and turned them loose.

F I G U R E 18.4 Tune—a game about game tuning.

 Playable Example

 Try it out yourself: http://www.steveswink.com/Jumper/Info_Jumper_03.htm .

TUNE

CHAPTER EIGHTEEN • GAMES I WANT TO MAKE

320

 The result was surprisingly fun. The assignment quickly became a favorite; I cre-
ated more mechanics to tune and expanded on the idea. As I did, it occurred to
me that I could provide the same kind of structure and experience—me standing
behind the student saying, “Here is a mechanic, make it fun ”—within the game sys-
tem. This was the genesis of Tune.

 Summary
 All of these ideas are, of course, incomplete. If one of them strikes your fancy, please
make it. Ideas are a multiplier of execution; they have no inherent value unless you
make something of them. I’d love to see a game where you play as a shadow, or a
game about echolocation, or a game about maintaining eye contact. Comparatively
little has been done with the amazing medium of game feel and its malleable active
perception. Let’s change that, eh?

F I G U R E 18.5 The original Jumper Mechanic Tuning assignment from my class at the Art
Institute of Phoenix.

321

CHAPTER
 The Future of
Game Feel

 Today we have some great-feeling games. There are not as many as there might be,
but as we’ve seen, the ones that manipulate human perception in a positive way,
fooling the senses into registering a particular set of sensations, have excellent feel.
By examining a few of these in depth, we have sought to generalize their effec-
tiveness and reveal the ideas and practices that enable us to create similarly great-
feeling games.

 This final chapter examines some of the problems for game feel as a medium
for expression and the ways in which these problems are being solved, or could be
solved, in the future. It’s also interesting to ask whether we’re asking the right ques-
tions about game feel. Given that it exists primarily as an impression in the player’s
mind and that all control over virtual objects must be mediated by an input device
of some kind, what are the most fruitful avenues for improving game feel?

 In keeping with the structure of the rest of the book, this chapter covers the six
pieces of the game feel system in turn, starting with input and ending with rules.

 The Future of Input
 A crucial problem identified by the Human Computer Interaction community is
bandwidth. The expressive potential of current input devices is vastly outstripped
by the potential for corresponding response from the computer. As educator and
researcher Robert J.K. Jacob put it, “Given the current state of the art, computer
input and output are quite asymmetric. The amount of information or bandwidth
that is communicated from computer to user is typically far greater than the band-
width from user to computer. Graphics, animations, audio and other media can out-
put large amounts of information rapidly, but we do not yet have means of inputting
comparably large amounts of information from the user. ” 1

321

 NINETEEN

 1 http://www.cs.tufts.edu/�jacob/papers/sdcr.pdf

CHAPTER NINETEEN • THE FUTURE OF GAME FEEL

322

 The question seems to be, how can we make this input feel more natural? In this
context, natural means more like interactions in real life. The ultimate goal is often
stated as overcoming “The Gulf of Execution ”—the gap between users’ intentions
and the physical action of the input device that ultimately translates those inten-
tions turns them into actions in the computer. With due respect to this as a fun-
damental goal of interaction designers, researchers and anyone else who seeks to
reduce the pain and annoyance of working with computers, this is wrongheaded
with respect to video games. There can be, and is, a great, beautiful pleasure in over-
coming the so-called Gulf of Execution. In a video game, some obfuscation is neces-
sary and desirable; if intent and action merge, there’s no challenge and no learning,
and much of the fundamental pleasure of gameplay is lost. If we pave over the Gulf
of Execution, we lose the opportunity to surf the rogue waves of learning, challenge
and mastery.

 The problem lies in designing the right kind of obfuscation. This is one of the
central problems that keeps game designers up late of nights: the difference between
an exquisite gameplay challenge and an annoying usability issue. What is the
“ right ” way to challenge and frustrate a player? We know that some frustration is
good because there is no challenge without the potential for failure. But the right
kind of challenge, the right kind of roadblock between intent and execution—
that is the elusive quarry many game designers seek. So with respect to input
devices, it’s cool to try to make things more natural and expressive, to increase the
bandwidth; but the thing to keep in mind is that there are games that hit the sweet
spot of challenge, games that feel great, using only three buttons. Spacewar! still
feels good.

 What all this has to do with input devices and their design is the difference
between natural and realistic. For example, a mouse makes sense to most people
because it is a direct positional transposition. Move the thing on the desk and it
moves some corresponding amount on the screen, depending on the control-
display ratio. A touch screen, however, always has control-display unity. You touch
the screen at the point you want the interaction expressed. Where the mouse is
indirect, requiring the logical leap from on-desk movement to on screen, the touch
screen integrates both. The touch screen better bridges the Gulf of Execution.

 But have you ever played a memorable game on a touch screen kiosk? If the
input isn’t getting transposed into something interesting, if it isn’t a simple interface
to a complex system, the playful enjoyment evaporates. With that in mind, what
we should be looking at are the behaviors that feel most natural, the easy, instinc-
tual relationships between input and resulting response. These are not the same
as the interactions we have with real life. There is a separation—a crucial one—
between reality and intuitive controls. We can’t simply stumble forward on this
ceaseless quest to make the input devices “ realistic. ” This defeats one of the funda-
mental strengths, one of the great joys of controlling something in game, the ampli-
fication of input. Again, the phrase “a megaphone for your thumbs ” comes to mind
to describe the sensation of using a small piece of plastic to control a complex,
digitally rendered, physically simulated car.

323

 In the apparent quest to make computer input mirror real-world interaction—to
make it more “ natural ” —we may be ignoring the crucial fact that it feels good to
control a complex system with simple inputs. This is what makes learning things in
a game more fun than learning things in real life. Real life is complex, dirty and dif-
ficult to master. A game can be clean and simple to master. Through a simple input
device with little bandwidth, we can truly interface with a highly complex system
and experience the joy of manipulating it.

 The Wiimote
 In the same paper quoted above, Robert J.K. Jacob also says, “Future input mecha-
nisms may continue … toward naturalness and expressivity by enabling users to
perform ‘ natural ’ gestures or operations and transducing them for computer input. ”

 This seems quite prescient given the success of Nintendo’s Wii console and the
attempts by Sony and Microsoft to emulate that success. The Wiimote, however, is
perhaps the best possible illustration of the clash between what seems more natu-
ral and expressive and what makes for good game feel. This is especially apparent
playing The Legend of Zelda: Twilight Princess. For every sword swipe, you have to
swipe the Wiimote. It doesn’t feel better; in fact, it feels like unnecessary obfusca-
tion between intent and the in-game action. Why not just press a button, as in The
Legend of Zelda: Wind Waker?

 One of the most enjoyable things about Wind Waker is the depth of the sword
fighting and the emphasis on mastering it in the game. On the first island in the
game, a master swordsman trains you. There are various thresholds of training,
measured by how many times in a row you can hit the master in one-on-one sword
combat without being hit yourself. As you defeat each level of challenge, you are
rewarded with new sword techniques that can be used throughout the game. At the
highest level, you have to hit the master something like 500 times in a row without
being hit yourself. I actually managed to do this, and did it very early in the game.
The commensurate reward was a much deeper level of satisfaction and enjoyment
throughout the rest of the game because the skills that I as a player had spent time
practicing prepared me for success and enabled me to feel powerful and in control
for the rest of the game.

 This sensation is, by virtue of the Wiimote gesture-triggered controls, entirely
missing from Twilight Princess. Since there’s just no precision in flailing the Wiimote
around wildly, there’s nothing gained by it. It is obfuscation of player intent because
it uses a highly sensitive input (high input sensitivity) to trigger a very small vari-
ety of actions, all of which are prerecorded animations (low reaction sensitivity).
In this way, the designers have effectively removed the enjoyable feelings of mastery
that were possible in the Wind Waker sword-fighting mechanics, when they would
otherwise carry over to Twilight Princess. The sensation of deftly dodging and weav-
ing around and looking for an opening to strike no longer exists. With the Wiimote,
it feels like flailing imprecision.

THE FUTURE OF INPUT

CHAPTER NINETEEN • THE FUTURE OF GAME FEEL

324

 Now, it may be the fact that the Wiimote is a first-pass technology and as such
lacks sophistication. It may also be that the Wiimote senses relative position rather
than absolute and is hampered by this constraint. The Wiimote is a tantalizing bea-
con of possibility, though, because it indicates a device, perhaps two generations
from now, 2 that might bring fully 3D absolute position sensing to a widely adopted
home console. Basically, we want to be able to have an input device that under-
stands movement and rotation in all three dimensions. We want a device with the
positional sensitivity of a mouse that can be moved left and right, up and down and
be rotated along all three axes. From there, we can always clamp back down to two
dimensions (or even one dimension), and we have access to rotational and positional
movement along all three axes.

 This is what everyone thought the Wii would be. The way it turned out, it’s more
like a mouse cursor with annoying screen-edge boundaries plus rotational sensitiv-
ity in three dimensions of accelerometers. It doesn’t know up from down. It knows
forward and backward because of the pointer end. What was truly desirable was
a device that knew and understood fully 3D spatial positioning, so a player could
control something by moving the object up, down, left and right, and the designer
could map those movements directly to something in a game. Unfortunately, with
the Wiimote, there turns out to be a lot of obfuscation between Wiimote flailing
input and game response, as opposed to pressing a button to get a sword swing.
And it’s the wrong kind of obfuscation.

 Haptic Devices
 Another direction of input device development that shows promise in terms of game
feel is so-called haptic devices. Haptic devices were first implemented in commer-
cial aircraft to combat the numbing effect of servo-driven controls. In a lightweight
aircraft without servo controls, the pilot can feel directly through the controls if the
plane is approaching a stall. The control stick begins to shake as the plane’s angle
of attack approaches the dangerous stalling point, an important indicator to the
pilot that it’s time to adjust course in order to avoid an open-bucket funeral. In a
large jetliner, the sophistication of the controls leaves the pilot completely removed
from a direct tactile sense of the aerodynamic forces acting on the plane, the result
of which is a dangerous disconnect between the pilot and the “ feel ” of the plane.
To combat this effect, the plane’s onboard systems measure the angle of attack and
provide an artificial shaking force when the plane approaches the known angle of
stalling, simulating the feel of earlier aircraft. This is known as haptic feedback,
and it enables the pilot to better control the plane by improving the feel of control.
It may trouble you to learn that your safe landing relies on the pilot’s Dual Shock

 2 At the time of this writing, Nintendo has just announced “Wii Motion Plus, ” which may provide the
full 3D spatial sensing originally promised by the Wiimote. That would be awesome.

325

functioning properly, but these have been in effective use for many years. Haptic
feedback is serious business, and has true practical applications.

 As applied to game feel, this kind of rumble has become a common feature of
modern console controllers, such as the Xbox 360 and PS2 controllers (Figure 19.1).
The potential for improvement in the future is in a more sophisticated kind of rum-
ble. Currently, the controller shake effect is provided by a very simple set of rotating
weights. The weights rotate and the controller vibrates in time.

 Tactile rumble effects could be improved by incorporating three adjustable types
of motion:

 ● Rapidity of shake: This happens already in current generation controller rumble.
A rumble motor can rotate once, or at any interval up to its maximum vibration
(many times per second).

 ● Linear and rotational motion: In addition to spinning, gyroscopic weights,
devices would have weights that moved side to side, forward and back and up
and down.

 ● Softness of shake: Instead of black and white—either moving or not—devices
would have shades of grey, ranging from very light vibrations to very powerful
vibrations.

 No doubt this kind of technology has been and continues to be developed, but
is still too expensive or flimsy for mass production. It could improve the feel of a
game significantly, however, by providing a much wider expressive palette of tactile
sensation. A whole range of combinatorial possibilities might open up: a light side-
to-side motion happening twice a second or a violent up-and-down motion happen-
ing once. An impact force on the right side of the avatar could shake the controller
hard to the left one time, whereas a gentle caressing of one object against another

F I G U R E 19.1 The circular motion of rumble motors in a Sony Dualshock controller.

THE FUTURE OF INPUT

CHAPTER NINETEEN • THE FUTURE OF GAME FEEL

326

might give the slightest of high-speed vibrations. I can see a game where running
a character’s hand across various objects and sensing their textures via multi-
directional vibration would be a core mechanic. This is a relatively untapped fron-
tier for enhancing game feel.

 A variation of haptic feedback is so-called “force feedback, ” in which there are
physical actuators that push back against the controls. These have been in common
use for many years in specialty flight sticks and steering wheel controllers used by
hardcore flight and driving simulation enthusiasts. In these cases, the game’s code
will feed into the active motion of the steering wheel or flight stick, causing it to
wrench or pull at certain moments, in response to certain events. The reason these
haven’t caught on is that force feedback is almost always used as a blunt instru-
ment, as a special effect. It’s almost never used to tell the player something subtle
about the state of game objects. At least, not the way that something like an ongoing
engine sound does. When playing a driving game that modulates engine pitch
based on how fast the car is going, there is a constant stream of feedback to adjust
to conditions in the game. Force feedback seems to come out of nowhere, giving the
impression that the once inert steering wheel is suddenly and distractingly jumping
to life. What’s lacking is subtlety, nuance and the bang-for-buck appeal of control-
ling a large response with little input. You don’t want to feel like you’re fighting
the input device to get your intention realized. You just want the thing in the game
to do what it’s supposed to do, what you think it should do. When it misbehaves,
the gulf of execution is wider and frustration greater. This is perhaps why force
feedback devices continue to be relegated to the niche of automobile and aircraft
aficionados whose epicurean tactile tastes demand as authentic an experience as
possible. For the general game playing public, however, building a life-size cockpit
is unfeasible and having their controller fight them for dominance is more annoy-
ance than enhancement where game feel is concerned.

 That said, the potential is rather tantalizing. A hyper-sensitive haptic device
that provides game feel at the level of true, graspable tactile physical experience?
Sign me up. With the right tuning and the right subtlety, players could feel a virtual
object the way they feel a ball, a cushion or a lump of clay. The Novint Falcon
(Figure 19.2) is a low-cost commercial device that purports to provide this sensation
precisely. As an input device, it also recognizes movement in all three dimensions.
In principle, this sounds great: here we have an input device with a low-ish price
point that enables input in three dimensions and provides a powerful resistance
force in all three dimensions, which can be used to model tactile interactions. In
fact, the Falcon ships with a software demo that features a virtual tactile sphere. You
can change the type of surface from sandpaper to gravel, from hard to soft, from
honey to water, and feel the difference by probing around with the input device.
And there’s definitely potential there. If you put the device behind the screen on
which the demo is running, a somewhat convincing illusion begins to coalesce, a
sense that you’re actually touching something that isn’t quite there. The problem is,
it must all be done through this thick, unwieldy knob. It’s like touching a ball with
a disembodied door knob.

327

 The other difficulty with the device is fatigue. This is the true and nigh-
insurmountable problem with actuated devices. Personally, when I played the demo
games included with the device for about 10 minutes, I had to go ice my wrist.
Granted, my wrists are like fragile, atrophied worms, but the resulting fatigue meant
I could not—did not want to—play again. It burned with fiery pain! This seems to
me another disconnect between the desire for increasingly natural, realistic inputs
that afford greater bandwidth and the things that actually make the expedient of
manipulating things in a digital world desirable. Playing the Katamari Damacy clone
included with the Falcon left me feeling like I’d bowled 20 frames in 20 minutes.
The amount of motion I got from the game for my struggle just didn’t seem worth
the effort. The Novint Falcon ignores the fact that one of the great appeals of con-
trolling something in a game is large response for small input.

 We want a megaphone for our thumbs, not a controller that fights back. If the
grasping nub of the device were less cumbersome and if it had a great deal more
freedom like the more traditional (and expensive) pen-and-arm haptic devices,
though, this might be a different story.

 Plus, a haptic device always needs some kind of anchor. The ultimate haptic
device would be holdable like a controller or Wiimote, and yet still give you the
physical pushback. The technological challenges involved in doing this—creating
force out of nothing—are far from trivial, to be sure. On the plus side, joystick/
thumbstick springs provide almost this same kind of feedback—it’s just not modu-
lated by code. So ultimately, without a very subtle, nuanced approach—the ability
to feel the difference between carpet and counter or something—haptic devices are
not likely to become a powerful tool for creating game feel. It’s likely that the porn
industry will be at the forefront of using this technology if it does reach the requisite

F I G U R E 19.2 The Novint Falcon.

THE FUTURE OF INPUT

CHAPTER NINETEEN • THE FUTURE OF GAME FEEL

328

level of sophistication in widespread commercial application. Until that time, it will
remain an interesting but ultimately fruitless branch of the input device family tree.

 So as far as the future goes for input devices and their potential to affect game
feel, the path seems set. We will see incremental refinements rather than evolution-
ary leaps, and the advances will primarily be technological. Better rumble motors,
better positional sensing, and better-feeling physical construction of input devices
will make the games that they control feel better. Just as the feel of Lost Planet
for the Xbox 360 is better than Bionic Commando for the NES, so future generations
of input devices will lend a better, if not revolutionary, feel to the virtual objects
they control.

 The Future of Response
 What is the future of game feel with respect to response? Assuming that the input
is going to come in as a series of signals, what are the different ways that the game
will respond to those signals, and how is it possible for these to grow and change,
evolving as they do, the possibilities and meaning, of game feel?

 Think about the oldest car you’ve ever driven. What did it feel like? How respon-
sive was it in terms of steering or braking? How were the shocks? For me, it was my
friend’s 1970 SS Chevrolet Chevelle. On top of weighing three and a half tons, it had
no power steering, a wide wheel base and only the most notional of shocks. The car
was a burly beast and hard to handle. Trying to drive it was an exhausting exercise;
it felt like trying to steer an aircraft carrier with a rocket engine attached. Now think
of the newest car you’ve driven. How did it feel by comparison? In my case, this
would be my dad’s new Toyota Camry Hybrid. This car is exceedingly smooth and
quiet. It is truly effortless to drive. The contrast here is most instructive, as it mirrors
the difference between the feel of early games and their modern counterparts.

 The Evolution of Response in Mario
 The original Super Mario Brothers was, as we saw in Chapter 13, a simple imple-
mentation of Newtonian physics. It had velocity, acceleration and position, and it
dealt with rudimentary forces such as gravity. That said, Mario’s approach to simu-
lation should be categorized as top-down rather than bottom-up. It only simulates
the parameters it needs, and it does so in the simplest way possible. This was as
much a limitation of the hardware as it was a design decision, though the result
was an excellent, if particular, feel.

 With respect to how the game interpreted and responded to input, Super Mario
also featured time-sensitive response, different states and chording. Jump force
was based on how long the button was held down; there were different states that
assigned different meanings to the directional pad and A-button while Mario was
in the air; and Mario made use of chorded inputs, modifying the response of the

329

directional pad buttons when the B-button was held down. It was ahead of its time
in many respects.

 This formula would be iterated but not deviated from for the next several
years. Super Mario 2, Super Mario 3 and Super Mario World all used essentially
the same approach, adding more states and more time-sensitive mechanics. With
Super Mario World, there were more buttons to chord with and more states, but the
basic building blocks were the same. The response to input was evolutionary, not
revolutionary.

 Super Mario 64 took a fundamentally different approach. Instead of colliding
with tiles, Mario was moving in three dimensions and so had to collide with indi-
vidual polygons. Coins rolled down hills gently after spewing from enemies, and
thrown blocks would fly, slide and collide satisfyingly with other objects. You could
race massive penguins down slippery slopes.

 More than anything else, though, the Mario avatar himself was simulated much
more robustly, with a blend of pre-determined moves and thumbstick input, each
of which added its own particular, predictable forces into the Mario physics system.
He had his own mass and velocity and could collide with anything anywhere in
the world, always giving a predictable, simulated response. Again, there were more
inputs to deal with, more states and more chording. The addition of the thumbstick
as a much more sensitive input device took some of the onus off the simulation in
terms of providing the largest part of the expressivity and sensitivity, but there were
still an increasing number of specific, time-sensitive jumps, and each direction of
the thumbstick still chorded with various buttons to produce different results.

 The fundamental difference with Super Mario 64’s simulation, though, was that
it was more bottom-up than top-down. Instead of simulating only what was nec-
essary, a more generic approach was followed, allowing for a much wider range
of results. Much of the system was built to address generic cases of objects mov-
ing with certain forces, and this physics modeling could be applied to many dif-
ferent objects. As a result, there are many different physical exploits in Mario 64. 3
From this basic system, the tuning emerged, albeit with many specific case tweaks
overwriting the underlying simulation. The difference is starting bottom-up with
the system rather than cherry-picking the needed parameters and coding them in
top-down.

 Mario Sunshine iterated on Mario 64’s approach, adding an additional set of
states incorporating the water-driven jetpack and a fairly robust water simulation
that brought buoyancy into play.

 Finally, Super Mario Galaxy starts with the mostly bottom-up simulation of
Mario 64 and adds in further layers of complexity by doing some very interesting

 3 If you want your mind blown, go to Youtube and search for “How to Beat Super Mario 64. ” At about
17:38, the mad, mad exploits begin. Using a series of physics system glitches, this gentleman completes
the entire game using only 16 stars out of the “ required ” 70. This is one hallmark of bottom-up systems:
unexpected or “emergent ” behavior.

THE FUTURE OF RESPONSE

CHAPTER NINETEEN • THE FUTURE OF GAME FEEL

330

things with malleable gravity, a third avatar (the cursor), and by recognizing very
sophisticated gestural inputs.

 This begs the question: what’s next? Mario is certainly not the end-all and
be-all of games, of course, but it is interesting to examine the different ways in
which Mario has responded to his ever-changing input devices. When there’s a
new Mario game, it’s almost always been accompanied by a new input design. And
each time, he seems to have a more sophisticated simulation driving his movement
and is doing different and novel things in response to that input, interpreting and
parsing it in increasingly sophisticated ways. In fact, through the years, Mario has
touched on most of the issues relevant to the effect programmed response to input
has on game feel. At first his simulation was top-down, built out to simulate only
the barest parameters needed in the simplest way. Eventually his simulation became
more bottom-up, more robust and generically applicable, with more sophistication
and special rules about changing gravity and so on. Likewise, his response to input
started simply but comprehensively, featuring sensitivity across time, space and
states. These responses to input also grew in sophistication over time until he was
using many different chorded inputs, had many different states, and had a plethora
of moves that were sensitive across time. In his most recent outing, he adds gesture
recognition to the list of ways he interprets input signals and responds to them.

 Interpretation and Simulation
 There are two main ways in which game feel will be significantly influenced by
response (as it defined in this book).

 The first is input parsing and recognition. There are myriad ways for a game,
having received input signals from an input device, to interpret, transpose or refac-
tor them across time, space, states and so on. As we have more and more process-
ing power to throw around, these various ways to process input signals may have a
significant effect on what it means to control something in a game.

 The second is simulation. The more processing power that is thrown at a phys-
ics simulation, the more robust, intricate and powerful the simulation can become.
I hesitate to use the term “ realistic, ” though this is often how physics programmers
have described their goal to me, as a quest for ever-increasing realism. I think a
more laudable goal is an interesting, self-consistent, stable simulation, but I believe
this is actually what they—and players—mean when they say realistic to begin
with. Regardless, interpretation and simulation seem to be the two main ways game
feel will change in the future with respect to a game’s response to input.

 Interpretation
 Interpretation has had its basic palette since the earliest days of video games. By
virtue of the game’s code, input can be given different meaning across time, as in a
combo, Jak’s jump or Guitar Hero. An input might have a different meaning when
objects in the game are at different points in space, as in Strange Attractors, or the

331

meaning of various inputs might change depending on the state of the avatar, as in
Tony Hawk ’s Underground. These are the basics, the tested and true. The question
is, how might we expect these interpretation layers between input and response to
evolve as games mature? What directions will this evolution take, and how will it
affect game feel?

 An obvious example of complex input parsing is gesture recognition. It’s used
extensively on the Wii, from the swing of a racket in Wii Sports: Tennis to the wag of
hips in Wario Ware: Smooth Moves. In fact, there is an entire suite of tools for gesture
creation, AiLive, provided by Nintendo to developers to ease the process of recogniz-
ing a series of inputs from the Wiimote as a specific gesture and facilitate its mapping
to a response in the game. Before this, there came games such as Black and White,
which attempted to do essentially the same thing using the mouse as an input device.

 The problem with all these systems is they turn complex input into a simple
response. You flail around, making huge sweeping gestures, and the result ends up
the same as a button press. In some cases, as with Wii Sports: Bowling, the player
may perceive the game as having recognized the subtlety and nuance of the ges-
ture, but usually not. Usually the large, sweeping inputs are mapped to what would
normally be mapped to a single button press. The result feels profoundly unsatisfy-
ing, like lighting a massive firecracker and having it go off with a pathetic whimper.
For this reason, the notion of mapping a hugely sensitive movement to a binary,
yes-or-no response from the game via gesture may turn out to be a red herring. In
the future, we can expect to see more Bowling and less Twilight Princess. Bowling
looks not only for the gesture, but for the rotation of the Wiimote and the speed of
the accelerometers at the time of release, and then it bases the curve and velocity
of the ball on that. It layers gesture with a dash of subtlety and nuance in receiving
the inputs, in other words. Imagining where that could go shows a more promising
future for gesture recognition.

 One thing that doesn’t seem to happen much is a complete exploration even
of current input devices and how they can be utilized. Though they’re often per-
ceived as silly gimmicks by players, things like swapping controller ports in the bat-
tle against Psycho Mantis in Metal Gear Solid, and having to close and open the DS
to “ stamp ” the map in The Legend of Zelda: Phantom Hourglass, are gratifying and
refreshing. Before these games, it was unlikely that players had considered closing
and opening the DS or unplugging a controller as a meaningful input. But the sys-
tem can detect these things; they’re part of the input space. What these interactions
bring into relief is just how narrow our thinking is about particular input devices.
Games like Okami and Mojib Ribbon take the thumbstick to interesting new places,
using the inherent sensitivity to mediate accurate drawing.

 Why don’t we do more of this? Why isn’t there a game that uses the entire key-
board to control one or multiple objects? It’s a combination of technical constraints
like keyboard matrix problems and established conventions about how inputs are
used, for sure. But, jeez, why hasn’t anyone even tried these things? This is an
important question, but one which will continue to go unanswered because of the
inherent risk in addressing it.

THE FUTURE OF RESPONSE

CHAPTER NINETEEN • THE FUTURE OF GAME FEEL

332

 Simulation
 In the future, it’s likely that we’ll see much more detailed, robust and intricate simu-
lations of physical reality. This may or may not be such a good thing. More intricate,
detailed simulations will bring us an entirely new expressive palette. Most interest-
ing is the potential to redefine what being an avatar means and what it means to
control it. In the future, we might be able to control a curling column of smoke,
a liquid or 10,000 tiny birds. Things like Loco Roco, Mercury, Gish and Winds of
Athena indicate that this is at least an interesting area that should continue to be
explored. But there is a danger present, looming in the background both of our con-
struction of visuals and in the way in which we simulate objects in game. The dan-
ger is the flawed notion of realism. Again, reality isn’t much fun. To enhance the
impression of physicality to unprecedented levels and forge ahead into bold new
types of interaction with advanced simulation are exciting prospects, so long as we
remember that our goal is to entertain and delight. Simulating reality tete-a-tete is a
waste of time. If players want reality, they can step away from the computer.

 To make a broad generalization, increasing sophistication in simulation means
adopting an increasingly bottom-up approach. A physics engine seeks to create a
general set of rules that will successfully and satisfactorily resolve any specific inter-
action of any objects anywhere in the game world. Or, at least get as close as pos-
sible to doing that. Let’s put technological issues aside for a moment, though, and
go pie in the sky. Pretend we have a super-advanced physical simulation that will
handle the interaction of any two objects with any properties in a smart, appealing
way. What does that buy us? How does the feel of our game improve?

 The first and most obvious result is increasingly sophisticated results at the level
of intimate physical interaction. So in this case, the goal of increasing realism in the
simulation translates to simulating the physical interaction of objects in the world
at a higher level of detail, which improves the inferred physical reality of the world.
This is on its way regardless, as it will be pushed by football games and other sports
games as a way for humanoid-looking things to collide and interact satisfyingly.
Instead of using pre-created linear animation or animation only to drive the motion
of characters, we’ll see hybrid models where ragdolls are driven by animation
and vice versa. For example, two football players colliding perfectly, transitioning
between their animations into active ragdolls that look proper.

 My hope is that this technology will find other uses in the expression of more
creative worlds with physical properties that deviate from pedantic imitation. Really,
though, here the simulation is just being used as a polish effect; it has no effect on
gameplay. Madden 2020 will probably play the same as Madden 2009 except for
the active ragdoll simulation that makes the character’s hyper-complex tackling and
dogpiling interactions more believable. With luck, the simulation will have caught
up to the photorealism of the treatment by then and the two will harmonize into a
satisfying, cohesive whole rather than the mismatch we see currently.

 Crysis seems to go to a whole lot of trouble to simulate things in immaculate
detail but does not do much with this simulation gameplay-wise. You can destroy

333

trees at any point on their trunk, push your way through lush vegetation, or cause
spectacular detonations, but the relevance of these interactions seems to be next to
nil as far as the game is concerned. Compare this to a game like Half Life 2, where
physical interaction is paramount, and the difference becomes clear.

 The huge benefit here is more complex, believable interactions, especially at the
low and mid-levels of context—you can really push through crowds and interact
with people. I think this has myriad applications, and not just for sports and action.
It will be effective for representing things like interpersonal relationships and inti-
macy, where touch and distance play a huge role.

 The other interesting thing that an improbably robust simulation buys us is the
potential for exquisite new types of physics-based gameplay. Matthew Wegner, CEO
and technical wizard of our company, Flashbang Studios, defines physics games
as “a game where the player primarily interacts with the mechanics of a complex
physics system. ” This is separate from something like Super Mario Brothers which,
while it simulates physical, Newtonian forces—gravity, velocity and so on—takes
a top-down approach rather than a bottom-up one. It’s simulating only what it has
to, rather than starting with a robust but generic simulation and building game feel
out of that. If you start with a physics simulation that’s meant to cover a wide vari-
ety of cases and includes built-in notions of force, velocity, shape, gravity, friction
and drag for every object, the feel—and types of gameplay—will be different from
a game like Mario, which only simulates the barest minimum of what it needs to
achieve the desired feel. From more complex systems like this arise what are gen-
erally referred to as physics games. Examples of physics games include Armadillo
Run, Truck Dismount, Ragdoll Kung Fu, Ragdoll Masters, Little Big Planet, NobiNobi
Boy, Toribash, Flatout, Carmageddon, World of Goo and Cell Factor.

 The idea is essentially to start, bottom up, with a robust full-featured physical
simulation and then find and emphasize enjoyable interactions in the system itself.
The system is created first and the gameplay grows out of it, relying on the robust-
ness and flexibility of this system to find the enjoyable play. For example, Truck
Dismount includes a physically simulated ragdoll, a truck and some other props. To
score points, you must mangle the ragdoll—cause it to be hit by the highest possible
forces—by creative use of the various forces and props. You can tip the truck over
onto the avatar, place it on the front of the truck as the truck hits the wall or any
number of other creative variants.

 If jazz is music for musicians, Ski Stunt Simulator is a game for game designers.
It’s brutally difficult to learn but vastly rewarding once mastered, which makes it a
game that almost no one has played outside of the small and devoted community of
masochists and enthusiasts who actually learned to play and master its ridiculously
difficult controls. Ski Stunt Simulator—created by researcher Michel Van De Panne
at the University of British Columbia—is perhaps the finest example of an academic
project with real ramifications for contemporary video game design. It is, in itself,
a beautiful little game, but what it really indicates is a new way to create game
controls: by simulating muscles rather than arbitrary forces. The rig in Ski Stunt
Simulator is a controlled, active ragdoll.

THE FUTURE OF RESPONSE

CHAPTER NINETEEN • THE FUTURE OF GAME FEEL

334

 Physical Control over Complex Objects
 A great question for game design: what if the player played as _____? So in this
case, instead of playing as some sort of god-perspective creature that adds arbitrary
forces to an object, we’re putting the player in the role of muscles. The forces that
enable the thing to move come, literally, from within it, in the form of springs that
change size and so on.

 This is a wholly different and altogether unexplored area of design, probably
because it’s really hard to design for and to play. Some potential future directions
for simulations are indicated in games like Chronic Logic’s Bridge Builder and
2dBoy’s World of Goo. In both of these games, the player constructs and controls
massive, compound physical objects out of smaller component parts. Real-time con-
trol over objects like this indicates a fascinating possible direction for game feel. In
fact, Chronic Logic’s Gish pushed in this direction, giving the player control over a
complex blob of springs. It was a unique, awesome feel, far ahead of its time.

 Another interesting possibility for real-time control would be fluid, fog or smoke
simulations. What would it be like to exercise real-time control over a fluid? Archer
Maclean’s Mercury for the Playstation Portable indicates that there’s potential there,
but I’d like to experience the sensation of control that would come from steering
a lot more fluid around. Ditto fog or smoke. What would that feel like? I hope to
someday find out.

 Similarly, having control over flocks of creatures that employ the simple Boids
flocking algorithms could provide a very interesting feel.

 All in all, response is the game feel component ripest for future improvement.
It is in response that the game designer primarily defines a game’s feel and so it
is here that the largest potential for the advancement of feel exists. Some oppor-
tunities still exist for improving the feel of a game simply by simulating physical
interactions in greater detail, but the rewards for this realism-minded approach are
rapidly diminishing. The real goldmine lies in simulations of complex phenomena
such as fluids, gasses or flocks of birds. Even using more traditional simulations of
Newtonian physics, there are huge opportunities to control objects in novel ways or
to build fascinating, complex objects out of simulated components such as springs
and weights. Simulating muscles rather than simulating arbitrary forces is just one
of the galaxy of possibilities that have yet to be explored in depth.

 The Future of Context
 Context, as we define it in this book, is the backdrop against which the motion of
avatars and all other objects in a game is given meaning. It’s the other half of game
tuning. As an example, you were asked, in Chapter 5, to imagine Mario 64 standing
in a blank field of whiteness, like the place where they get the guns in the Matrix,
and to consider the following question: does the motion of Mario have any meaning
in this blank field of whiteness? And the answer, of course, was no. Without a wall,

335

there can be no Wall Kick. This extends to all the mechanics of Mario and Mario
64, from the complicated ones like the Long Jump, the Triple Jump and the Wall
Kick, that rely on direct physical interaction with environmental objects, all the way
down to his most basic low-level movement, which is him running around relative
to the player’s displacement of the thumb stick on the N64 controller. Even at the
lowest level of motion the speed at which he runs around and how quickly he turns
and so on have no meaning without the context of the Castle Courtyard or Bomb-
Omb Battlefield.

 At every level, context gives meaning to motion. In any game, this a key com-
ponent of true game feel, which we have defined as an ongoing correction cycle in
which you are controlling one or more objects, and where the spatial manipulation
is important, where steering around a space and whether or not you run into things,
and so on, is actually an important part of the game.

 In order to tune the motion of an avatar, you have to have a space to tune
against, and it’s basically just that simple. A racing game needs a track, stuff on the
side of the road and hills that extend in the distance. It needs track pieces that have
different levels of curves. Without a track underneath it, the tuning of the car’s for-
ward speed relative to how quickly you can turn the car left and right, whether or
not it slides and the point at which the friction slips have no meaning. These are all
little, but very important, details.

 Matthew Wegner gave a great example of this when he was talking about physics
tuning in Raptor Safari. He first tuned the Jeep to a very specific set of parameters,
and he had created an environment in which to tune it. But he found that, because
the environment didn’t have any hills that were past a certain level of sharpness,
as soon as one of the artists started putting together a bunch of hilly terrain, every
time the Jeep would run over a hill, it would bottom out and lose all of its momen-
tum. That’s just one example of how a small detail of spatial layout can affect the
feel of the game profoundly. And it is in this interplay between space and motion
that most of game feel is created.

 So space is crucially important; it’s the other half of tuning game feel. For this
reason, games that have the best feel are often the ones in which the mechanic
and the spatial context were created simultaneously. This is the notion of creating a
gameplay garden in which you create the tuning of your mechanic. The idea is that
you populate a particular space with a whole bunch of different objects, and you
space them apart at different intervals, and you try a bunch of different shapes of
objects and configurations, and then you tune your mechanic, trying it against all
these different possibilities. The objective is to have as many different possibilities
as you can so that you’re exploring the space as fully as possible while you’re cre-
ating it, and you can make informed decisions about how a change in a particular
parameter or the speed of movement changes the interaction of the character and
the space around it on many different levels.

 Context also provides the point of reference against which the impression
of speed is created, as described in Chapter 8. This is the same phenomenon that
you see if you’re driving down the freeway and there’s nothing on either side of

THE FUTURE OF CONTEXT

CHAPTER NINETEEN • THE FUTURE OF GAME FEEL

336

you—you lose the impression of speed and end up in a bizarre realm of high-
way hypnosis which may be detrimental to your health if followed to its ultimate
conclusion.

 Another way context gives spatial meaning to the motion of avatars and affects
game feel is at the highest level of spatial awareness. We discussed this in depth
in Chapter 8. It’s the difference between the sprawling open world of World of
Warcraft and the hemmed-in tight worlds of Tony Hawk. World of Warcraft conveys
an overriding sense of massive openness and space, while in Tony Hawk, the rela-
tive speed of the character and the density of the objects make it feel as though the
environment is very tightly packed and that things are flying at you constantly. In
the earlier Tony Hawk games this was less evident, but in the later games the char-
acter’s movement speed has increased to such a degree that all the environments
feel very tightly spaced, and as the games progress, the environments started to be
spread farther and farther apart to try and counteract this impression.

 Finally, spatial context defines challenge by limiting space. If you have an object
moving through space and there’s nothing around it, there is no challenge. There’s
nothing to steer around and nothing against which to measure the building of skills.
On the other hand, if you have a bunch of objects tightly packed, steering around
them can be a real chore, and suddenly the speed of an object’s movement and its
turning radius take on a great deal of meaning. This is the way that game design-
ers create challenges over the course of a game, as we have said. In the early levels,
objects will be spaced far apart, and any obstacles, enemies or moving objects that
come at you are slow-moving, easier to deal with and easier to steer around. As the
game progresses, things become increasingly closed-in, the margin of error shrinks:
you have to jump to a tiny little platform, or you have to steer around increasingly
difficult turns and so on. This is how difficulty is ranked across such games.

 What we’ve identified here is four different ways that spatial context affects the
game feel: as a foil for mechanic tuning, by creating the impression of speed, as a
high-level spatial awareness and by limiting space.

 The question is, how will these four different ways of spatial context affecting
game feel project into the future? How will these things evolve and change, if at all,
and how will they alter the way that games will feel 20, 30 or 50 years from now?

 First, regarding the impression of speed, that seems to have been very well
worked out as a natural consequence of building today’s games. In games like Burn-
Out, the impression of speed is hugely effective: it’s got view angle changes and
blurring, great sound effects, and objects appear to move by very, very quickly and
believably. Even earlier games like Sonic had a fantastic impression of speed by
effectively manipulating static objects relative to the speed of movement of the Sonic
character.

 And it’s not just about going fast. At the other end of the speed spectrum, we’ve
had some great explorations of very intentionally plodding, slow-moving objects in
gameplay, for example, the large, hulking colossi in Shadow of the Colossus. Or
with Thief: The Dark Project, where the character is forced to move intentionally
slowly, and the interesting gameplay ramifications of that are fully explored.

337

 In the future, the lessons we have learned regarding speed will serve us well, and
are not likely to be modified extensively.

 However, at the lowest level of tactile and physical interaction, as we examined
in the Future of Response section, there are likely to be a lot more interesting simu-
lations. In terms of the way that this affects context, it’s likely that we’ll end up
with much more reactive physical context for objects. A great example of this—a
peek into the future, if you like—is the type of interaction in games like LocoRoco,
which have an extremely expressive, squishy quality to them. Their whole environ-
ments have a feel, and the fact that the environment has that different squishy feel
completely changes the way that you feel about the motion of the LocoRoco avatar.

 To see an interesting counter-example, you can look at something like Gish,
where virtually all the tiles that Gish interacts with are solid and are in direct con-
trast to Gish himself who is a big, squishy blob of springs.

 We may also see additional sensitivity via environmental interaction. For example,
in the Tony Hawk games, the feel of the game is very much a collaboration between
the motion of the avatar and the objects in the environment. In Tony Hawk ’s
Underground, there were so many different objects that you could interact with, and
so many different ways to interact with them, that what begins to emerge is a real
sense of expressivity. If the player comes up to an R.V., for example, there are lots
of choices to make: wall right up the side of it, jump and grind the top of it, manual
across the top of it, or manual up to the side of it and then wall right up to a grind
across the top of it. All these different choices exist because of the richness of poten-
tial interactions with any given object in the world. As a result, a hugely beautiful,
expressive quality emerges, and actually begins to feel like freedom and personal
expression. You can traverse the world in your own style.

 Games like Assassin’s Creed and the newer Prince of Persia have picked up some
of this torch and are carrying it off into an interesting future. However, much of the
player’s sense of personal expression starts to disappear when the designers allow
technology to begin wagging the dog. It’s important not to obsess on making the
character’s every physical, tactile interaction with the environment so perfect that
they forget to include a skill for the player to learn and master. (This is what hap-
pened in the earlier Tony Hawk games.) We need to continue to emphasize mechan-
ics that play on the natural instinct of people to learn and become familiar with
their immediate space.

 At the mid-level, we’re basically doing pretty well. The state-of-the-art in terms
of immediate space manipulation and path plotting is getting more interesting. For
example, in Hitman: Blood Money, the designers actually created the impression of
a really thick crowd that you had to push through (in the Mardi Gras level) in order
to get where you were going. Assassin’s Creed does this fairly effectively as well,
and these kinds of interactions feel very interesting, but still don’t quite have the
impetus behind them. They look cool but haven’t quite found their context.

 The medium level of spatial interaction—at the level of having to steer around
various objects and the creation of challenge by limiting space—is very well under-
stood and unlikely to change much in the future. Games like Street Fighter are

THE FUTURE OF CONTEXT

CHAPTER NINETEEN • THE FUTURE OF GAME FEEL

338

entirely about manipulating space in interesting and creative ways. We know how
to create challenge in games by limiting space.

 But one area which has not been explored, and which has a great potential for
redefining what a game means and to really make a game feel different, is in the
importance of spatial relationships other than simple object avoidance. So if you
look at a game like Passage, by Jason Rohrer, or his later Gravitation, or a game like
The Marriage, by Rod Humble, they’re expressing deep, meaningful themes through
spatial interaction. They do a lot of work with rules, and Rod is convinced that rules
can potentially be an expressive medium as effective as literature or art, film and so
on. But many of the rules they have defined are about spatial relationships. For
example, in Passage, you have a single character that walks along, and as a single
character can fit through many different tight little spaces, but then the character
meets a woman and they become life mates, one presumes, because a little heart
comes up, and then they walk together, and together they can’t fit through as many
spaces. And so in that changed spatial relationship, he’s saying something about
the human condition and the nature of relationships. It’s a very fascinating direction
that could potentially be extremely fruitful.

 We need to rethink our understanding of the meaning of spatial relationships in
video game context and to look for the expressive potential beyond simply build-
ing a challenge out of having to avoid stuff, and so on. There’s a huge potential for
games about physical intimacy, which is very much about intimate spatial relation-
ships, and about interpersonal spatial dynamics. For example, what’s the difference
when someone’s facing one direction as opposed to another? What does it mean
when someone’s standing directly in front of you staring at your face as opposed to
sitting across the room? How might convincing eye contact between player and ava-
tar be exploited? The possibilities for exploiting cultural conventions and non-verbal
communication are endless.

 At the highest level of spatial interaction, we simply need to pay a little more
attention to what we’re doing. There are games that create a really beautiful and
effective high-level sense of spatial awareness, such as World of Warcraft. Many
multiplayer online games fail where World of Warcraft succeeds in creating the sense
of having huge, beautiful open vistas to traverse. Games like Tribes and Battlefield
II start to get a similar feel, where there’s a huge sense of openness and possibility.
In these games, you can really get that pleasurable sensation of traveling through an
interesting and open space.

 Too many games will make things really big but will lose the important spatial
architectural details that convey the sense of a very large open space or construct
a good-feeling smaller space. There’s a potential for a huge amount of expressivity
and manipulation in the way that the player views the feel of the game through this
high-level interpretation of space. We can make players feel small and insignificant
by making things large and imposing the same way that centering (placing a char-
acter in a film frame) at the bottom, very small, makes them feel small and insig-
nificant. We can get that same kind of feel, but in the first person, or we can get the

339

opposite where the character’s very large and powerful relative to everything in the
world, and we can express things through that.

 As an interesting side note, that sense of traveling and traversal was one of the
things that was lost in Mario Galaxy when they transitioned from having a cohesive,
single-direction, gravity-bound world that had a large sense of space. Mario Galaxy
can be disorienting, with a sense of nothingness all around, and the only thing to
pay attention to is the particular small planetoid the character is on. It seems to me
that Mario Galaxy lost a lot because players had no ability or chance to map their
own a space and engage with it at a level of increasing familiarity. It’s comfort-
ing to develop that familiarity. That’s one of the fundamental pleasures of playing
the game.

 In the future, then, it’s unlikely much will change overall in terms of context and
the way that it affects game feel. But note that there are some great opportunities
to create better-feeling worlds at the highest level of spatial awareness. With a judi-
cious application of architectural knowledge and a deeper understanding of spatial
activity, and flow and balance, there’s a lot to be gained. We’ll be able to really
change the way the player feels about a particular space to our expressive benefit.

 In general, though, the greatest benefit that we can experience is to simply be
more aware of how important context is to feel and to be aware that context is the
second half of tuning a game. It’s not just the motion of the avatar, but also the
position and location, and nature and shape, of the objects that surround that ava-
tar that give it its richness, its interactions, its meaning.

 The Future of Polish
 Polish is currently the massive, weighty bicep of the game industry. As our process-
ing power has increased, and our ability to spend that processing power on increas-
ingly detailed effects that sell the impression of physicality, we’ve gone to a very
good place with regards to polish.

 For example, try playing Lost Planet. It’s astounding how tactile and kinesthetic
the interactions between the objects begin to feel with so many effects involved in
each object, and how they harmonize perfectly. We’ve got artificial effects that sell
the nature of the interactions between objects down pat.

 Even so, graphics and sound have been “ blind ” a little bit more than necessary to
what’s really going on in the player’s mind. As Chris Crawford says, we are spend-
ing all our time on speaking and we should be spending the time on having the
computer better listen and think. As we move forward into the future of game feel,
we may need to pull back a bit from the current level of polish that’s being added
to games. For example, if you look at a casual game such as Chuzzle or Peggle, the
game is almost entirely made up of “polish elements ”: little sprays of particles, lit-
tle animations of hairs drifting down, things exploding. Every single interaction has
this artificial layer of gloss on top of it. And it’s beginning to become rather gaudy,

THE FUTURE OF POLISH

CHAPTER NINETEEN • THE FUTURE OF GAME FEEL

340

like Mario Galaxy. It’s as though every single object in the world is just waiting to
explode, like it had this stored-up potential energy, and the moment you touch it, it
throws up a shower of particles and little star pieces, and all this stuff flies every-
where. But to very little purpose.

 Too much polish is distracting because it makes it difficult to wrap your brain
around the physical sensation being conveyed. Contrast this with things like the
little puffs of smoke that come up as Mario slides his feet around. Those are great
because they are easy to make sense of. But when every single object sprays stuff
everywhere, how does that reconcile with the experience of physical reality?

 In contrast, if you look at something like Shadow of the Colossus, it really har-
monizes its use of polish effects with its mechanics and the id—the metaphorical
idea that it’s trying to convey of these massive objects moving around. Every little
effect is intended to support the single impression of physicality; in this case, it’s the
massive, massive colossi walking around. So it’s important to think very carefully
about what physical sense you’re trying to convey, and to consider whether or not
that sense harmonizes with your metaphor and the simulation that you’re running.

 In the future, as more processing power is devoted to polish effects, they’ll sup-
port increasingly advanced simulations, with more potential for excellent game feel.
And these polish effects may go overboard but, in general, they will serve to create
a better impression of physicality and improve the feel of a game—as long as they
are used judiciously.

 The Future of Metaphor
 When we defined metaphor with respect to game feel (in Chapter 10), we broke it
down by representation and treatment. It’s what the thing appears to be: its meta-
phorical representation, and treatment, how the art is executed—and whether it’s
very realistic, very iconic or very abstract.

 We also examined the different ways in which combinations of representation
and treatment can affect the expectations that we set up in the mind of the player
about how things will behave. We explored how those expectations can be manipu-
lated to our benefit. And we also looked at how the expectations we are setting
up can be confounded when they don’t deliver in the mind of the player. In par-
ticular, we asserted that games which strive for real-world fidelity set themselves
up to fail, because it is extremely difficult to meet expectations based on real-world
experience.

 The example we used was a photorealistic car driving game. Players “step into
the car ” and immediately load up all their preconceptions about what a car is. They
will view every interaction they have with this digital car through the perceptual
field of a priori knowledge that they’ve built up about every car they’ve ever driven
in, as well as the cars that they’ve seen in film and TV, and cars that they’ve read
about, and the way that those objects interact and behave. This is a really significant
issue in game design. It’s the uncanny valley of game feel, when the treatment and

341

representation approach photorealism but the feel of the game, the interaction of the
objects, the way that they behave are nowhere close to that level of representation.

 Obviously, this is a huge pitfall to be avoided.
 For metaphor to evolve, we need to explore the areas that are in the realm of the

iconic and the abstract. And we see this happening already, especially in the indie
games movement with games like Everyday Shooter, Pixel Junk Eden and Flower.
All of these games—like Katamari Damacy—favor surrealism and eschew the notion
that something has to be representative of the real world to be meaningful, to have
interesting interactions and to give rise to great game feel.

 The idea is to think of iconic or abstract games in terms not only of changing
representation, but in terms of metaphor. What do we play as? Why do we always
have to play as a character? Or why do we always have to play as cars, or things
that fly, or bikes, or objects that we pilot already in the real world?

 Why can’t we pilot a giant cat bus with 20 legs that ferries bizarre rabbit-like
creatures from place to place? Or why can’t we play as fear and investigate what
would that mean? What if you made a game where you played as fear and then
somehow had tactile interactions with characters and an environment, or something
like that? What would a physical tactile interaction be for a conceptual idea like that
be? Or what if you played as a disease or a germ, and your gameplay goal was to
approach different vectors of infection? The future is wide open for an accelera-
tion of the extremely positive trend of choosing bizarre metaphorical representation
for what it is you control and exploring the physics of a surreal world, even at the
level of tactile interactions. We might see a group of bizarre polygonal birds that fly
around and attack giant, amorphous ships in a bizarre grey cloud environment or
abstract vector objects that swoop and soar like biplanes. Or controlling just a fluid
or a giant worm that crawls through the ground.

 Whatever it is, the clear direction is toward metaphorical representation with
non-realistic constructs and mechanics. This is a hugely positive thing. One of the
greatest possible tools for game design is role shifting, where even if you have a
fairly mundane setup idea for a game, just simply switching what you play as can
entirely change the notion of what the game is, and can unlock new and interesting
areas of gameplay that we’ve never considered.

 For example, when students enroll in my entry-level Game Playing Game Design
Class at the Art Institute of Phoenix, one of their first assignments is to make a
board game with three unique goals. And invariably, one of the first games that
comes back is an orcs versus elves game with little characters that move across
square tiles, have hit points and attack points and so on. And they capture castles,
perhaps, and move across the field.

 The immediate question for them is, “What if, instead of playing as the orcs and
the elves, you played as the castle? ” They have to consider how the castle would
feel about all of this capturing, and what if the castle’s goal was just to be built up
as large as possible and didn’t really care about which army was containing it? So
it might breach its own wall to let an invading army in if it thought that army had
more money to build its parapets higher. Pushing this notion a bit further, what if

THE FUTURE OF METAPHOR

CHAPTER NINETEEN • THE FUTURE OF GAME FEEL

342

you played as a little gopher trying to build its home in the center of the field where
all these fantasy creatures were battling? Or what if you played as the weather, and
your objective was just to beat down all artificially constructed structures and to
end the conflict by making everyone so miserable and wet and cold that they’d
never want to fight again?

 The idea is just to take a critical and creative eye to the notion of metaphor.
Shift what the player plays as and, therefore, develop new areas of gameplay. With
respect to game feel, we’re still going to be representing some sort of physical tactile
interaction. But now we have this window on a world that is potentially unbounded
by the natural physical laws as we understand them.

 If we can distill to its essence the language of physical interaction that we as
humans latch onto, and then re-contextualize it into something purely abstract and
fascinating, then we’ll be going in the right direction.

 The Future of Rules
 Rules are perhaps the most explored area of game design, going back thousands of
years across all of human culture. A board game constructed out of physical com-
ponents is given meaning purely and only by the rules that govern the interactions
of those components. That’s where the play comes from. For example, there’s Go,
from ancient China; the Egyptian game Senate, which is 5,000 years old; Mancala,
from Africa; chess, from India and Persia via Southern Europe; and countless oth-
ers. All these different games rely purely on rules and their exploration.

 We also have a relatively large body of literature, things like Johan Huinzinga’s
Homo Ludens which does a fantastic job of exploring the nature of rules. There is
even a book, Rules of Play by Eric Zimmerman and Katie Salen, which does a fantastic
job of applying the lessons of the development of traditional game rules to digital
video game design. What this book adds to the literature is the taxonomy of catego-
rizing rules into three levels. To recap:

 ● High-level rules give a certain meaning to a specific object in a game and make it
seem more desirable or less desirable.

 ● Medium-level rules give immediate special meaning to a particular action,
defining feel in the same way the spacing of objects in the environment
changes it.

 ● Low-level rules can define feel in terms of physical properties like mass and
toughness through things like the number of hits it takes to destroy an enemy.

 If we consider the interactions between these three levels, there are plenty of places
that game developers today haven’t really explored.

 This comes into really clear relief with a game like Castlevania: Dawn of
Sorrow for the DS. By virtue of its immaculately constructed rules, Dawn of Sorrow
transcends its genre and becomes something quite beautiful and original. It’s a

343

really wonderful game. Every single enemy in the entire game represents a potential
power-up, and an elaborate reward schedule ensures you have to kill every enemy
a certain number of times in order to get the drop of their soul, which you can then
equip, making it an ability. Every single creature in the game you fight, or that you
interact with, has the potential to become a new ability. And it’s a great excitement
when you encounter a new creature, because you realize that if you kill it 20 times
in a row, maybe it’ll drop its soul and you can equip that like a weapon. Potentially
this could be some great ability that you’ll use to improve your abilities throughout
the rest of the game. The rules of the game enable your interactions to become
more pleasurable throughout the rest of the game.

 When designing video games, we often get carried away by the beautiful
expressiveness of the game itself. We get so excited by the fact that we can drive
things around or steer them around and manipulate them, and that physical, tac-
tile level (low-level rules), that we lose sight of one of our greatest potential assets,
which is assigning meaning to things in a game (the medium- and high-level rules).
It’s important not to overlook the careful construction of elaborate but arbitrary
relationships between objects and the rules that harmonize and apply the game
metaphor.

 For example, in any of the Zelda games, whenever a player gets the Hookshot,
it’s always very exciting. Winning certain items drives up the level of excitement
because the items upgrade, change and improve the player’s abilities to interact
with that world.

 Going forward, we need to think more about the ways we can change the mean-
ing of spatial relationships between objects by altering the abstract relationships
between those objects at all levels.

 For example, games like Gravitation and Passage by Jason Rohrer and The
Marriage by Rod Humble indicate a fascinating possible direction. These games
move away from challenge and trying to create emotions of triumph and enjoyment
and collection, and so on. Instead, they use rules to develop very deep and mean-
ingful statements and about the human condition. Rohrer and Humble are finding
a level of expressivity that no one thought was possible in video games. And so I
think that that’s a very beautiful and very fascinating direction that we can explore
with respect to rules.

 As an aside, it’s interesting to note that all three of these games incorporate
spatial interaction as part of their rules. When one character interacts with
another, there’s a huge amount of conceptual meaning assigned to that interac-
tion. And it’s a very different type of conceptual meaning than “collecting a hun-
dred coins gives me a star, which gives me access to new areas of the castle. ” It’s
a much deeper, more thoughtful, more nuanced and emotionally satisfying type of
relationship.

 In the future, it’s going to become increasingly important to think about the ways
in which we can manipulate the arbitrary relationships between abstract variables
and expand the range of expression and connection possible in games.

THE FUTURE OF RULES

CHAPTER NINETEEN • THE FUTURE OF GAME FEEL

344

 Summary
 As an art form, video games have the potential to be the ultimate blending of cre-
ativity and technology to engage, entertain, stimulate, teach and touch our emo-
tions in a uniquely participatory way. And without good game feel, the participatory
nature of games is severely compromised. Fortunately, there are many fruitful ave-
nues for improving game feel, such as:

 ● Input devices with better rumble motors, better positional sensing and better-
feeling physical construction. Future generations of input devices will lend a bet-
ter, if not revolutionary, feel to the virtual objects they control.

 ● Game responsiveness that simulates complex phenomena such as fluids, gasses
or flocks of birds. Even using more traditional simulations of Newtonian physics,
there are huge opportunities to control objects in novel ways or to build fascinat-
ing, complex objects out of simulated components such as springs and weights.
Simulating muscles rather than simulating arbitrary forces is just one of the gal-
axy of possibilities that have yet to be explored in depth. Response is the area of
greatest potential for improving game feel.

 ● More attention to context, which has less potential for improving game feel, but
nevertheless presents opportunities to create better-feeling worlds at the highest
level of spatial awareness. With a judicious application of architectural knowl-
edge and a deeper understanding of spatial activity, flow and balance, we’ll be
able to really change the way the player feels about a particular space to our
expressive benefit.

 ● The judicious use of polish effects, which will support increasingly advanced
simulations as the available processing power increases, with more potential for
excellent game feel.

 ● The controlling metaphors for games can be exploited in massively creative new
ways to develop undreamt-of areas of gameplay. Games provide a window on a
world that is potentially unbounded by the natural physical laws as we under-
stand them. If we can distill to its essence the language of physical interaction
that we as humans latch onto, and then re-contextualize it into something purely
abstract and fascinating, then we’ll be going in the right direction.

 ● More emphasis on how we use rules to manipulate the arbitrary relationships
between abstract variables will expand the range of expression and connection
possible in games.

 The future of game feel is obviously a subset of the future of games. And the
future is wide open and exciting. Not only is the technology continuing to evolve,
but so are the creative disciplines that make good games possible. We are develop-
ing a body of re-usable knowledge about how different aspects of games work and
how they can evolve. This book is a small attempt to add to that knowledge. The
sooner we stop re-inventing wheels, the faster we move games to the next level.

345345

 INDEX

 A
Abstract representation, metaphor metrics ,

175 – 177
Action, and perception , 48 – 49
ADSR , see Attack, decay, sustain, release (ADSR)
Ambiguity

as principle , 298 – 299
Super Mario 64 , 268

Animation
Bionic Commando , 241 – 242
Dawn of Sorrow case study , 166 – 167
Gears of War case study , 163 – 165
and instantaneous response , 300
and novelty , 304
organic motion , 306
as polish effect , 155 – 158
Prince of Persia , 73 – 74
Raptor Safari , 292
Super Mario 64 , 248 – 250 , 272
Super Mario Brothers , 223 – 224

Appealing response
definition , 297
as principle , 304 – 305

Arcadia, new game design , 312 , 314
Arkanoid, response metric , 90 – 91
Armadillo Run

feel types , 8
future of simulation , 333

Assassin’s Creed, future of context , 337
Asteroids

context , 196 – 197
historical background , 187 – 189
input , 189
metaphor , 197 – 198
organic motion , 305 –306
polish , 197
response metrics , 119
rules , 198
simulation , 191 – 196
thruster mechanic , 124 , 129 – 130

Attack, decay, sustain, release (ADSR)
Asteroids , 190 – 191
envelopes , 121 – 124

filtering , 131 – 134
Halo , 301
relationships , 134 – 135
simulation , 127 – 131
Super Mario 64 , 259 – 260

Attack mechanics
Prince of Persia , 73 – 74
Street Fighter , II , 71
Super Mario 64 , 264 – 268

Avatars
Bionic Commando movement , 231 – 236
control sensation aesthetic , 14 – 15
easy but deep principle , 302
future of context , 336
impression of space , 139 – 140
interactivity model , 62
intuitive control , 24
medium-level context , 146 – 147
medium-level rules , 182 – 183
new game design , 312 – 314 , 318
player identity extension , 28
and polish , 6
process and signals , 119 – 121
senses extension , 25
simulated space , 4 – 5
Super Mario 64 , 252 – 253 , 265 – 268
Super Mario Brothers , 204 – 210
tools as body extensions , 58 – 59

Axis Hand, input metric , 105

 B
Ball, animation effects , 156 – 157
Battlefield 2, ownership , 309
Battle for Middle Earth II (BFME II), impression of

space , 141
Beethoven, Ludwig Van, input metrics , 101
Bejeweled, feel types , 8
BFME II , see Battle for Middle Earth II (BFME II)
Bionic Commando

camera , 237 – 239
collision , 236 – 237
context , 239 – 241

INDEX

346

Bionic Commando (continued)
haptic device future , 328
historical background , 229 – 230
horizontal movement , 231 – 236
input metrics , 108
metaphor , 243
polish , 241 – 243
response , 230 – 231
rules , 243 – 245

Black and White, future of interpretation , 331
Blindness

perception study , 48 – 49
tools as body extensions , 57 – 58

Blow, Jonathan, proxied embodiment , 28
Body extension, tools as , 57 – 59
Bowling, future of interpretation , 331
Bowling balls, physical reality example , 30 –31
Bridge Builder, feel types , 8
Burcham, Orion, new game design , 314 – 315
Burnout: Revenge

future of context , 336
low-level context , 148
polish metric , 95 – 96

Burnout 3: Takedown, speed and motion , 144
Button quality, tactile level input , 118

 C
Call of Duty IV, metaphor metrics , 176
Camera

Bionic Commando , 237 – 239
Super Mario 64 , 248 , 265 – 268
Super Mario Brothers , 204 – 205 , 219

Cardiff, Janet, new game design , 315
Carmageddon, future of simulation , 333
Case studies

Dawn of Sorrow , 165 – 167
Gears of War effects , 163 – 165
Mario Kart Wii , 172 – 175
Project Gotham , 3 , 172 – 175
rules metrics , 184 – 186

Castlevania: Dawn of Sorrow
future of rules , 342 – 343
low-level rules , 183
physical properties , 169 – 170
polish case study , 165 – 167

Castlevania: Symphony of the Night, ADSR
envelopes , 133

Cave Story, rules case study , 184 – 186
Cell Factor, future of simulation , 333
Center of gravity, Raptor Safari , 288 – 289
Challenge

and control sensation , 16 – 20
Super Mario Brothers , 222

Chess, future of rules , 342
 Chris Crawford on Game Design , 3
Chuzzle, future of polish , 339
Cinematic effects

Dawn of Sorrow case study , 166 – 167
Gears of War case study , 163 – 165
as polish , 161
Raptor Safari , 292
Super Mario 64 , 273

Civilization 4 (Civ 4), feel example and types , 7 – 8
Cognitive processor

continuity , 45 – 46
correction cycles , 39
real-time control , 36 – 38

Collisions
low-level context , 148
Project Gotham case study , 174
Raptor Safari , 291 – 292
Super Mario 64 , 254 – 255
Super Mario Brothers , 211 – 212 , 216 – 220

Combs, Arthur, perception as skill , 49 – 50
Complex objects, physical control , 334
Computers

human conversation , 4
interactivity model , 64 – 65
real-time control , 35 – 36

continuity of response , 45 – 47
impression of motion , 43 – 44
instantaneous response , 44 – 45
thresholds , 43

Computer Space, and Asteroids , 188
Constraints, challenge and sensation control ,

18 – 20
Context

appealing response , 304
Asteroids , 196 – 197
Bionic Commando , 239 – 241
future work , 334 – 339
impression of size , 144 – 145
low-level , 147 – 148
medium-level , 145 – 147
as metric , 85 , 92 – 94
necessity example , 4
Raptor Safari , 289 – 291
space , 139 – 141
speed and motion , 141 – 144
Super Mario 64 , 268 – 271
Super Mario Brothers , 220 – 222

Continuity of response
definition , 43
real-time control , 45 – 47

INDEX

347

Contra
input metrics , 108
organic motion , 306

Control
physical control , 334
real-time , see Real-time control

Control ambiguity
as principle , 298 – 299
Super Mario 64 , 268

Control sensation
aesthetic , 10
and challenge , 16 – 20
example , 5
game feel creation , 14 – 15

Conversation, interactivity as
Correction cycles

Fitt’s Law , 42 – 43
and game feel , 38 – 42
real-time control , 42

Counter-Strike
ADSR envelopes , 127
impression of space , 140 – 141

Crawford, Chris
future of polish , 339
perception as skill , 51

Crouching mechanic, Prince of Persia , 74
Crysis, future of simulation , 332 – 333
Csikszentmihalyi, Mihayli, flow theory , 23 , 98

 D
Daniels, Derek

game feel metrics , 81
sound effects , 160

Dead zone, Bionic Commando camera , 237 – 239
De Blob

polish , 6 , 94
Squash and Stretch , 7

Diablo
feel types , 9 – 10
high-level rules , 181 – 182

Direct input
input metric comparison , 114
metrics , 103

Direction, running in Super Mario , 64 , 255 – 258
Donkey Kong

ADSR envelopes , 128
 vs. Bionic Commando , 231
input and response sensitivity , 135
organic motion , 306
 vs. Super Mario Brothers

ADSR envelopes , 123 , 126
horizontal movement , 201 –202 , 206 – 208

Doom , 3
metaphor metrics , 172
unique physical reality , 32

Doppler shift
as polish , 143
Super Mario 64 , 272

Dreams, as perception , 52 – 56
Driving mechanic, Halo , 91
Dual Shock controller, haptic device future ,

324 – 325
Ducking state, Super Mario , 64 , 262 – 263

 E
Ears, perception , 56 – 57
Easy but deep

definition , 297
as principle , 302 –303

Elasticity, Gears of War vs. Dawn of Sorrow , 170
Empyreal Nocturne, new game design , 311
Everyday Shooter

future of metaphor , 341
metaphor metrics , 176 – 177

Everyday things, feel , 152 – 155
Expected response

and harmony , 307
polish effects , 154
Raptor Safari , 293 – 294

Eye of Judgment, new game design , 315
Eyes, perception , 56 – 57
Eyetoy, new game design , 315

 F
Fight Night, thumbstick , 111
Filtering, ADSR envelopes , 131 – 134
Fingers, input metric , 104
Fitt’s Law, formula , 42 – 43
Flatout, future of simulation , 333
Floatiness, Asteroids , 193
Flower, future of metaphor , 341
Flow theory

and player skill , 23
rules metric , 98

Focus, challenge and sensation control , 17
Force feedback devices

future work , 326
as polish , 162

Fortune Favors the Bold, Super Mario Brothers , 221
Friction

Gears of War vs. Dawn of Sorrow , 170

INDEX

348

Friction (continued)
Raptor Safari , 288
Super Mario 64 , 270 – 271

Fusion Frenzy, new game design , 311

 G
Gabler, Kyle

new game design , 311
sound effects , 159 – 160
The Swarm , 158 – 159

Galactican, sense extension , 11
Game design

ADSR envelopes , 126
context metric , 93
control sensation aesthetic , 14 – 15
feel as skill , 15 – 24
future of context , 334 – 339
future of input , 321 – 323
future of interpretation , 330 – 331
future of metaphor , 340 – 342
future of polish , 339 – 340
future of rules , 342 – 343
future of simulation , 332 – 333
game feel definition , 1
haptic device future , 324 – 328
input device metric , 86 – 87
invisible avatars , 318
new games , 311 – 320
object control , 334
1,000 Marios , 311 –314
player identity extension , 28 – 29
and player skill , 20 – 24
polish effects POV , 154 – 155
proprioception , 26 – 28
response in Mario , 328 – 330
senses extension , 24 – 26
spatial relationships and intimacy , 315 – 318
Super Mario Brothers , 221
touch , 317 – 318
tuning , 318 – 320
unique physical reality , 29 – 32
Wiimote future , 323 – 324
Window on the World , 314 – 315

Game feel atoms, mechanics examples , 70 –71
Game feel components

polish , 5 – 6
real-time control , 2 – 4
simulated space , 4 – 5

Game feel creation
challenge and sensation control , 16 – 20
as control sensation aesthetic , 14 – 15

feel as skill , 15 – 24
player identity extension , 28 – 29
player skill , 20 – 24
proprioception , 26 – 28
senses extension , 24 – 26
unique physical reality , 29 – 32

Game feel experiences
control sensation aesthetics , 10
identity extension , 11 – 12
senses extension , 11
skills , 10 –11
unique physical reality , 12 – 13

Game feel principles
appealing response , 304 – 305
basic definitions , 297
control ambiguity , 298 – 299
harmony , 306 – 308
instantaneous response , 300 – 302
novelty , 303 –304
organic motion , 305 –306
ownership , 308 – 309
predictable results , 298 – 300
staging , 299 – 300
state overwhelm , 299

Game feel types
examples , 6 – 10
list , 7 – 9
three-part definition , 69 – 70

Game mechanics
basic considerations , 69 – 70
examples , 70 –71
Guitar Hero , 75 – 77
Kirby: Canvas Curse , 78 – 80
Prince of Persia , 72 – 75
Street Fighter , II , 71 – 72

Game world, computer and interactivity model , 64
Gears of War

metaphor metrics , 176
physical properties , 169 – 170
polish case study , 163 – 165
polish effects , 168
unique physical reality , 30 , 32

Generalizations, as perception , 52 – 56
Geometry Wars

and Asteroids , 189
easy but deep principle , 302
input metric , 106
perception models , 54
response metrics , 119 , 121
thumbstick , 111

Ghosts and Goblins
ADSR envelopes , 128

INDEX

349

organic motion , 306
Gish, future of simulation , 332
Globulos, feel types , 8
Go, future of rules , 342
Goals

challenge and sensation control , 17 – 20
Raptor Safari , 290
rules metric , 99

Goddard, James, tactile level input , 118
God of War, sound effects , 160
Grand Theft Auto

ADSR envelopes , 132
metrics , 82
speed and motion , 144

Gran Turismo
ADSR envelopes , 132
context , 93
low-level context , 148
metaphor , 97 , 176
new game design , 312
organic motion , 305
response metrics , 119
speed and motion , 142

Gravitation
future of context , 338
future of rules , 343

Gravity
Gears of War vs. Dawn of Sorrow , 170
Raptor Safari , 285
in Sonic the Hedgehog , 134
Super Mario 64 , 254 – 255
Super Mario Brothers , 211 , 215

Grinds, definition , 160
Guilty Gear

animation effects , 157
polish effects , 168

Guitar Hero
future of interpretation , 330
game mechanics , 75 – 77

Gulf of Execution, future of input , 322

 H
Half-Life

feel types , 7
organic motion , 305
player identity extension , 28

Half-Life 2, future of simulation , 333
Halo

input metrics , 108
instantaneous response , 300 – 301

low-level rules , 183
response metric , 91 , 121

Haptic feedback
input device future , 324 – 328
as polish , 162

Hard metrics, vs. soft , 82 – 84
Harmony

definition , 297
as principle , 306 – 308

Hierarchy of needs, player intent , 66
Hierarchy of power, Bionic Commando ,

243 – 244
High-level context

impression of space , 139 – 141
Raptor Safari , 289

High-level rules
Bionic Commando , 244
concept and examples , 180 – 182
definition , 179
future , 342 – 343
Raptor Safari , 294
Super Mario 64 , 275
Super Mario Brothers , 227

Hitman: Blood Money, future of context , 337
 Homo Ludens (Huinzinga) , 342
Horizontal movement

Bionic Commando , 231 – 236
Super Mario Brothers , 206 – 210

Huinzinga, Johan, future of rules , 342
Human Computer Interaction, future of input , 321
Human perception

Gears of War vs. Dawn of Sorrow , 169 – 170
implications , 47 – 48
mental models , 52 – 56
perception and action , 48 – 49
polish effects , 155
real-time control

basic concept , 35 – 38
computer thresholds , 43
continuity , 45 – 47
correction cycles , 38 – 42
impression of motion , 43 – 44
instantaneous response , 44 – 45

as skill , 49 – 52
tools as body extensions , 57 – 59
as whole-body experience , 56 – 57

Human processor, interactivity model , 63 – 64
Humans, computer conversation , 4
Humble, Rod

future of context , 338
future of rules , 343

Hunter, William, Asteroids , 188

INDEX

350

 I
Iconic representation, metaphor metrics , 175 – 177
Identity extension

feel experience , 11 – 12
players , 28 – 29

Impacts, definition , 160
Impression of motion

as context metric , 141 – 144
definition , 43
real-time control , 43 – 44

Impression of size, as context metric , 144 – 145
Impression of space, as high-level context ,

139 – 141
Impression of speed, as context metric , 141 – 144
Improvisation, and ownership , 308
Indirect input

input metric comparison , 114
metrics , 103

Inference, and predictability , 300
Input devices

Asteroids , 189
comparison , 114 – 115
examples , 108
future , 321 – 323
haptic device future , 324 – 328
human processor interactivity , 64
levels , 101 –102
as metric , 85 – 89
micro level , 102 –107
mouse , 112 –113
paddle , 110 –111
Raptor Safari , 280
standard button , 109
Super Mario 64 ambiguities , 268
Super Mario Brothers , 203 –204
tactile level , 117 – 118
thumbstick , 111 –112
trigger button , 110
as whole , 115 – 117
Wiimote future , 323 – 324

Instantaneous response
definition , 43 , 297
Guitar Hero , 76
as principle , 300 – 302
real-time control , 44 – 45

Intent
correction cycles , 38 – 39
player interactivity model , 65 – 67

Interactions
Human Computer Interaction , 321
Mario Kart Wii and Project Gotham 3
 case studies , 174

Raptor Safari , 291 , 294 – 295
simulated space , 4 – 5
Super Mario Brothers , 216 – 220
unique physical reality , 12 – 13

Interactive properties, polish effects , 153
Interactivity

models , see Model of interactivity
real-time control , 2 – 4 , 35 – 36

Interpretation, future work , 330 – 331
Intimacy, new game design , 315 – 318
Intuitive controls, and game feel creation , 24
Invisible avatars, new game design , 318

 J
Jacob, Robert J. K

future of input , 321
Wiimote future , 323

Jak and Daxter
animation effects , 157
appealing response , 305
future of interpretation , 330
novelty , 304
response metrics , 119 , 121
speed and motion , 143

Jump mechanic
Street Fighter , II , 71 – 72
Super Mario 64 , 258 – 262 , 269 – 270
Super Mario Brothers , 91 – 92 , 211 –215

 K
Katamari Damacy

future of metaphor , 341
senses extension , 25

Keyboard, input device metric , 88
Kim, Scott, perception models , 55
Kinesthesia, game feel creation , 26 – 28
King of All Cosmos, sound effects , 161
Kirby: Canvas Curse, game mechanics , 78 – 80
Kitten study, perception , 48
Knytt, context , 239 – 240
Koizumi, Yoshiaki, Super Mario 64 camera ,

266 – 267
Konami code, ADSR envelopes , 132 – 133
Korba, Matthew, invisible avatars , 318

 L
Lag, real-time control , 44 – 45
Learning, skills , 10 –11

INDEX

351

The Legend of Zelda
future of rules , 343
high-level rules , 181
input and response sensitivity , 136 – 137
medium-level rules , 182
perception models , 54 – 55

The Legend of Zelda: Phantom Hourglass,
future of interpretation , 331

The Legend of Zelda: Twilight Princess
cinematic effects , 161
future of interpretation , 331
Wiimote future , 323

The Legend of Zelda: Wind Waker
metaphor metrics , 176
Wiimote future , 323

Little Big Planet, future of simulation ,
333

Loco Roco
future of context , 337
future of simulation , 332
low-level context , 148
speed and motion , 143

Logg, Ed, Asteroids , 188
Loops, definition , 160
LoPiccolo, Greg, Guitar Hero , 75
Lost Planet

future of polish , 339
haptic device future , 328

Low-level context
as metric , 147 – 148
Raptor Safari , 289

Low-level rules
Bionic Commando , 244
case study , 186
concept and examples , 183
future , 342 – 343
Super Mario Brothers , 226 – 227

 M
Macro level input, metrics , 115 – 117
Madden, future of simulation , 332
Mancala, future of rules , 342
The Marriage

future of context , 338
future of rules , 343

Maslow, player intent , 66
Masses

Gears of War vs. Dawn of Sorrow , 169
Raptor Safari , 285

Mass property, polish effects , 154
Mastering, skills , 10 –11

Materials
Gears of War vs. Dawn of Sorrow , 169 – 170
input metrics , 117

McCloud, Scott, real, iconic, abstract
representations , 175 – 177

McGregor, Georgia Leigh, impression of space , 141
Mechanics

attack , 71 , 73 – 74 , 264 – 268
basic considerations , 69 – 70
crouching , 74
driving , 91
examples , 70 –71
jumping , 71 – 72 , 91 – 92 , 211 – 215 , 258 – 262 ,
269 – 270
paintbrush , 78 – 80
strumming , 76
tapping , 79 – 80
thruster , 124 , 129 – 130
walking , 71
whammy bar , 76 – 77

Medium-level context
as metric , 145 – 147
Raptor Safari , 290 – 291

Medium-level rules
case studies , 184 – 185
concept and examples , 182 – 183
future , 342 – 343
Raptor Safari , 295
Super Mario Brothers , 227

Megaman, response metrics , 119
Mental models, as perception , 52 – 56
Mercury

future of simulation , 332
physical control , 334

Merleau-Ponty, Maurice
perception as skill , 51
player intent , 66

Metal Gear Solid, future of interpretation , 331
Metaphor

Asteroids , 197 – 198
basic concept , 171 – 172
Bionic Commando , 243
future work , 340 – 342
Mario Kart Wii and Project Gotham 3 case
studies , 172 – 175
as metric , 85 , 96 – 98
Raptor Safari , 293 – 294
real, iconic, abstract , 175 – 177
Super Mario 64 , 273 – 274
Super Mario Brothers , 225 – 226

Metrics basics see also specific metrics
context overview , 92 – 94
hard vs. soft , 82 – 84

INDEX

352

Metrics basics see also specific metrics
(continued)

input overview , 85 – 89
key metrics , 84 – 85
metaphor overview , 96 – 98
polish overview , 94 – 96
purpose , 81 – 82
response overview , 89 – 92
rules overview , 98 – 99

Metroid
ADSR envelopes , 128
simulation state changes , 131

Micro level input, individual inputs , 102 –107
Microworld, video games as , 58
Miller, Robert, correction cycles , 38
Misconceptions, as perception , 52 – 56
MIT User Interface Design Group, correction

cycles , 38
Miyamoto, Shigeru, Mario Brothers history ,

201 –203
 “ Model Human Processor, ” 36 – 37
Model of interactivity

basic concept , 61 – 63
computer , 64 – 65
human processor , 63 – 64
key metrics , 84 – 85
player intent , 65 – 67
senses , 65

Mojib Ribbon, future of interpretation , 331
Momentum, Gears of War vs. Dawn of Sorrow ,

169
Motions

challenge and sensation control , 17 – 18
haptic device future , 325
impression of , 43 – 44 , 141 – 144
input metric , 103
input metric comparison , 114
Mario Kart Wii and Project Gotham 3 case
studies , 173
organic , 297 , 305 –306
trigger button , 110

Motion sickness, senses extension , 26
Motor processor

continuity , 46
real-time control , 36 – 38

Mouse, input metrics , 105 , 107 , 112 – 113
Movement

Bionic Commando , 231 – 236
easy but deep principle , 302
Raptor Safari , 286
Super Mario Brothers , 206 – 216

Muscles, human processor interactivity , 63 – 64

 N
NES controller , see Nintendo Entertainment

System (NES) controller
Nifflas, Knytt game , 239 – 240
Nintendo , 64 , see also Super Mario 64

boundaries of motion , 55
Nintendo DS

future of rules , 342 – 343
human perception , 55
new game design , 314
tactile effects , 165

Nintendo Entertainment System (NES)
controller

haptic device future , 328
input metrics , 87 , 108 , 115 –117
perception models , 55 – 56
Super Mario , 64 , 250 – 252 , 267 – 268
Super Mario Brothers , 203 –204

NobiNobi Boy, future of simulation , 333
Norman, Donald, perception models , 53 – 56
Novelty

definition , 297
as principle , 303 –304

Novint Falcon, input device future ,
326 – 327

 O
Oblivion

impression of space , 141
 vs. Raptor Safari , 290

Off-Road Velociraptor Safari
cinematic effects , 161 – 162
context , 289 – 291
future of context , 335
input , 280
metaphor , 293 – 294
overview , 277 – 280
polish , 291 – 293
response , 281 – 283
rules , 294 – 295
simulation , 283 – 288

Okami, future of interpretation , 331
Organic motion

definition , 297
as principle , 305 –306

Output devices, computer and interactivity
model , 64

Ownership, as principle , 308 –309

INDEX

353

 P
Pacman, input and response sensitivity , 137
Paddle, input metrics , 110 –111
Painkiller, impression of size , 144 – 145
Paintbrush mechanic, Kirby: Canvas Curse , 78 – 80
Pajitnov, Alexei, Tetris context metric , 93 – 94
Passage

future of context , 338
future of rules , 343

Peggle
feel types , 8
future of polish , 339

Perception , see Human perception
Perceptual field

basic concept , 50
interactivity model , 62

Perceptual processor
continuity , 45 – 46
correction cycles , 38 – 39
real-time control , 36 – 38

Physical control, complex objects , 334
Physical design, tactile level input , 117 – 118
Physical interactions

simulated space , 4 – 5
unique reality , 12 – 13

Physical properties
definition , 152 – 153
future of simulation , 332 – 333
Gears of War vs. Dawn of Sorrow , 169 – 170

Physical reality, creation , 29 – 32
Pixel Junk Eden, future of metaphor , 341
Plasticity, Gears of War vs. Dawn of Sorrow ,

170
Player, real-time control , 36 – 37
Player intent, interactivity model , 65 – 67
Player skill

game feel change , 20 – 24
Super Mario , 64 , 21

Playstation , 2
haptic device future , 325
input device materials , 117 – 118
input metric , 104
micro level input , 103
state overwhelm , 299
 vs. Super Mario , 64 , 251
tactile effects , 117 , 162

Playstation , 3
input device materials , 117 – 118
input device metric , 86
new game design , 315
tactile level input , 117

Playstation Portable (PSP)
complex object control , 334
impression of speed , 143
new game design , 314

Play test, metrics , 82 – 84
Polish effects

animation , 155 – 158
Asteroids , 197
Bionic Commando , 241 – 243
cinematic effects , 161
Dawn of Sorrow case study , 165 – 167
definition , 151 – 152
Doppler shift and screen blurring , 143
everyday things , 152 – 155
as feel component , 5 – 6
future work , 339 – 340
game mechanics , 69 – 70
Gears of War case study , 163 – 165
invisible avatars , 318
Kirby: Canvas Curse , 79
levels of feel , 8
as metric , 85 , 94 – 96
Prince of Persia , 75
Raptor Safari , 291 – 293
sound effects , 159 – 161
Street Fighter II , 72
Super Mario , 64 , 271 – 273
Super Mario Brothers , 222 – 224
tactile effects , 162
types , 155
visual effects , 158 – 159

Pong, player identity extension , 29
Practice, skills , 10 –11
Preconceptions, metaphor metrics , 172
Predictable results

control ambiguity , 298 – 299
definition , 297
as principle , 298
staging , 299 – 300
state overwhelm , 299

Prince of Persia
future of context , 337
game mechanics , 72 – 75
response metrics , 120

Project Gotham
metaphor case study , 172 – 175
metaphor metrics , 176 – 177
speed and motion , 142

Proprioception
game feel creation , 26 – 28
perception , 56 – 57

Proxied embodiment, definition , 28

INDEX

354

Proximity, new game design , 316
PSP , see Playstation Portable (PSP)

 Q
Quake

easy but deep principle , 303
medium-level rules , 182
player identity extension , 29
player skill , 21
response metric , 89 – 91

 R
Ragdoll Kung Fu, future of simulation , 333
Ragdoll Masters, future of simulation , 333
Ragdolls

animation , 158
future of simulation , 332 – 333
Raptor Safari , 278 – 280 , 296

Rains, Lyle, Asteroids , 188
Raptor Safari , see Off-Road Velociraptor Safari
Ratchet and Clank, high-level rules , 181
Raycasts, Raptor Safari , 283 – 287
Real representation, metaphor metrics , 175 – 177
Real-time control

appealing response , 304
basic concept , 35 – 38
continuity of response , 45 – 47
correction cycles , 38 – 42 , 43
as feel component , 2 – 4
game mechanics , 69 – 70
Guitar Hero , 76 – 77
instantaneous response , 44 – 45
Kirby: Canvas Curse , 79
levels of feel , 8
Prince of Persia , 74
response metric , 89
thresholds , 41

Relationships
ADSR envelopes , 134 – 135
Asteroids , 191
Cave Story , 185
easy but deep principle , 302 –303
spatial , 315 – 318 , 336
Street Fighter II , 184
Super Mario 64 , 248 – 250

Replayability, and ownership , 308
Representation

Mario Kart Wii and Project Gotham 3
 case studies , 174 – 175

metaphor metrics , 171
Raptor Safari , 294
real, iconic, abstract , 175 – 177

Response
Asteroids , 189 – 190
Bionic Commando

camera , 237 – 239
collision , 236 – 237
horizontal movement , 231 – 236
overview , 230 – 231

continuity , 43 , 45 – 47
expected , 154
future Super Mario Brothers , 328 – 330
Guitar Hero , 76 – 77
and harmony , 307
input and sensitivity , 135 – 137
instantaneous , 43 , 297
as metric , 85 , 89 – 92
polish effects , 154
as principle , 300 – 302
process and signals , 119 – 121
Raptor Safari , 281 – 283 , 293 – 294
real-time control , 44 – 45
Super Mario 64 , 252 – 253
Super Mario Brothers

horizontal movement , 206 – 210
overview , 204 – 206
vertical movement , 210 –216

Rohrer, Jason
future of context , 338
future of rules , 343

ROM CHECK FAIL, new game design , 312 – 313
Rules

Asteroids , 198
Bionic Commando , 243 – 245
examples and types , 179 – 180
future work , 342 – 343
high-level rules , 180 – 182
low-level rules , 183
medium-level rules , 182 – 183
as metric , 85 , 98 – 99
Raptor Safari , 294 – 295
Super Mario 64 , 274 – 275
Super Mario Brothers , 226 – 228

 Rules of Play (Zimmerman and Salen) , 342
Run, Fatty, Run, polish , 97
Russell, Steve, Spacewar! , 188

 S
Salen, Katie, future of rules , 342

INDEX

355

Samurai Showdown , 4
medium-level rules , 182
response metrics , 119

Screen blurring, as polish , 143
Screen wrap, Asteroids , 194
Senate, future of rules , 342
Sensation

aesthetic , 10
and challenge , 16 – 20
control , 5
example , 5
game feel creation , 14 – 15

Senses extension
feel experience , 11
and game feel creation , 24 – 26
interactivity model , 65

Sensitivity
input metric , 88 , 103 – 104 , 106
input metric comparison , 114 –115
input and response , 135 – 137
Raptor Safari , 291

Sensuality, new game design , 316
Serious Sam, impression of size , 144 – 145
Shadow of the Colossus

future of context , 336
future of polish , 340
impression of size , 144

Shapes
Gears of War vs. Dawn of Sorrow , 170
polish effects , 153

Shred Nebula, and Asteroids , 189
Signals sent

input metric , 104 , 107
input metric comparison , 115

Simulated space
as feel component , 4 – 5
game mechanics , 69 – 70
Guitar Hero , 77
Kirby: Canvas Curse , 80
levels of feel , 8
Prince of Persia , 75
Street Fighter , II , 72

Simulation
ADSR envelopes , 127 – 130
Asteroids, 191 – 196
future work , 332 – 333
and novelty , 304
Raptor Safari , 283 – 288
state changes , 130 – 131
Super Mario , 64 , 253 – 255

Size, impression of , 144 – 145
Skills

game feel as , 15 – 24

game feel change , 20 – 24
high-level rules , 180 – 181
learning, practicing, mastering , 10 –11
perception as , 49 – 52
Super Mario , 64 , 21

Ski Stunt Simulator
future of simulation , 333
novelty , 304
ownership , 309

Sliding state, Super Mario 64 , 262 – 263
Slim Tetris, context metric , 93 – 94
Slow-In, Slow-Out principle, and instantaneous

response , 300
Sly Cooper, metaphor metrics , 177
Snygg, Donald, perception as skill , 49 – 50
Soft metrics

context , 94
 vs. hard , 82 – 84
polish , 94 – 96

Sonic the Hedgehog
avatar movement , 121
feel example , 6 – 7
future of context , 336
gravity parameter , 134

Sony PSP , see Playstation Portable (PSP)
Soul Calibur

polish effects , 168
response metrics , 119
visual effects , 158 – 159

Sound effects
Bionic Commando , 242 – 243
Dawn of Sorrow case study , 166 – 167
Gears of War case study , 163 – 165
Mario Kart Wii and Project Gotham 3 case
 studies , 173
as polish , 159 – 161
Raptor Safari , 291 – 292
Super Mario 64 , 272 – 273
Super Mario Brothers , 225

Space
high-level context , 139 – 141
Raptor Safari , 289
simulated , see Simulated space
Super Mario 64 , 249 , 271

Space Invaders , 188 – 189
Spacewar! , 188
Spatial relationships

future of context , 336
new game design , 315 – 318

Speed
Asteroids , 191 – 193
future of context , 335 – 336
impression of , 141 – 144

INDEX

356

Speed (continued)
running in Super Mario 64 , 255 – 258 , 270
Super Mario Brothers scrolling , 219

Squash
in De Blob , 7
as polish effect , 156

Staging, as principle , 299 – 300
Standard button, input metrics , 109
Starcraft , 9
Star Fox , 183
States

change simulation , 130 – 131
overwhelm as principle , 299
Super Mario 64 , 262 – 263
Super Mario Brothers , 220

Strange Attractors
ADSR envelopes , 133 – 134
future of interpretation , 330 – 331

Street Fighter II
ADSR envelopes , 133
continuity , 47
easy but deep principle , 303
feel example , 6
future of context , 337 – 338
game mechanics , 71 – 72
impression of size , 145
low-level rules , 183
response metrics , 119
rules case study , 184

Stretch
in De Blob , 7
as polish effect , 156

Strum mechanic, Guitar Hero , 76
Super Mario 2, future of response , 329
Super Mario 3, future of response , 329
Super Mario 64

animation , 272
attack moves , 264 – 268
basic appeal , 247 – 248
cinematic effects , 273
context , 92 , 268 – 271
control ambiguity , 268 , 298
defining relationships , 248 – 250
ducking and sliding states , 262 – 263
feel types , 7
future of context , 334 – 335
future of response , 329
high-level rules , 180
identity extension , 12
input , 250 – 252
metaphor , 273 – 274
player intent , 66
polish , 271 – 273

response , 119 , 121 , 252 – 253
rules , 98 , 274 – 275
running speed and direction , 255 – 258
sound effects , 272 – 273
upward velocity , 258 – 262
visual effects , 272

Super Mario Brothers
ADSR envelopes , 122 – 123 , 126 , 133
animation effects , 158
appealing response , 305
 vs. Bionic Commando

camera , 237
collision , 236
horizontal movement , 231
input , 230
response , 230 – 231
rules , 243 – 244
sound effects , 242

collision and interaction , 216 – 220
context , 220 – 222
future of context , 334 – 335
future of response , 328 – 330 , 333
game feel , 81 – 82
game mechanics , 70
historical background , 201 –203
horizontal movement , 206 – 210
impression of motion , 43
input metrics , 108
input and response sensitivity , 135 – 136
metaphor , 225 – 226 , 273
1,000 Marios , 311 –314
organic motion , 305 –306
perception , 55 – 56
polish , 222 – 224
response , 91 – 92 , 204 – 206
rules metric , 226 – 228
skills and experiences , 10 –11
staging , 300
state changes , 130 – 131
state overwhelm , 299
thumbstick , 111
unique physical reality , 12
vertical movement , 210 –216
visual effects , 224 – 225

Super Mario Galaxy
future of context , 339
future of polish , 340
future of response , 329 – 330
sound effects , 273
visual effects , 159

Super Mario Kart, easy but deep , 303
Super Mario Kart DS

context , 94

INDEX

357

player skill , 21
response metrics , 120

Super Mario Kart Wii
metaphor case study , 172 – 175
metaphor metrics , 176

Super Mario World
challenge and sensation control , 17 – 18
future of response , 329

Sussman, Daniel, Guitar Hero , 75
Svanaes, Dag, perception as skill , 49
The Swarm

new game design , 311
visual effects , 158 – 159

 T
Tactile effects

Gears of War case study , 163 – 165
haptic device future , 325
input metrics , 117 – 118
perception , 56 – 57
as polish , 162

Tapping mechanic, Kirby: Canvas Curse , 79 – 80
Tetris

context metric , 93 – 94
player identity extension , 29

Textures, polish effects , 153
Thief: The Dark Project, future of context , 336
Thoughts, as perception , 52 – 56
Thruster mechanic, Asteroids , 124 , 129 – 130
Thumbstick

case study , 173
easy but deep , 302
filtering , 132
future of context , 335
future of feel , 327 , 331
future of response , 329
input device comparison , 114 – 115
input measurement , 108
input metrics , 86 – 87 , 89 , 105 – 106 , 111 –112
micro level input , 102 –106
and mouse , 112 – 113
new game design , 311
and output devices , 65
and perception , 54
proprioception , 28
Raptor Safari , 280
response , 91 , 119 , 121
sense extension , 25
Super Mario 64 , 248 , 250 – 252 , 255 – 256 , 261 –
262 , 265 , 270

Tiles, Super Mario Brothers , 216 – 217

Tony Hawk games
ADSR envelopes , 133
future of context , 336 – 337
future of interpretation , 331
game mechanics , 71
instantaneous response , 44
ownership , 308 – 309
simulation state changes , 131
sound effects , 160 , 161
state overwhelm , 299

Tools, as body extensions , 57 – 59
Toribash, future of simulation , 333
Touch, new game design , 317 – 318
Touch screen, future of input , 322
Treatment, metaphor metrics , 171
Trigger button, input metrics , 110
Truck Dismount, future of simulation , 333
Tune, new game design , 318 – 320

 U
Units of measurement, Super Mario , 64 , 257

 V
Van De Panne, Michael, future of simulation , 333
Van Dongen, Joost, De Blob polish , 6
Vanishing Point

ADSR envelopes , 132
medium-level context , 147

Velocity
Asteroids , 193 – 194
Gears of War vs. Dawn of Sorrow , 169
Raptor Safari , 286 – 287
Super Mario 64 , 258 – 262
Super Mario Brothers , 212 – 214

Vertical movement, Super Mario Brothers , 210 –216
Video games see also specific games

aesthetic sensation , 14
animation , 156
Asteroids redefinition , 188
as body extension , 58
correction cycles , 38
easy but deep , 303
feel measurement , 81
feel as skill , 16
future of input , 322
future of rules , 342 – 343
harmony , 306
history website , 188
human perception , 35 , 50

INDEX

358

Video games see also specific games (continued)
impression of space , 141
impression of speed and motion , 141 – 143
input devices , 101
interpretation , 330
mapping and simulation , 306
measurement units , 257
as microworld , 58
object representation , 176
player’s intent , 66 – 67
player skill , 23
polish , 223
proprioception , 27
real-time control , 36 , 41 , 43
response time , 301 –302
sense extension , 24 – 25
spatial relationships , 338
unique physical reality , 13 , 30 – 32

Viewtiful Joe, animation effects , 157
Visual effects

Dawn of Sorrow case study , 166 – 167
Gears of War case study , 163 – 165
Mario Kart Wii and Project Gotham 3 case
studies , 172 – 173
as polish , 158 – 159
Raptor Safari , 292
Super Mario 64 , 272
Super Mario Brothers , 224 – 225

 W
Walking mechanics, Street Fighter , II , 71
Waterman, Ian, proprioception , 27
Wegner, Matthew

future of context , 335
future of simulation , 333

Weight, input metrics , 117
West, Mick

instantaneous response , 44 – 45
play test , 83 – 84
predictable results , 298 – 299
response metric , 89

Whammy bar mechanic, Guitar Hero , 76 – 77

Whole-body experience, perception as , 56 – 57
Wiimotes

ADSR envelopes , 133
future , 323 – 324
future of interpretation , 331
haptic device future , 327 – 328
input device materials , 117 – 118
input metric , 105
predictable results , 298
tactile effects , 162

Window on the World, new game design , 314 –315
Winds of Athena, future of simulation , 332
World of Goo, future of simulation , 333
World of Warcraft

future of context , 336 , 338
impression of space , 140 – 141
low-level context , 148
medium-level context , 146 – 147
 vs. Raptor Safari , 289

Wrath of Transparentor, invisible avatars , 318
Wright, Will, predictable results , 298

 X
Xbox 360

haptic device future , 325 , 328
input device materials , 117 – 118
input device metric , 85 – 87 , 102 –103 , 106
new game design , 311
 vs. Super Mario 64 , 251
tactile effects , 162

 Y
Yamauchi, Hiroshi, Mario Brothers history , 201
Yu, Derek, Raptor Safari , 279

 Z
Zimmerman, Eric, future of rules , 342
Zuma, response metrics , 121

	Front Cover
	Game Feel: A Game Designer’s Guide to Virtual Sensation
	Copyright Page
	Table of Contents
	Acknowledgments
	About the Author
	Introduction
	About This Book

	Chapter 1. Defining Game Feel
	The Three Building Blocks of Game Feel
	Experiences of Game Feel
	Creating Game Feel
	Summary

	Chapter 2. Game Feel and Human Perception
	When and How Does Real-Time Control Exist?
	The Computer Side of Things
	Some Implications of Perception for Game Feel
	Summary

	Chapter 3. The Game Feel Model of Interactivity
	The Human Processor
	The Computer
	The Senses
	The Player's Intent
	Summary

	Chapter 4. Mechanics of Game Feel
	Mechanics: Game Feel Atoms
	Applying the Criteria
	Summary

	Chapter 5. Beyond Intuition: Metrics for Game Feel
	Why Measure Game Feel?
	Soft Metrics vs. Hard Metrics
	What's Important to Measure
	Summary

	Chapter 6. Input Metrics
	Micro Level: Individual Inputs
	Input Measurement Examples
	Macro Level: The Input Device as a Whole
	Tactile Level: The Importance of Physical Design
	Summary

	Chapter 7. Response Metrics
	Attack, Decay, Sustain and Release
	Input and Response Sensitivity
	Summary

	Chapter 8. Context Metrics
	High-Level Context: The Impression of Space
	Impressions of Speed and Motion
	The Impression of Size
	Medium-Level Context
	Low-Level Context
	Summary

	Chapter 9. Polish Metrics
	The Feel of Everyday Things
	Types of Polish
	Summary

	Chapter 10. Metaphor Metrics
	Real, Iconic and Abstract
	Summary

	Chapter 11. Rules Metrics
	High-Level Rules
	Medium-Level Rules
	Low-Level Rules
	Summary

	Chapter 12. Asteroids
	The Feel of Asteroids
	Input
	Response
	Simulation
	Context
	Polish
	Metaphor
	Rules
	Summary

	Chapter 13. Super Mario Brothers
	Input
	Response
	Summary

	Chapter 14. Bionic Commando
	Input
	Response
	Context
	Polish
	Metaphor
	Rules
	Summary

	Chapter 15. Super Mario 64
	What's Important?
	Input
	Response
	Running Speed and Direction
	Modulating Upward Velocity
	Switches to Ducking or Sliding States
	Triggering Attack Moves
	Context
	Polish
	Metaphor
	Rules
	Summary

	Chapter 16. Raptor Safari
	Game Overview
	Input
	Response
	Context
	Polish
	Metaphor
	Rules
	Summary

	Chapter 17. Principles of Game Feel
	Predictable Results
	Instantaneous Response
	Easy but Deep
	Novelty
	Appealing Response
	Organic Motion
	Harmony
	Ownership
	Summary

	Chapter 18. Games I Want to Make
	1,000 Marios
	Window on the World
	Spatial Relationships and Intimacy
	Invisible Avatars
	Tune
	Summary

	Chapter 19. The Future of Game Feel
	The Future of Input
	The Future of Response
	The Future of Context
	The Future of Polish
	The Future of Metaphor
	The Future of Rules
	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

