
 I AM ERROR

 Platform Studies
 Nick Montfort and Ian Bogost, editors

 Racing the Beam: The Atari Video Computer System , Nick Montfort and Ian Bogost,

2009

 Codename Revolution: The Nintendo Wii Platform , Steven E. Jones and George K.

Thiruvathukal, 2012

 The Future Was Here: The Commodore Amiga , Jimmy Maher, 2012

 Flash: Building the Interactive Web , Anastasia Salter and John Murray, 2014

 I AM ERROR: The Nintendo Family Computer / Entertainment System Platform ,

 Nathan Altice, 2015

 I AM ERROR

 The Nintendo Family Computer / Entertainment System Platform

 Nathan Altice

 The MIT Press Cambridge, Massachusetts London, England

 © 2015 Massachusetts Institute of Technology

 All rights reserved. No part of this book may be reproduced in any form by any electronic or

mechanical means (including photocopying, recording, or information storage and retrieval)

without permission in writing from the publisher.

 MIT Press books may be purchased at special quantity discounts for business or sales

promotional use. For information, please email special_sales@mitpress.mit.edu.

 This book was set in Filosofi a by Toppan Best-set Premedia Limited. Printed and bound in the

United States of America.

 Library of Congress Cataloging-in-Publication Data

 Altice, Nathan.

 I am error : the Nintendo family computer/entertainment system platform / Nathan Altice.

 pages cm.—(Platform studies)

 Includes bibliographical references and index.

 ISBN 978-0-262-02877-6 (hardcover : alk. paper)

 1. Nintendo video games. 2. Video games—Design. 3. Nintendo of America Inc. I. Title.

 GV1469.32.A55 2015

 2014034284

 10 9 8 7 6 5 4 3 2 1

 For Amanda, as always

 Contents

 Series Foreword ix

 Acknowledgments xi

 0 I AM ERROR 1

 1 Family Computer 11

 2 Ports 53

 3 Entertainment System 81

 4 Platforming 117

 5 Quick Disk 163

 6 Expansions 197

 7 2A03 249

 8 Tool-Assisted 289

 Afterword: Famicom Remix 325

 Appendix A: Famicom/NES Bibliographic
Descriptions 333

 Appendix B: Glossary 343

 Notes 353

 Sources 391

 Index 419

 Series Foreword

 How can someone create a breakthrough game for a mobile phone or a

compelling work of art for an immersive 3D environment without under-

standing that the mobile phone and the 3D environment are different

sorts of computing platforms? The best artists, writers, programmers, and

designers are well aware of how certain platforms facilitate certain types

of computational expression and innovation. Likewise, computer science

and engineering has long considered how underlying computing systems

can be analyzed and improved. As important as scientific and engineering

approaches are, and as significant as work by creative artists has been,

there is also much to be learned from the sustained, intensive, humanistic

study of digital media. We believe it is time for humanists to seriously

consider to the lowest level of computing systems, to understand their

relationship to culture and creativity.

 The Platform Studies book series has been established to promote the

investigation of underlying computing systems and how they enable, con-

strain, shape and support the creative work that is done on them. The

series investigates the foundations of digital media — the computing

systems, both hardware and software, that developers and users depend

upon for artistic, literary, and gaming development. Books in the series

will certainly vary in their approaches, but they will all also share certain

features:

[x]

 • A focus on a single platform or a closely related family of platforms.

 • Technical rigor and in-depth investigation of how computing technolo-

gies work.

 • An awareness of and discussion of how computing platforms exist in a

context of culture and society, being developed based on cultural concepts

and then contributing to culture in a variety of ways — for instance, by

affecting how people perceive computing.

 Acknowledgments

 A book is a labor that leads to many thanks:

 Before all others, I want to thank my wife Amanda for keeping me

healthy, happy, and motivated during two years of writing and research.

None of this was possible without her. I also owe my parents a special debt

for buying my first NES. They are responsible for all of this.

 I want to thank my colleague and friend, David Golumbia, for his

support, guidance, and enthusiasm, along with the remainder of my dis-

sertation committee — Joshua Eckhardt, Ryan Patton, and Bob Paris — for

their thoughtful revisions. Equal thanks go to MIT Press ’ s Douglas Sery

and manuscript editor Ariel Baker-Gibbs, and the Platform Studies series

editors Nick Montfort and Ian Bogost, whose combined knowledge and

patience helped bring this project to bear.

 I wish to thank Neal Wyatt for her camaraderie, conversation, and

coffee breaks throughout the writing process, Aria Tanner for her excel-

lent (and affordable) Japanese translations, Vera Brown for her friendship

(and Dendy), Nate Ayers for his photo editing talents, Matt Schneider

for his long-distance reading, Scott Benson for his Game & Watch, Justin

Spears for his loaner NES, Nick Wurz for his capture card, and Steven

Jones and George Thiruvathukal for first planting the seed for this

project.

 This book would not exist without the decades of technical research

shared among the members of the NESDev community. There are

members there who understand the NES far better than I, and likely better

than Nintendo ’ s own engineers and programmers. Theirs is a work of

[xii]

dedication and intellectual inquiry, and I thank every member who, know-

ingly or not, contributed to this book ’ s completion.

 I also owe thanks to the members of Nintendo Age, who together

comprise a friendly and knowledgeable community. Their forums provide

one of the best references for the beginning NES programmer and one of

the biggest temptations for expanding my NES collection.

 And finally, I want to thank Zac Price, a great friend and a superior

 Mega Man 2 player — not superior to me, but to most.

 During his quest to find the elusive Island Palace, Link, protagonist from

the 1987 Nintendo Entertainment System (NES) videogame Zelda II: The

Adventure of Link , visits a small house in the Town of Ruto. When Link

approaches its sole resident, a portly, bearded fellow in purple attire, the

man says, “ I AM ERROR. ” Until Link speaks to another character further

along in his quest, any interaction with Error yields the same curious

result.

 For many players, the cryptic message appeared to be a programming

flaw, as if the game ’ s code mistakenly found its way to the graphical

surface, replacing the character ’ s name with a diagnostic message. The

real cause was less mysterious. In the game ’ s original Japanese script,

the man said:

 オ レ ノ ナ ハ

 エ ラ ー ダ ・ ・ ・

 “ I am Error ” is a passable literal translation, but a more natural read

is simply, “ My name is Error … ” 1 An unlikely character name, perhaps,

but that too was part of a poorly translated programmer joke. Link later

meets a man named Bagu — a Japanese romanization of “ Bug ” — who looks

identical to Error save for his red tunic. Together, Bug and Error were

meant to form a pair of sly computer malfunction references, but the

fumbled translation killed the joke and left a generation of NES players

thinking the latter ’ s name was more literal than intended.

 0 I AM ERROR

[2]

 Error ’ s dialogue has since become an infamous part of the NES ’ s

legacy. Despite the accessibility of online FAQs, wikis, and detailed trans-

lation notes for the Zelda series, articles regularly appear dispelling the

myths of the Error error for the players apparently still perplexed by his

introduction. 2 Modern games knowingly parody the dialogue. The Legend

of Zelda – inspired PC game The Binding of Isaac , for example, has a hidden

room — purposefully framed as a glitch — whose bearded occupant utters

the famous line in a cartoon speech balloon.

 The NES era was rife with mistranslations. Link ’ s prior adventure in

 The Legend of Zelda was famous for its cryptic and frequently misleading

character dialogue. When the old man presented Link with an upgraded

sword and said, “ MASTER USING IT AND YOU CAN HAVE THIS, ” many

players assumed they could take the blade and practice. Instead, they were

meant to return when they had passed a specific heart container thresh-

old. A misplaced letter in Metal Gear ’ s English translation created a

comical temporal paradox when the enemy soldiers exclaimed, “ I FEEL

ASLEEP!! ” after waking up. Winning a match in Pro Wrestling yielded the

congratulatory text, “ A WINNER IS YOU, ” proving the translator ’ s heart

was in the right place even if their grammar was not. Congratulations

in general were a failing point for many NES games, as the lack of an

 “ L ” equivalent in the Japanese language led to many “ congraturations, ”

 “ conglaturations, ” and all variations in between. In some cases, errors

became canon, as in Metroid ’ s “ barrier suit, ” which was mistranslated as

Varia in the U.S. instruction manual and remained as such ever since. 3

 The circumstances of localization — the process wherein games are

translated, linguistically and culturally — were much different in the 1980s.

Development teams of ten or fewer people worked for a few weeks (in the

worst case) or months (in the best case) to produce what we would now

call “ AAA titles, ” the big-budget videogames released by the industry ’ s

leading publishers. 4 Such was the case with Super Mario Bros. and The

Legend of Zelda , developed concurrently by the same small team for two

different media (cartridge and disk, respectively) across a span of months

between 1985 and 1986. Compare this to the teams of a hundred or more

programmers, sound designers, producers, artists, actors, and animators

who work for several years on a single videogame. Of course, the scope of

games and their underlying architectures were less complex in the 1980s,

but Nintendo ’ s creators also had less time and resources to devote to

localization, presuming a game was even slated for release outside Japan.

 Yet the same technical concerns that kept development schedules

short also limited the quality and content of translation. Even with a

completed translation in hand, text replacement was not a trivial

0 I AM ERROR [3]

cut-and-paste job. The alphanumeric characters onscreen were literally

characters, like any other graphic. The letter “ A ” and the upper half

of Mario ’ s head were cut from the same digital cloth; they were both

tiles composed of bits that occupied the same memory in ROM. Transla-

tion was not just a symbolic act but also a material act: text had to be

uncompressed in memory, its tiles redrawn, its characters substituted,

its memory limitations reconsidered. If the Japanese text fit cleanly in a

hardcoded dialogue box, but the English translation did not, meaning

would often be sacrificed for the sake of economy. Why say “ My name is ”

when “ I am ” gets the same basic point across with six fewer characters?

 Any study devoted to Nintendo ’ s first videogame console must neces-

sarily be about translation — not only in a linguistic sense, manifested in

Error ’ s dialogue, but in a material sense as well. Translation has real

social, economic, and cultural consequences beyond simple misinter-

pretation; translation takes place between circuits, cartridges, code, and

cathode rays just as it does between human actors; and translation is

inexorably and inevitably riddled with errors. As Derrida wrote in his

 “ Letter to a Japanese Friend, ” translation is not “ a secondary and derived

event in relation to an original language ” — in other words, not merely

a supplement. 5 Applied to the production of technological objects that

must enter cultures, markets, and domestic spaces, that must be made by

bodies and touched by bodies, that must be made from rare earths and

precious resources, translation does not simply derive meaning from

prior sources — translation produces new meanings, new expressions, new

bodies, and new objects.

 I AM ERROR explores the complex material histories of the Nintendo

Entertainment System — and its elder sibling, the Family Computer — that

characterized its cultural reception, expressive output, and hardware

design. In the 1980s, few NES players knew that their boxy gray videogame

console was a cosmetic re-imagining of an older machine known in Japan

as the Family Computer. Fewer still understood the machinations neces-

sary to introduce a new console — or an Entertainment System, as Nin-

tendo ’ s marketing team chose to call it — to an American market that

had apparently exhausted the videogame fad, ready to move on to the

 “ superior ” experience of personal computers. Nintendo, a century-old

Japanese company that until a few years prior was primarily known in the

United States as the maker of Donkey Kong and the Game & Watch, would

be the unlikely savior of the dedicated videogame console. Riding the

crest of a wave propelled by “ next-generation ” hardware and superior

software like Super Mario Bros. , Nintendo would seize the global videogame

market with unprecedented force.

[4]

 But Nintendo ’ s success was equally unlikely based on their console ’ s

flaws. The NES ’ s distinctive front-loading cartridge slot, for instance,

partly caused the console ’ s infamous blinking screen, leading millions of

players to blow into game cartridges as a quick “ fix ” that inevitably exac-

erbated the problem. The other cause was a proprietary “ lockout chip ”

exclusive to the NES, meant to wall off piracy and unlicensed developers

alike, a hardware tactic that Nintendo developed after such threats had

damaged the Family Computer ’ s Disk System peripheral ’ s success in

Japan. Such game-disrupting imperfections regularly spell commercial

failure for consumer electronics, but players, developers, and software

partners alike absorbed the Famicom ’ s/NES ’ s shortcomings into the

fabric of gaming culture. Hardware limitations that governed the com-

plexity of graphics and the number of digitized sound channels — or worse,

caused sprites to flicker or slowed on-screen action to a crawl — are now

part of the living legacy of videogames, referenced by fans and recycled in

game design. Contemporary games that aim for nostalgic or “ retro ” appeal

still mimic the console ’ s shortcomings, since they provide quick visual

and aural cues to a past era of gaming.

 Purposeful malfunctions are a peculiar aesthetic decision in the

software industry, where errors and bugs are commonly the bane of pro-

grammers. Neither videogames nor word processors nor operating

systems nor ATM software nor drone guidance systems should have them,

but all inevitably do. In each case, the stakes are successively higher, but

programmers ’ attitudes to them are generally the same. To borrow from

Derrida again, glitches operate as a “ dangerous supplement ” threatening

to usurp the integrity of the work as an outside force that originates from

within. But users ’ attitudes toward glitches cover a wide spectrum, depen-

dent upon their nature and severity. A glitch in ATM software that makes

the machine inoperable is an inconvenience; one that erringly deducts

money from a customer ’ s account is harmful. No game glitch can ruin a

household. At their worst, they can make a game unplayable. At their best,

they are entry points to new modes of play, exploration, and creative

expression.

 As Philip Sandifer wrote in his online Nintendo Project , “ Far from

being an aberrant error, the glitch is a central part of the experience of

the NES, an era where the games frequently existed on a spectrum between

function and breakdown. ” 6 The minus world does not ruin Super Mario

Bros. It broadens the play experience, adds mystery, makes code mythic.

But the glitch is not just about player experience. It is also a part of the

complex function of the machine itself, a means for it to assert its material

obstinance. This is the philosophical irony of Error ’ s quote. He is not only

0 I AM ERROR [5]

erroneously naming himself, but surfacing a paradoxical ontological

statement. The NES speaks through Error, naming itself as error. But how

can an object be both itself and not itself?

 The question is not an empty rhetorical gesture. As we will see

throughout the book, a platform is defined less by its positive aspects than

by its limits and negations — by what it isn ’ t — situated in the weird liminal

spaces that bridge one computational architecture to another. I do not

mean that one cannot hold an NES in their hands without risk of its dis-

integration or that we cannot consult Wikipedia for a list of the console ’ s

technical specifications. Indeed, the word platform has an important

practical use for this and other studies of its kind. But the deeper we probe

into the myriad variations and permutations of Nintendo ’ s console, the

less it coheres as a single definable object.

 Methodology

 It is hard to overstate the NES ’ s importance, both to videogame history

and to culture at large. At the peak of their market dominance, the NES

and Famicom were in one out of every three homes in the United States

and Japan. 7 Even thirty years later, the legacy of the Nintendo ’ s first car-

tridge-based console looms large in gaming, art, music, graphic design,

fashion, literature, and popular culture. But economic landmarks and

market superiority are not the focus of this book. There are numerous

popular and scholarly texts that focus on the NES and its influence, which

tend to fall into a few broad categories: Nintendo ’ s role in the larger

history of videogames; 8 Nintendo ’ s corporate history; 9 Nintendo ’ s

individual game designers; 10 Nintendo ’ s impact on game players; 11 and

Nintendo ’ s iconic videogame characters. 12 However, the NES ’ s impor-

tance as a computational platform is widely overlooked.

 The NES, of course, was neither the first nor the most technologically

advanced home console, but it did mark a transition point in the types

of videogames that they could proffer. Its early games were either direct

ports of or callbacks to arcade games, designed for short-burst, single-

screen play. But within two years, platforming — pioneered in part by

Nintendo ’ s own arcade hit Donkey Kong — emerged as the dominant genre

of the “ third generation ” of consoles. “ Platform ” was a catch-all term for

any obstacle or structure the player-character had to traverse in order

to reach a goal, like the girders that Jumpman scaled to save Pauline

from Donkey Kong or the pits and alligators Pitfall Harry had to swing

across to reach the hidden gold bars. Later platformers built upon these

early prototypes, expanding traversal beyond single screens to elaborate

[6]

scrolling spaces. Platformers encouraged progressive, long-term play,

coherent world design, and narrative development, characteristics anti-

thetical to the arcade ’ s quarter-consuming economy.

 Nintendo ’ s console was primed to capitalize on this transition in

gameplay style — the Famicom was engineered with hardware-based

scrolling, plentiful on-screen sprites, dedicated VRAM, and ample

cartridge program ROM. None of these individual technical specs were

revolutionary, but in combination they served as the architectural foun-

dation for tile-based worlds tailored to character-based platforming.

Even the Famicom controller, with its patented plus pad and dual action

buttons, was geared for cardinal movement through 2D space. Super Mario

Bros. , a landmark in videogame history, became the archetype of the

genre, featuring a distinctive world (The Mushroom Kingdom), a memo-

rable protagonist (Mario, the plumber), and a clear narrative goal (rescue

the Princess from Bowser) — all novel features for console games at the

time. Successors like Castlevania , Mega Man , Metroid , Contra , and Ninja

Gaiden underscored the sophistication of console gaming and paved the

way for a new Famicom era.

 While Nintendo ’ s console shared architectural similarities with

several other machines, including the Atari VCS and the Commodore 64,

its expressive capabilities were radically different. And those differences

were more significant than sprite sizes or color counts. Historically,

media scholars have overemphasized the visual aspect of digital media, a

bias that Montfort, 13 Kirschenbaum, 14 and others have called “ screen

essentialism. ” Its prevailing assumption is that videogames ’ primary

object of study is what players see onscreen, negating the role of graphics

processors, joypads, sound circuitry, and other material concerns in

shaping the expressive possibilities of software. I AM ERROR , in line

with the platform studies methodology first developed in Montfort and

Bogost ’ s Racing the Beam , adopts a “ bottom-up ” approach to digital media,

unearthing the code- and hardware-level decisions that fundamentally

shaped the platform ’ s creative affordances, cultural reception, and styles

of play.

 I AM ERROR considers videogames and their platforms to be impor-

tant objects of cultural, material, and personal expression, alongside

cinema, dance, painting, theater and other media. It joins the discussion

happening in similar burgeoning disciplines — code studies, game studies,

computational theory — that engage digital media with critical rigor and

descriptive depth. But platform studies is not simply a technical discus-

sion — it also keeps a keen eye on the cultural, social, and economic forces

that influence videogames. No platform exists in a vacuum: circuits, code,

0 I AM ERROR [7]

and console alike are shaped by the currents of history, economics, and

culture — just as those currents are shaped in kind.

 The book argues for the Famicom ’ s material importance along three

interconnected trajectories: first, as a platform directly informed by pre-

vailing trends in arcade, console, and PC design, which in turn influenced

the software the platform would support; second, as a pivotal platform in

the evolution and popularization of the platformer genre, for which the

Famicom ’ s hardware was distinctly suited; and third, as a platform ideally

positioned to catalyze console emulation in the 1990s, when both PCs

and the Internet reached the necessary maturity to support an emulation

ecosystem. With these three trajectories in mind, I AM ERROR offers a

sustained technical analysis of how the platform was programmed and

engineered, from code to silicon, and how those design decisions shaped

not only its expressive possibilities, but also the perception of videogames

in general. The book also defines the platform not only as a single console,

but as a holistic network of objects and texts, including cartridges,

controllers, peripherals, marketing materials, play environments, and

emulators.

 In this light, I AM ERROR diverges from the platform studies model by

expanding and critiquing the notion of a platform as a stable configura-

tion of hardware and software. As a Japanese product that was later

exported to the United States, the Famicom was born in a vastly different

cultural context than predecessors like the Atari VCS or Fairchild Channel

F, shaped by considerations ranging from the size of Japanese households

to the legacy of suspicion that Americans felt toward Japan post – World

War II. Thus hardware and software alike underwent a number of trans-

lations that prior consoles never did, from the shape and color of the

console to the censorship of potentially sensitive religious or political

imagery that might offend international audiences. The Famicom ’ s hard-

ware and software were under constant revision, mutating to adapt to new

cultures, new play practices, new markets, and new genres.

 The NES hardware also reached its commercial obsolescence at a

pivotal moment in the history of personal computing. Console emulation

became feasible for PCs in the mid-1990s, allowing another important

translation to take place — physical hardware, rendered in silicon and

plastic, became virtual hardware, rendered in code. The NES was uniquely

positioned to make this transition and led the way for the deluge of

emulation that took place in the late 1990s. The features built into NES

emulators spawned new forms of play, performance, and videogame

archiving. Suddenly players could record gameplay movies, save games at

any point, play online, alter graphics, load translation patches, and more.

[8]

The NES platform blossomed beyond the bounds of hardware, expanding

its reach and capabilities past what Nintendo ’ s engineers ever thought

possible. There is no single configuration of hardware and software, no

single processor, no sound or graphic that defines the Famicom as a plat-

form. It is all and none of them. It is error.

 Plan of the Book

 I AM ERROR is neither a chronological review of the Famicom ’ s hardware

and games nor a history of Nintendo as a corporation. Larger surveys of

videogame history are better equipped to furnish comprehensive lists

of names, dates, and events. 15 The book is instead structured as a series of

 “ deep dives ” into specific hardware and software topics that will illumi-

nate how the platform works at a base technological level. And while I AM

ERROR covers the full scope of the Famicom ’ s lifespan, it does so to track

key developments in its material history along with the broader cultural

and technological contexts from which those developments arose. Since

Japan, the United States, Europe, and the rest of the world experienced

concurrent but staggered trajectories of Famicom/NES development, this

hardware focus often demands chronological backtracking.

 Similarly, hardware and software examples are not chosen based on

their gameplay merits or review metrics, but according to their relevance

to the platform-specific topic. Fortunately, some of the best and most

critically acclaimed games are also the most interesting to study. Super

Mario Bros. , for instance, is not only one of the most lauded and bestselling

videogames in history, it is also the consummate example of the Fami-

com ’ s affordances. And despite the game ’ s influence, there has never

been a close analysis of how its successful design is tied intimately to the

Famicom ’ s Picture Processing Unit and cartridge ROM. Others, like

 Gyromite , Wild Gunman , or Devil World , while less lauded, offer fascinating

glimpses at the Famicom ’ s architectural design.

 Chapter 1 (“ Family Computer ”) introduces Nintendo ’ s first cartridge-

based console, the Family Computer (or Famicom), along with a few

of its key predecessors. The chapter ’ s first half tracks the development of

the Famicom hardware, spearheaded by Nintendo engineer Masayuki

Uemura, and its trademark industrial design, from case and controller to

cartridge and circuits. The chapter ’ s second half provides a detailed over-

view of the Famicom ’ s computational architecture, including its custom

microprocessor and graphical processing capabilities.

 Chapter 2 (“ Ports ”) rewinds to Nintendo ’ s first forays into the U.S.

arcade market via an ambitious but mistimed failure and the unlikely hit

0 I AM ERROR [9]

that arose from its ashes. Donkey Kong is used as a case study to examine

the broader cultural context of Japan ’ s entrance into the Western video-

game industry and specifically their software ’ s categorization into the

catch-all “ novelty games ” genre. The chapter also provides a comprehen-

sive technical comparison of arcade Donkey Kong to its subsequent

Famicom port, a crucial building block in its console future.

 Chapter 3 (“ Entertainment System ”) covers the challenging launch of

the Nintendo Entertainment System, a hardware translation of the Family

Computer suited to the demands of a troubled U.S. videogame market.

Two of the console ’ s initial marketing gimmicks — the Robotic Operating

Buddy and the Zapper — are profiled in depth alongside the software they

supported. Despite their limited use, both peripherals were important

links to Nintendo ’ s rich gaming legacy. The chapter concludes with a

survey of the inconsistent, and sometimes inexplicable, translations used

to transition content from a Japanese to a worldwide audience, ranging

from the design and marketing of box artwork to the censorship of “ offen-

sive ” in-game content.

 Chapter 4 (“ Platforming ”) is devoted to a technical exegesis of

the seminal Famicom game, Super Mario Bros. The chapter delves into the

game ’ s source code and analyzes how the Famicom ’ s architecture guided

the game ’ s design. Many of the hardware programming concepts intro-

duced in prior chapters — scrolling, metatiles, data compression, attribute

tables, palette swaps, sprite 0 hit — are expanded and explicated through

 Super Mario Bros. ’ s remarkable object-based software engine. That careful

code work is followed by an analysis of the game ’ s unique and sometimes

unintended innovations, including player movement beyond world

boundaries and the famous “ minus world ” exploit.

 Chapter 5 (“ Quick Disk ”) discusses the Japanese launch of the Family

Computer Disk System (FDS), the introduction of Nintendo ’ s proprietary

disk format, and their combined effect on the design of the landmark

adventure game The Legend of Zelda . The chapter examines the FDS ’ s

design, media, features, and flaws, and the peripheral ’ s eventual demise

in the face of software piracy. The chapter also explores the “ miniature

gardens ” cultivated by Zelda and Super Bros. ’ designers as reflections of a

tragic ecological crisis facing modern-day Japan.

 Chapter 6 (“ Expansions ”) examines the breadth and depth of innova-

tions Famicom developers explored after their “ exhaustion ” of the stock

hardware, the demise of the FDS, and the influx of competitors ’ “ next

generation ” platforms. The chapter covers the emergence of new genres,

hardware mappers meant to expand the Famicom ’ s capabilities, unli-

censed cheat devices, and the development and debut of Dragon Quest , one

[10]

of Japan ’ s most influential series and a game whose scope and style were

impossible to realize in a standard Famicom cartridge.

 Chapter 7 (“ 2A03 ”) dissects the Famicom ’ s dedicated sound hard-

ware, the Audio Processing Unit (APU), explores its five channels in

detail, explains their use in software, and outlines the APU ’ s role in the

larger context of synthesis. It also surveys the sound enhancements

provided by hardware expansions, including the Famicom Disk System

and various extended mapper hardware. Finally, the chapter describes the

APU ’ s lasting importance to chiptunes, a music genre dedicated to explor-

ing the sonic boundaries of vintage sound processors.

 Chapter 8 (“ Tool-Assisted ”) tracks the Famicom ’ s rebirth through

emulation via an analysis of tool-assisted speedruns, a specialized play

style devoted to completing games as quickly as possible using software

assistance. An overview of emulation ’ s emergence in the 1960s is followed

by a history of early NES emulators and their eventual evolution into the

modern forms used in tool-assisted play. The chapter concludes with a

look at the surprising new forms of play afforded through human/software

collaboration and their explicit challenge to the notion of platforms as

stable objects of study.

 The book ’ s afterword (“ Famicom Remix ”) speculates on Nintendo ’ s

future based on its platform past; appendix A (“ Famicom/NES Biblio-

graphic Descriptions ”) issues a practical call for more rigorous enumera-

tive bibliographies for videogames (and digital objects in general) and

provides practical models for scholarly and critical use; and appendix B is

a glossary of technical terms used throughout the book.

 A list of sources concludes the text. I mention it explicitly since, in

lieu of citing each Famicom/NES videogame inline or bloating the end-

notes unnecessarily, all cited cartridges, disks, and ROMs are instead

found here, using the model enumerative format detailed in appendix A.

 In October 1981, encouraged by the dual successes of their breakout

arcade hit Donkey Kong and the Game & Watch LCD handheld games,

Nintendo president Hiroshi Yamauchi approached Masayuki Uemura,

head of the hardware-focused Nintendo Research & Development 2

(R & D2), to begin work on a home videogame console. 1 Yamauchi knew

that arcade games and cheap portables were excellent for short-term

profits, but an inexpensive console with interchangeable cartridges could

generate profits for years. 2 Atari had proven the model with their long-

standing Video Computer System (VCS), the wood-paneled wonder that

had dominated the U.S. home console market despite a slew of capable

competitors. Yamauchi reasoned that Nintendo could manufacture

their own home system, leveraging their popular arcade titles to entice

consumers.

 Uemura, alongside young engineer Katsuya Nakakawa, researched the

feasibility of the console ’ s technical requirements at the budget price

Yamauchi demanded: ¥ 9800, (roughly $40 in 1983). 3 Thanks to Ninten-

do ’ s recent experience with Donkey Kong , it was:

 The conclusion [Nakakawa] came up with was that a domestic game

console looked to be a possibility if they IC ’ d [packaged as an inte-

grated circuit] the Donkey Kong arcade machine ’ s circuits and used

them as a base. In the spring of 1982, a concrete development project

had begun. The code name of the game console they set out to develop

was the GAMECOM. 4

 1 Family Computer

[12]

 For nearly a year, GAMECOM was the internal name for Nintendo ’ s first

cartridge-based home console. 5 But when Uemura mentioned the name

to his wife the following spring, she suggested that if the console was

meant to be a “ domestic computer that ’ s neither a home computer nor a

personal computer, ” perhaps they should call it a “ family computer. ” 6

And since the Japanese commonly shortened “ personal computer ”

(パ ー ソ ナ ル ・ コ ン ピ ュ ー タ) to pasokon (パ ソ コ ン), Nintendo ’ s family com-

puter should have a similar nickname. Uemura loved the idea, as did the

rest of his team. The Family Computer (フ ァ ミ リ ー コ ン ピ ュ ー タ) released

in Japan on July 21, 1983, and was soon after known by its affectionate

abbreviation: フ ァ ミ コ ン , or Famicom. 7

 As Ms. Uemura intuited, the portmanteau of “ family ” and “ computer ”

described how Nintendo envisioned the machine to fit into the lives of

those who purchased it. “ Family ” designated the console ’ s range of social

functions: Nintendo was bringing its popular arcade titles into the home,

to be shared with the family, to become part of the family, and to be played

in the family ’ s social space. It would be a “ domestic computer ” in the most

familiar sense. But the console would be more than a simple machine that

played variations of ball-and-paddle electronic games — it would also be a

powerful computing device, rivaling the pasokon that Japanese players

were already accustomed to using for home videogame play.

 Of course, the Family Computer ’ s idealistic nomenclature was not

solely motivated by Nintendo ’ s domestic goodwill. Nintendo was selling

a game console, and game consoles were seen as toys, meaning that

parents would need to be part of the purchasing decision. Marketing the

Family Computer to children would find limited success without the

entire family ’ s economic input, as Katayama ’ s 1996 profile of Nintendo

explains:

 As the Japanese name, “ family computer, ” shows, the designers had

the family market in mind. The product had to be priced so that

parents would buy it. No matter how great the games, if mothers

thought they were too expensive the machine would never take off.

Nintendo therefore aimed for prices that children themselves could

afford or at least would be able to convince their parents to lay out. 8

 Juggling Yamauchi ’ s demands of affordability, approachability, and power

posed major challenges for the R & D2 team. Not only was Uemura expected

to produce a console at bargain prices, but it had to be future-proofed

against potential rivals for three years. 9 Moreover, the Family Computer ’ s

spec software was Donkey Kong , an arcade hit built atop bleeding-edge

1 Family Computer [13]

hardware that cost hundreds of thousands of yen to produce. A cartridge-

based machine would not only have to be cheaper, but also more flexible,

serving as a platform for Donkey Kong and a host of ports to come.

 An Unconventional Stone

 Uemura grappled with the problem for many months, consulting with the

company ’ s arcade engineers to figure out how they might transition

 Donkey Kong ’ s powerful hardware to an inexpensive home console. 10

Nakakawa ’ s solution to “ IC the arcade machine ’ s circuits ” was not a simple

plug-and-play operation. At the heart of any modern arcade game was a

microprocessor. And the choice of that microprocessor had important

ramifications in cost and capabilities. An underpowered CPU might ham-

string the number of sprites available onscreen, lower the game ’ s palette

options, or restrict the audio channel count. Alternately, if a CPU was too

complex, it would be costly to manufacture and difficult to program.

 In the early 1980s, there were two major players vying for the low-cost

microprocessor market: MOS Technology ’ s 6502 and Zilog ’ s Z80. Both

8-bit processors were cheap but powerful, capable of driving a range of

videogame consoles, PCs, and arcade games. Japan ’ s arcade industry

leaned heavily toward Zilog ’ s microprocessor. The massive hits of the

era — Pac-Man, Galaxian, Galaga — were all powered by the Z80.

 The Family Computer nearly had a Z80 too. In fact, prior to Ninten-

do ’ s decision to forge ahead with their own console, the Family Computer

was nearly a ColecoVision. 11 In the U.S., Atari had maintained a near-

deadlock on the emerging home videogame industry with the Atari VCS.

However, the unlikely Connecticut Leather Company (Coleco for short),

who had previously dabbled in derivative Pong clones and electronic

handheld games, forged a short-term exclusive licensing agreement with

Nintendo to bring Donkey Kong to their new console, a Z80-based machine

that technologically trumped the elder VCS. The Kong partnership bene-

fited both parties, spurring the ColecoVision to impressive first year

sales and expanding Nintendo ’ s market reach beyond the arcades.

 Nintendo had great admiration for Coleco ’ s port of Donkey Kong .

Licensing the ColecoVision in Japan would allow Nintendo to develop

console versions of its arcade games without a massive upfront invest-

ment in research, development, and manufacturing. In The Golden Age of

Videogames , Roberto Dillon indicates that the two companies were close

to a console licensing deal but could not settle on economic terms. In the

end, he writes, “ negotiations were abandoned when Nintendo declared it

would design its own system instead. ” 12

[14]

 Coding for the ColecoVision ’ s Z80 core certainly would have smoothed

software conversions. Nintendo ’ s Radar Scope, Donkey Kong, Donkey Kong

Jr., Popeye, Mario Bros., and Donkey Kong 3 cabinets were all Z80-based, so

porting to ColecoVision would have been simpler than translating code to

a dissimilar microprocessor architecture. There was also the inherent risk

of introducing new proprietary hardware to a fledgling videogame market.

The less friction there was for third parties (i.e., publishers not directly

affiliated with the console manufacturer) to port their games across

multiple systems, the better. Without a steady stream of software, a new

console was dead in the water. But when negotiations with Coleco broke

down, Nintendo decided not only to design their own technologically

superior console, but to forgo the Z80 altogether in favor of the 6502. This

surprising decision ultimately came down to a mixture of corporate poli-

tics, managerial mandate, hardware licensing, manufacturer supply, and

competitive strategy.

 President Yamauchi had a long-standing reputation as a shrewd but

imperious executive, possessing, according to his employees ’ accounts,

an incisive but opaque business sense. Prior to the Famicom ’ s develop-

ment, for instance, Yamauchi unexpectedly forbade any collaboration

between Sharp and Nintendo related to the new console. The order was a

jolt for Uemura — Sharp was both his former employer and Nintendo ’ s

hardware partner for the Game & Watch. Nonetheless, Yamauchi insisted

that Sharp ’ s attention would be detrimentally split if they had to juggle

between their handheld line and new console development. 13 With Sharp

out of the picture, Uemura found little support from other electronics

suppliers. Officially, vendors told him that parts were scarce due to a

recent surge in demand for PCs and word processors, but he suspected

that they were either reticent to wager on a risky console product — and

Nintendo themselves — or had no idea how to produce the machine that

Nintendo required. 14

 Uemura and semiconductor manufacturer Ricoh found one another

at a fortuitous time. Ricoh had the advanced facilities Nintendo required

and were currently only producing at ten percent capacity, an unsustain-

able shortfall for a large manufacturing operation. Uemura, along with

engineers Nakakawa and Masahiro Ohtake, visited the semiconductor

factory, where they were met with enthusiasm about a potential partner-

ship. Hiromitsu Yagi, now a Ricoh supervisor, had worked at Mitsubishi

in the late 1970s when they had partnered with Nintendo and overseen

the chip design for the Color TV Game 6, one of Nintendo ’ s early all-

in-one consoles. 15 Uemura pitched the idea of a console made for Donkey

Kong and, thanks in part to their employees ’ desire to “ take the game

1 Family Computer [15]

home, ” Ricoh agreed to take on the challenge. 16 However, the per-chip

cost necessary to comply with Yamauchi ’ s target price was not feasible at

videogame console production numbers. Chip prices drove down at

volumes of millions, not tens of thousands, so Nintendo made an extraor-

dinary gamble in guaranteeing Ricoh a three-million chip order over two

years. 17 Ricoh agreed to the deal, but feared that Nintendo was headed for

an economic catastrophe. If the Famicom flopped, Nintendo would be

stuck with millions of unused CPUs.

 Chip prices aside, there was a larger roadblock to overcome: Ricoh

lacked a manufacturing license for the Z80. As an alternative, they sug-

gested the MOS 6502, a chip that was popular in U.S. and European

consoles and PCs. The chip was similar in specs, affordable, and already

licensed — a worthwhile replacement, with one caveat: it was virtually

unknown among Japan ’ s engineers. Surprisingly, both Uemura and

Yamauchi saw this as an advantage, since the tradeoff in engineering

complexity would pay off in hardware obfuscation and give Nintendo the

competitive lead time they desired. In a 2011 interview with Nintendo

president (and former Famicom programmer) Satoru Iwata, Uemura

noted that Nintendo ’ s peculiar choice “ turned out lucky ” for them, since

other companies “ wouldn ’ t be able to make sense of it. ” 18

 Uemura ’ s team initially balked at the change, since they too could not

make sense of the 6502. Forgoing the familiar Z80 architecture posed

major engineering challenges. For one, R & D2 had to build development

tools from scratch. And instead of reusing prior source code, they had to

tediously reconstruct their arcade games through observation. As Uemura

explained, “ the work required a lot of patience, including tasks such as

watching the game screen and measuring the timing of animations with a

stop watch. ” 19 In April 1983, R & D2 eased their burden when they hired

Shuhei Kato, a young engineer who specialized in the 6502. The “ Living

6502 Manual, ” as they called him, spurred on the final surge of software

development and sealed Nintendo ’ s microprocessor future. 20

 In the end, the Ricoh partnership satisfied all of Yamauchi ’ s stipula-

tions. Thanks to an inexpensive processor, the console would be cheap

(though not on target — the Famicom debuted at ¥ 14,800, around $60 in

1983). And thanks to an unconventional choice of “ stones, ” as semicon-

ductors were called in Japan, Nintendo had a competitive edge. Reverse

engineering the Famicom would prove as troublesome to competitors ’

engineers as it had for Nintendo ’ s. From the outset, it was clear that

Nintendo designed their console with proprietary control in mind. And

despite the risk of alienating third parties, they wanted to be the ultimate

arbiters of who could and could not develop software for the Famicom — a

[16]

predilection that would intensify as Nintendo took control of the world-

wide videogame market (chapter 3).

 The 6502 had one other material advantage: its die was one-quarter

the size of the Z80. As a result, Nintendo ’ s and Ricoh ’ s designers were able

to shrink the Famicom ’ s plastic body and further slash the cost of the

machine. Compared to contemporaries that used the Z80 — ColecoVision,

Sega ’ s SG-1000, MSX PCs — the Famicom was more compact and less

expensive. The design had both marketing and cultural advantages. The

smaller Famicom, garbed in bright red and white plastic, had a toy-like

appearance, sure to grab the attention of young children. Moreover, the

diminutive size fit the tastes of Japanese consumers and the size of their

domestic spaces, 21 making good on the Family Computer name.

 With the microprocessor question settled, Nintendo began to work in

earnest on the Famicom prototype in late 1982 and soon began courting

another U.S. licensing partner. Ever since their entry into the arcade

business, Yamauchi had had his sights set on the American videogame

market. Donkey Kong , its arcade successors, and the Game & Watch were

strong starts, but in America, Nintendo was still a minor Japanese player

with a “ weird foreign name. ” In a reversal of their aborted negotiations

with Coleco, Nintendo decided to license the Famicom to a U.S. partner —

 one who ironically had their own weird foreign name.

 In April 1983, Atari executives flew to Kyoto to inspect demo versions

of Donkey Kong Jr. and Popeye running on prototype hardware. 22 According

to Atari ’ s Don Teiser, Nintendo ’ s machine ran the arcade ports with “ only

minor display glitches. ” 23 Teiser ’ s memo indicated Atari ’ s interest in the

console along with, true to form, a sizable list of President Yamauchi ’ s

stipulations (e.g., a minimum two million console order, Atari ’ s limited

access to Nintendo ’ s hardware specifications, etc.). But the memo also

indicated that he and the other executives present were withholding their

true intentions from Nintendo. Atari was shopping for a successor to the

aging VCS and its disastrous follow-up, the Atari 5200. While they openly

courted Nintendo, internally they were weighing a competing prototype,

codenamed MARIA, developed by General Computer Company in

Cambridge, MA. This alternative looked to be the “ superior machine, ”

according to the memo, but uncertainty regarding the chip ’ s large-scale

manufacturing costs kept Atari in talks with Nintendo. In short, they

were purposely delaying their decision so they could pick the better

machine.

 Once again, an international partnership was not meant to be.

Although Atari ultimately opted to use MARIA in the Atari 7800 (due in

part to Nintendo ’ s impatience with Atari ’ s waffling), grander mitigating

1 Family Computer [17]

circumstances intervened on Nintendo ’ s behalf. By the end of 1983, the

U.S. videogame industry collapsed catastrophically (chapter 3). Had Nin-

tendo partnered with Atari, the U.S. Famicom would have likely been

collateral damage. Even the promising ColecoVision was among the casu-

alties. Thanks to an economic twist of fate, Nintendo would have to forge

ahead alone.

 Red, White, and Gold

 Readers unfamiliar with the Family Computer might be surprised by its

size: it measures 22cm long, 15cm wide, 6cm deep, and weighs approxi-

mately 620g. Its curious profile looks more like the torso of a plastic robot

than a powerful computing platform. In short, the Famicom looks nothing

like the personal computers with which it shared a name.

 Nintendo ’ s early consoles — all simple variations of tennis, tabletop,

racing, and brick-breaking games — had already experimented with novel,

colorful designs. The deep oranges, reds, and yellows of the Color TV

series were far afield from the faux wood-paneled furniture style of

U.S. consoles, thanks in part to the influence of a young designer named

Shigeru Miyamoto. The cherubic Miyamoto is now one of Nintendo ’ s

most prominent representatives, widely hailed as one of the greatest

innovators in videogame history. He has designed, produced, or directed

the lion ’ s share of Nintendo ’ s most prized franchises, from Donkey Kong

and Super Mario Bros. to Nintendogs and Pikmin . But prior to Miyamoto ’ s

industry ascension, he worked as an industrial artist. His first jobs at

Nintendo included designs for mahjong labels, playing card stencils

(hanafuda , or Japanese playing cards, were Nintendo ’ s original gaming

industry), arcade cabinet exteriors, and the 1979 console all-in-one

Color TV Game Block Breaker (カ ラ ー テ レ ビ ゲ ー ム ブ ロ ッ ク し). 24 Miya-

moto brought a playful sensibility to his industrial designs, emphasizing

simplicity, accessibility, and fun. The bold colors and compact form

factors of Nintendo ’ s earlier consoles would carry over to the Family

Computer.

 While Miyamoto was not directly involved with the Famicom ’ s exter-

nal design, Uemura was, and the latter established a list of specification

guidelines to help shape the console ’ s look. These included the necessity

of two controllers, the ability to store them on the console (another legacy

of the Color TV consoles), the number of controller buttons, the various

ports and power connectors, and the desire to have the cartridge dimen-

sions “ be about the same as an analog cassette tape. ” Curiously, in spite

of the console ’ s name, Uemura wanted the Famicom to look like neither

[18]

a computer nor a toy, but something wholly different. 25 Ricoh ’ s designers

concurred. The console should not be judged on looks alone:

 If the system ’ s exterior resembled an audio device, for example, con-

sumers would make judgments on the product ’ s price and value based

on preconceptions. [Ricoh] instructed the team to design the exterior

in such a way that people wouldn ’ t be able to make snap judgments

about it. 26

 While Uemura later admitted that he had failed to realize his design goals,

there is no question that the final console stands out from its consumer

electronics peers. The Famicom body is replete with ridges and angles.

Numerous recessed surfaces, buttons, levers, hinges, and vents combine

to form a unique plastic topography (figure 1.1).

 The front of the console slopes forward slightly to display a slender

aluminum plate printed with the console ’ s name (in English) and the

Nintendo logo. Behind the angled surface there are three mechanical

switches: reset, power on/off, and a large slider to help children lever the

cartridges out of the console ’ s interior. 27 Cartridges are inserted vertically

into a narrow slot behind the lever. Since the slot exposes the cartridge

card edge connector (and the console ’ s interior), a hinged plastic flap

covers the hole when no game is present. Again, Uemura hoped to match

the cartridges ’ dimensions with cassettes so they could be stored in

standard tape cases. Cartridges ’ affinity with cassettes had an important

cultural and marketing resonance, due to the recent worldwide success of

 1.1 The Nintendo Family Computer. (Source: Evan Amos, Wikimedia Commons)

1 Family Computer [19]

Sony ’ s Walkman, which introduced the compact, high-technology Japa-

nese aesthetic to much of the world. 28 “ Cassettes ” were already a common

moniker for game cartridges in Japan, and Nintendo wanted to maintain

that material affinity for their software. 29

 As Uemura ’ s guidelines specified, the sides of the Famicom have

recessed edges cut to house the console ’ s wired controllers. Both control-

lers are rounded along the edges but have an additional raised molding

around their perimeters that allow them to nest within their respective

cradles without falling out. Cords emerge from the controllers on either

side — from the upper left on controller I, upper right from controller II —

 rather than the top. Though the placement looks sleek when the control-

lers are stored, as there are no cords sprouting from the top, it makes

the controllers awkward to hold, since the cords emerge where the hand

naturally grips the joypad.

 The sole feature of an otherwise barren front edge — a 15-pin expan-

sion port — is evidence of the Famicom ’ s future-proof design. 30 Yamauchi

originally requested that the Famicom support a number of computer

peripherals, including a cassette storage drive, a keyboard, and a modem,

but eventually told his engineers to nix these add-ons in the interest of

cost reduction. Furthermore, fewer peripherals made the Family Com-

puter appear less intimidating to new users. 31 Nonetheless, Nintendo had

the forethought to leave the expansion port. And indeed, as the Famicom

gained popularity, the peripherals excluded from its initial launch were

eventually added both by Nintendo and third-party manufacturers. The

expansion port would support keyboards, all manner of controllers and

joysticks, light guns, 3D glasses, an inflatable motorcycle and punching

bag, a drawing tablet, a karaoke microphone, and even a modem. 32

 The Famicom ’ s final distinguishing trademark is its color. While the

bulk of its body is white, the switches, logo plate, cartridge slot cover,

expansion port plug, controllers, and bottom plate are all painted a rich

maroon. 33 The controllers feature two additional accent colors: each of the

buttons, their labels, and two thin horizontal decorative lines are painted

black and surrounded by a brushed gold face place. The red, white, and

gold triumvirate is as iconic in Japan as the gray, black, and red of the NES

are in the U.S. and Europe. 34

 Close Playing

 The physical forms of computational devices, from mobile phones to

room-size server racks, are not benign; they participate in and structure

social, personal, cultural, and economic spaces. Upright arcade cabinets,

[20]

for instance, were played while standing. Their form facilitated fluid

movement between machines — players were meant to insert a quarter,

play for a short period of time, then move along to the next game. Screens

were commonly angled backward to allow players to lean into the cabinet,

shielding them from any exterior distractions. If players sat at upright

cabinets, they perched on high stools, the common furniture of the pubs

and taverns that initially hosted such machines. Cocktail arcade cabinets

likewise reflected their social milieu. Their flat, squared surfaces and low

profiles resembled tables. Players sat on either side of the machine and

looked down at the monitor, which was mounted with the screen facing

the ceiling. Unlike the sheltering hood of upright cabinets, cocktail cabi-

nets encouraged social play. Accordingly, cocktail games were commonly

programmed either for cooperative play or to rotate between multiple

competitors in turns. Players could sit comfortably, rest their drinks on

the plexiglass tabletop, and enjoy a videogame together.

 When videogames moved into the home, consumers had to be taught

how, where, and with whom to play them. In single-television homes, the

TV was usually located in the living room, where it could be shared by

the family. Since the videogame console required a television, it resided

there too. The earliest home consoles featured simple variations on the

ball-and-paddle play pioneered by Tennis for Two, Pong, Breakout, and

their imitators. Due to both limited technology (i.e., programming

a capable artificial opponent) and their arcade heritage, these games

normally required two players. The living room, already a site of family

gathering, was conducive to social play.

 Early commercials for the Magnavox Odyssey, Fairchild Channel F,

Coleco Telstar, and other contemporary consoles showed variations on

the same themes: this is how the console connects to the television, this

is how you select or insert different games, this is how you hold the joy-

stick or paddle, this is how you and your friends and family gather around

the television to play. 35 None of these practices were taken for granted.

The instructions for play, including the arrangement of bodies and

machines, were built into videogame advertisements, manuals, and even

product packaging.

 The Family Computer, as its name implied, was a console designed

for domestic spaces. Two people playing simultaneously were close to both

one another and the console, since the wired controllers kept players in

close proximity. 36 Smaller televisions and shorter cables meant that vid-

eogames were played close to the screen — an ideal spatial configuration

for most Japanese homes, which tended to be much smaller than their

American counterparts. But in spite of its name, the Famicom was designed

1 Family Computer [21]

to rest on the floor, a table, or a low shelf. PCs in the 1980s comprised

several bulky components: a monitor, a case to house the internal proces-

sors and memory, a keyboard, disk drive, etc. Computers took up a lot of

space. A desktop and chair were best suited for both the size of the

machines and long-term computer use, especially typing. The linguistic

legacy of the “ desktop computer ” and the metaphor of the desktop as the

default state of the graphical operating system indicate as much.

 Had the Famicom ended up looking more like a conventional PC as

originally planned, it would have been better suited to the “ vertical ” ori-

entation of desks and chairs. Uemura considered such a configuration,

but he soon realized that most players would not want to use their consoles

on desks. A “ horizontal ” orientation better suited the tastes of Japanese

consumers, whom he thought “ would probably be lying on the floor or

snuggled up inside the kotatsu (a foot warmer with a quilt over it) when

they played, not sitting in front of a solid, stable desk. ” 37 Uemura ’ s con-

clusion seems obvious now, but home videogames in the 1980s were still

novel enough that their position in domestic and social space was not yet

codified.

 In the early 1980s, Japanese consumers were still acclimating to com-

puters ’ presence in the home, so any added sense of familiarity could ease

a product ’ s introduction. The Family Computer joypad was new compared

to competitors ’ controllers, but it was a recognizable interface for the

millions of people who had played Nintendo ’ s Game & Watch, the aptly

named portable that packed an electronic game, clock, and alarm into a

compact handheld enclosure.

 Though Game & Watch titles resembled videogames, their simple

circuits generated no video signal. Instead, segmented liquid crystal dis-

plays, identical to those used in calculators, blinked on and off to produce

simple animations. In Nintendo ’ s first Game & Watch title Ball (1980), a

cartoon man attempted to juggle several balls simultaneously. The man ’ s

body, arms, and each individual position of the balls ’ three possible arcs

were LCD segments that could be “ lit ” to create motion. In a 2010 inter-

view with Satoru Iwata, Game & Watch developer Takehiro Izushi described

how calculator circuits could process eight digits with seven segments

apiece, so games like Ball were limited to those fifty-six segments, plus a

few ancillary segments reserved for “ decimal points and symbols like the

minus sign. ” 38 The engineering and design innovation was appropriating

these segments for use as game objects rather than a calculator ’ s numeric

display.

 Adhering to the constraints of a calculator LCD created unique design

obstacles. As discrete segments, object animations could not deviate

[22]

beyond their fixed course, nor could they overlap. Since only one segment

object could occupy a given portion of the screen, even when unlit, anima-

tion was jerky. The monochromatic LCD graphics were thus more akin to

the grid of bulbs used to animate sports stadium displays or traffic signs

than a console video processor.

 Nonetheless, Nintendo devised a remarkable number of gameplay

variations from such a restrained palette. Early games like Octopus (1981)

were based around straightforward objectives like sneaking past an

octopus ’ coiling tentacles to retrieve a treasure chest. As the platform

matured, the games grew in complexity, culminating in streamlined con-

versions of Nintendo ’ s arcade and console games, such as Donkey Kong

(1982), Mario Bros. (1983), and The Legend of Zelda (1989). To increase the

range of gameplay options, Nintendo added graphics overlays and enlarged

the Game & Watch to house two screens (figure 1.2). 39

 Gunpei Yokoi, Nintendo ’ s head of R & D1, led the development of

both the Game & Watch concept and its hardware. Yokoi had been a

mainstay of Nintendo ’ s games division since he first designed the Ultra

 1.2 The lower screen of the Game & Watch Multi Screen Donkey Kong handheld, the first

Nintendo product to feature the “ Plus ” Button. In its startup state (pictured), one can

see the entire spectrum of LCD segments lit simultaneously.

1 Family Computer [23]

Hand (1966), 40 a collapsible plastic lattice with handles at one end and a

pair of rubber cups at the other, meant for grasping small objects. The

clever mechanical device, handpicked for production by President

Yamauchi, was a big hit for Nintendo, resulting in Yokoi ’ s promotion

from maintenance man to toy designer. During his tenure at pre-

Famicom Nintendo, Yokoi invented many inspired gadgets: the Ultra

Machine (1967), an automatic baseball pitching mechanism; an electric

 Love Tester (1969); the Light Telephone (1971), a short-range walkie-talkie

using photo cells; the Custom Lion (1976) light gun target shooting game;

the Chiritorie (1979), a radio-controlled mini-vacuum; and the mechani-

cal puzzle Ten Billion (1980). 41

 Yokoi was instrumental to Nintendo ’ s success, not only due to his

inventiveness, but also his influential approach to product design. In a

series of interviews published in Japan in 1997, Yokoi articulated his

design philosophy as れ た の , which translates to English

clumsily as “ lateral thinking for withered technology. ” 42 In English,

 “ lateral thinking ” denotes a creative, unexpected approach to problem

solving, a strategy Yokoi applied to outdated, inexpensive, or otherwise

 “ off-the-shelf ” technology. Yokoi famously devised the Game & Watch

concept after noticing a train commuter whiling away the time on his

pocket calculator. 43 If a simple calculator could engross the man, why not

a pocket-sized videogame?

 In the 1970s and 1980s portable calculators were a consumer elec-

tronics sensation, especially in Japan. In 1972, the so-called “ Calculator

Wars ” were sparked by tremendous sales — over one million in its first ten

months — of the Casio Mini, a low-cost, ultra-thin calculator. What was

formerly a vestige of Japanese office culture transformed into a main-

stream computing device and catalyzed Japanese manufacturers ’ invest-

ments in electronics miniaturization, liquid crystal displays, and solar

cells. 44 Though nearly sixty companies entered the war, eventually two

main competitors — Sharp and Casio — battled at the front lines. And the

stakes were high. According to Johnstone, “ By 1980, annual production

of calculators topped 120 million units, with the Japanese accounting for

just under half the total. ” 45 Sharp and Casio sparred for a decade, intro-

ducing progressively cheaper and smaller models, until Casio struck the

death blow in 1983 with a solar-powered calculator measuring 0.8mm

thick. 46

 By the time Yokoi saw the salaryman absorbed in his pocket calcula-

tor, LCDs and miniaturized ICs were cost-effective enough to use for an

affordable handheld gaming system. And though segmented displays were

originally devised for displaying ten digits and a few mathematical

[24]

symbols, they could be creatively repurposed to animate rudimentary

game graphics.

 Plus Controller

 Nintendo has consistently shown an ability to mine engaging games and

hardware from obsolete and outdated technologies: Donkey Kong arcade

units were reworked versions of unsold Radar Scop e boards (chapter 2);

the clunky 3D of the Virtual Boy resurfaced in the Nintendo 3DS; the

everyman Mario has worked in professions ranging from doctor to chef;

the mechanical Duck Hunt rifle resurfaced as the Famicom light gun game

 Duck Hunt ; and the gripping cups of the Ultra Hand are echoed in the

grasping arms of the Robotic Operating Buddy (chapter 3). Unsurpris-

ingly, Yokoi had a hand in each of these projects. 47

 An iconic element of the Famicom controller was a similarly

repurposed innovation. Yokoi first devised the “ plus controller, ” as it was

originally known, for the Game & Watch conversion of Donkey Kong (figure

1.2). The gameplay of many Game & Watch titles took place on a single

horizontal axis and thereby required only two buttons for control. In Ball ,

for instance, the player could press a “ < LEFT ” or “ RIGHT > ” button, each

on its respective side of the handheld, to move the juggler ’ s hands into

position. In instances where gameplay required an extended range of

motion, the buttons multiplied. In Egg (1981), for instance, two stacked

pairs of buttons on either side controlled four possible diagonal positions

of the wolf ’ s arms. In fact, nearly all Game & Watch titles prior to Donkey

Kong used four buttons for diagonal movements rather than conventional

cardinal directions. 48

 However, arcade Donkey Kong ’ s run-and-jump gameplay required

movement along both axes. Jumpman, the proto-Mario character, ran

along girders, climbed ladders, and jumped pits and obstacles. To repli-

cate this movement on the Game & Watch, the handheld would have

needed five individual buttons — four for directional movement and one

for jumping. To prevent uncomfortable button crowding while still accom-

modating the handheld ’ s small footprint, Yokoi devised a novel control

solution for a novel game.

 Early console controllers derived from arcade controls, adopting

some variation of joystick, paddle, or keypad to varying degrees of success.

Atari ’ s iconic VCS joystick, for instance, was ergonomic and easy to

use, but its single button foreclosed input complexity of its games. The

Intellivision and ColecoVision erred in favor of more buttons, but ended

up with intimidating, overwrought controllers that looked more like

1 Family Computer [25]

calculators or remote controls than joysticks. The problem facing all

home console manufacturers was that arcade hardware had more leeway

in controller design. Since arcade hardware catered to the needs of a

single game, their control interface could be built to suit: Tapper ’ s (1983)

controller was a beer tap; Crystal Castles (1983) provided an embedded

track ball to navigate its axonometric architecture; Super Off Road (1989)

used three conjoined steering wheels and accompanying accelerator

pedals; Skydiver (1978) featured parachute ripcords as controllers. Home

consoles, in contrast, had to sacrifice specialization in favor of generic

designs that could accommodate a range of genres. When conventional

joysticks were insufficient, publishers provided specialized controllers:

wheels, gloves, guns, goggles, microphones, and even balance boards.

 Yokoi ’ s “ plus ” controller, nicknamed after the mathematical symbol

it resembles, was an elegant solution that suited both manufacturing and

gameplay needs. The flat directional pad took up little space on the hand-

held, fit comfortably in slim spaces without risk of breaking, provided

easy access to all four cardinal directions with a single thumb press, and,

most importantly, mapped logically to the two-dimensional spaces pre-

sented onscreen.

 Uemura initially experimented with disassembled arcade joysticks

while prototyping the Famicom ’ s gamepad, but he worried that the joy-

stick would be difficult to fix in place sturdily, break underfoot, or injure

children if stepped on. Fortunately, R & D1 member Takao Sawano sug-

gested that they transplant the Game & Watch directional pad. 49 When the

rest of the team balked at the idea, Sawano “ pulled a lead line out of

a Game & Watch and connected it to a Famicom prototype, then invited

the development staff to give it a try. ” 50 Once the team felt the plus

controller ’ s responsiveness, they decided to transplant it to the Famicom

gamepad, albeit in a slightly larger size.

 ↑ , ↓ , ← , → , B, A, Select, Start

 Unlike most home consoles, the Family Computer ’ s supplied controllers

were not a matched pair. The leftmost Controller I included, from left

to right: plus pad, Select, Start, B, and A. Controller II, however, omitted

the Select and Start buttons in favor of a late Uemura addition: a tiny

microphone and a volume slider. Though the microphone input trans-

lated to a simple binary signal internally, meaning that the system could

neither interpret pitch nor record audio, it did have a connecting line to

the Famicom ’ s audio output, allowing sound to pass through to the televi-

sion speaker. In a nod to Japan ’ s karaoke craze, Uemura was convinced

[26]

that players would be entertained “ simply by hearing their own voices

come out of the television set. ” 51 Developers apparently were not as

entertained, since the microphone saw little use in games. 52 As a result,

Nintendo cut the microphone from both a later Famicom revision and the

Nintendo Entertainment System.

 The asymmetrical controller arrangement, besides further stymying

home repairs by making the gamepads non-interchangeable, also meant

that player one always controlled menu navigation and pausing — functions

conventionally reserved for the Select and Start buttons. This apparently

minor detail had interesting ramifications for social play. In Japan, for

instance, Super Mario Bros. players practiced a technique known as the

 “ Start Kill. ” 53 When player two, controlling Luigi, would leap over a gap,

player one would pause the game mid-jump. Once play resumed, player

2, unable to re-acclimate to their original trajectory, would fall to their

death — an early instance of what is now known as “ griefing ” among

videogame players. 54

 The Famicom controllers were also gently rounded on the edges and

sized to fit comfortably in a child ’ s hands. Their design allowed easy

access to every button with two thumbs — the left drove the plus and Select

buttons, while the right bounced between A, B, and Start — leaving the

remaining fingers free to grip the controller securely. One of Uemura ’ s

stated design goals was to make the controller easy to use while looking

at the screen. 55 Though this goal seems commonsense now, designing a

controller that could effectively bridge the perceptual divide between

hand and eye was a meaningful engineering problem. Arcade cabinets and

handheld videogames had their controls and monitor embedded in the

same physical housing. Increasing the distance between screen and input

device demanded that players develop tactile mastery of the controls in

order to keep their eyes fixed to the screen.

 As controllers have become more complex, multiplying buttons, joy-

sticks, bumpers, and triggers many times over, this input/output divide

has grown more significant. New players unaccustomed to the evolution

of controller design face a steep barrier to play. Diverting one ’ s eyes

to hunt for a button can spell disaster in a fast-paced, reflex-based

videogame. The inherent learning curve required by complex modern

controllers partly explains the appeal of simplified and/or integrated

control schemes seen in mobile touchscreen devices, the Nintendo Wii,

and Xbox Kinect.

 By striking a balance between too few and too many buttons, Nin-

tendo designed a controller that favored tactile control and gameplay

complexity without alienating new players. But if the Family Computer

1 Family Computer [27]

was meant primarily for arcade ports, why did its controllers stray beyond

the plus pad and an action button? Partly we can credit Nintendo ’ s engi-

neering foresight. If the Famicom turned out to be a success, designers

would want enough input leeway to represent the vast range of computer

game genres. Limiting input to a single button would impose a challeng-

ing design restriction.

 But there was also a computational reason behind the controller ’ s

button arrangement. The Famicom/NES was a member of the so-called

 “ 8-bit generation ” of videogames, alongside the Sega Master System,

Atari 7800, et al. The n -bit designator, while often used misleadingly

in the history of videogame marketing, 56 tells us a lot about a console ’ s

computing capabilities. Computers make calculations using binary arith-

metic, a numerical abstraction meant to mirror the physical states of

semiconductor gates, which can either be open or closed. In other words,

a computer can only count using two digits: 0 and 1. The 8 in 8-bit refers

to the range of possible values the console ’ s CPU can process. Binary is as

a base 2 numeral system, so an 8-bit CPU can represent 2 8 = 256 possible

values, or the numbers between %00000000 and %11111111. 57

 However, the eight individual bits comprising a byte do not necessar-

ily have to represent numbers. In programming, bits are equally useful as

 “ flags ” that signal the current state of a given computational object. But

what do binary math and bit flags have to do with the Famicom controller?

Consider the range of possible inputs that the controller allows: up, down,

left, right, B, A, Select, and Start — eight distinct inputs that may be either

pressed or not pressed. The state of the Famicom gamepad at any given

time thus fits conveniently in a single byte, making the controller truly

8-bit — both chronologically and computationally.

 Scraped to the Die

 Removing the Famicom ’ s plastic exterior reveals a dense arrangement of

electronic components and integrated circuits packed onto a diminutive

PCB. 58 The two most prominent ICs are the Ricoh RP2A03G, 59 which con-

tains both the Central Processing Unit (CPU) and the Audio Processing

Unit (APU) in a single package, and the Ricoh RP2C02G, which contains

the Picture Processing Unit (PPU), the processor responsible for trans-

lating graphical data into video signals that display onscreen. These three

processors form the core of the Famicom, handling all of its computa-

tional, audio, and graphical tasks.

 The 2A03 CPU is not a custom die, but a modified version of the MOS

Technology 6502, an 8-bit CPU whose introduction in 1975 transformed

[28]

the microprocessor market. It was powerful, straightforward to program,

and several magnitudes cheaper than its closest competitor — a com-

bination of features that made it overwhelmingly attractive to PC and

videogame manufacturers looking to introduce affordable computers to a

mass market. Throughout the 1970s and 80s, Atari, Commodore, Apple,

and Nintendo all launched successful platforms based on the 6502

architecture. 60

 MOS Technology did not directly manufacture the Famicom CPU.

Instead, Ricoh, a “ second source ” manufacturer, licensed the rights to

produce and sell the 6502. And, as its model name suggests, the 2A03 was

not simply a stock 6502. In custom microprocessor production, clients

routinely cut features in order to reduce individual chip costs. For their

VCS, for example, Atari used a 6502 variant dubbed the 6507, a stream-

lined package that reduced addressable memory to 8KB and eliminated

interrupts. With several years ’ hindsight on their side, Nintendo opted for

less drastic revisions. The 2A03 ’ s sole subtraction from the stock 6502

was its binary coded decimal mode, or BCD; 61 the most significant addi-

tion was the onboard APU (chapter 7).

 In 1976, North American corporation Commodore acquired MOS

Technology and entered the U.S. PC market with gusto, leveraging

their ownership of the inexpensive chip to undercut competitors ’ prices.

CEO Jack Tramiel, whose domestic business interests had been stymied

several times by Japanese competitors in the past, aimed to blockade an

 “ invasion ” of the U.S. PC and videogame markets after his own unsuc-

cessful challenge of the MSX PC standard in Japan. Despite being a cheaper

and technologically superior machine, the Commodore 64 could not

compete against MSX ’ s domestic groundswell of third-party support

(ironically spearheaded in part by U.S. rival Microsoft). 62 Tramiel decided

that if Commodore could not break into the Japanese market, they would

retreat and shore up the competitive borders at home instead.

 Tramiel ’ s opposition, fueled equally by post-World War II xenopho-

bia and competitive sour grapes, could have caused significant problems

for Nintendo. Had Commodore known that Nintendo planned to bring

the Famicom to the U.S. in 1985, they might have rejected the 6502

license or inflated the manufacturing price. By working domestically

with Ricoh, Nintendo apparently stayed off Commodore ’ s radar, much

to the latter ’ s eventual chagrin. After the Famicom ’ s stateside release

as the NES (chapter 3), Commodore ’ s engineers were convinced that

Nintendo had illegally skirted their microprocessor patents. As Brian

Bagnall reports, it took a bit of reverse-engineering to discover Ninten-

do ’ s “ modifications ” :

1 Family Computer [29]

 [Commodore 64 programmer] Robert Russell investigated the NES,

along with one of the original 6502 engineers, Will Mathis. “ I remem-

ber we had the chip designer of the 6502, ” recalls Russell. “ He scraped

the [NES] chip down to the die and took pictures. ”

 The excavation amazed Russell. “ The Nintendo core processor

was a 6502 designed with the patented technology scraped off, ” says

Russell. “ We actually skimmed off the top of the chip inside of it to

see what it was, and it was exactly a 6502. We looked at where we had

the patents and they had gone in and deleted the circuitry where our

patents were. ”

 Although there were changes, the NES microprocessor ran 99%

of the 6502 instruction set. “ Some things didn ’ t work quite right or

took extra cycles, ” says Russell. […]

 The tenacity of the Japanese was obviously formidable. Russell

offers an opinion on why the Japanese elected not to purchase chips

from North American sources. “ They looked at the patents and real-

ized that we weren ’ t going to let them come over and sell against us, ”

he says. 63

 Ed Logg, veteran arcade programmer for Atari, made a similar observa-

tion while working on the ill-fated Tengen port of Tetris . Asked about the

ease of coding for the NES, he said:

 Yeah, it was pretty similar … well, [Nintendo] basically used our

patents. They violated Atari’s patent while they were suing us, so it

was the basic same scrolling algorithm and such. So it was pretty

much identical to what we were dealing with. Most of the difficulty

came from figuring out what registers and bits did what, and when. 64

 In either case, their discoveries were too late. By the time Russell, Mathis,

and Logg could take a close look at its silicon, the NES had already arrived.

 Recent reverse-engineering work by the Visual6502 project revealed

that Russell ’ s observations were correct. 65 MOS Technology ’ s 1976 patent

for their integrated circuit microprocessor specifically covered its ability

to “ provide decimal results ” using a single binary adder, “ thus signifi-

cantly improving the speed of operation without suffering the cost of an

additional decimal adder. ” 66 MOS ’ s innovation saved cycles and manu-

facturing costs. To avoid either patent infringement or licensing costs,

decimal mode had to be excised. However, Nintendo/Ricoh did not fab-

ricate a new chip design based on the 6502 — a costly, time-consuming

process — nor even remove the circuitry that drove decimal mode. Instead,

[30]

they made changes “ only to the polysilicon mask ” by “ removing 5 transis-

tors, ” 67 disabling decimal mode rather than removing it. 68 In other words,

Nintendo physically cut away any patent-infringing functions.

 Atari ’ s and Commodore ’ s suspicions of hardware malfeasance were

justified, but there is no evidence that Nintendo was trying to clone either

company ’ s systems. If anyone had the right to cry foul over intellectual

property rights, it was Coleco. Despite their ultimate choice to forgo their

Coleco partnership and source an alternative CPU, Nintendo ’ s engineers

clearly drew inspiration from the ColecoVision ’ s video display processor

(VDP) design. The ColecoVision ’ s TMS9918 VDP (also used in MSX PCs)

had several key features that resurfaced in the Famicom PPU: variable

sprite size selection, a sprite overflow flag, an interrupt flag, and a special

 “ coincidence flag ” that could trigger on sprite collision. 69 Even more

convincing were the similarities in graphic processor terminology. The

ColecoVision ’ s Pattern Name Tables, Sprite Attribute Table, and Pattern

Generator Table resurfaced, with similar functions, as name tables, object

attribute memory, and pattern tables in the Famicom. In contrast, beyond

general terminology like sprites or VRAM, the Commodore 64 ’ s VIC-II

VDP shared no such affinities with the Famicom PPU. And the Atari VCS ’ s

TIA was a wholly different beast, requiring more explicit coordination

with the scanning electron beam than either the Famicom ’ s or C64 ’ s

graphics processors. 70

 While CPUs are crucial to a console ’ s function, they have an indirect

relationship to graphics rendering. When today ’ s videogame players ref-

erence the 8-bit style of Famicom and NES games, they are mistakenly

crediting central processing with picture processing. It is the PPU that,

more than any other component, defines the Famicom ’ s distinctive visual

qualities. Nintendo and Ricoh may have made questionable ethical choices

while engineering the Famicom, but accusations that the console is a

direct theft or clone of prior systems discredits the PPU ’ s (and APU ’ s)

crucial contributions to the Famicom ’ s look and sound. Thanks to unlike

VDPs, the Famicom, Commodore 64, and Atari VCS are fundamentally

different machines. The ColecoVision is the Famicom ’ s true elder sibling,

related by looks despite not sharing the same brains.

 Mario Tennis

 Concealed within their cartridge shells, nearly all Famicom PCBs hold at

least two ROM (read-only memory) packages. The first — PRG-ROM —

 stores the program code, the set of instructions that tell the CPU how

and when to execute. The other — CHR-ROM — stores the character tile

1 Family Computer [31]

patterns the PPU uses to populate the screen with graphics (figure 1.3). 71

In concert, these two ROMs contain the necessary raw materials to form

a videogame.

 The 6502 has a 16-bit address bus , meaning that it can access up to

64KB of memory. 72 However, the address bus size does not make the

Famicom a 16-bit machine, since the 2A03 ’ s 8-bit data bus must construct

and convey addresses one byte at a time. The address space is arranged in

a specific, unchanging order, commonly called a memory map. The memory

map is similar to a geographic map, charting the precise locations of inlets

and outlets that give the programmer access to all of the console ’ s func-

tions — storage, graphics, audio, controllers, etc. The first 2KB of the CPU ’ s

memory map, for instance, are dedicated to the Famicom ’ s internal RAM.

Any data that is written to or read from RAM must be accessed through

those specific addresses.

 Early dedicated consoles either had hardwired game logic, as in Pong ,

or used interchangeable PCBs to reroute internal circuitry, allowing the

player to electronically select from a small library of built-in games, as in

the Magnavox Odyssey. When the Fairchild Channel F introduced remov-

able ROM cartridges in 1976, the design space for videogames changed

radically. Videogame hardware was no longer a closed system, but a proper

platform, supporting a host of interchangeable software rather than a

handful of games decided in advance by the console ’ s manufacturer.

 Relying on cartridges as a game-delivery medium means that a portion

of the Famicom ’ s CPU memory map — the final 16KB — is reserved for

PRG-ROM. This type of architectural division is fundamental to how a

cartridge-based system works. Without a cart inserted, the holistic

 1.3 The (inverted) PCB for Family Computer title Nuts & Milk features one of the

simplest cartridge IC layouts. The 16KB PRG-ROM IC is on the left and the 8KB

CHR-ROM IC is on the right. The traces labeled H and V also indicate the game ’ s

mirroring setting. (Source: bootgod, NES Cart Database)

[32]

network necessary to orchestrate a game ’ s code and graphics is incom-

plete. By offloading the source code and graphics patterns to separate

ROM chips, Nintendo left the decisions of how the CPU and PPU would

be used up to the programmer. The Famicom has no built-in BIOS or

character set, no default software constraints on the look or style of

its games.

 But there is another important split at work, as the 2A03 reserves

none of its memory map for character data. Instead, CHR-ROM is routed

to the PPU ’ s address space. Unlike the CPU, the PPU has a 14-bit address

bus, so it can access only 16KB of memory, all of which is dedicated to the

PPU ’ s various palettes and “ tables ” — Nintendo ’ s technical nomenclature

for the memory locations that hold graphical data. The 8KB of CHR-ROM

resident in-cartridge are called pattern tables , as they contain the 8x8- or

8x16-pixel patterns that comprise graphics tiles. The remaining 8KB are

mapped to name tables , attribute tables , palette indices, and their respec-

tive mirrors. 73

 If we look closely at the PCB in figure 1.3 , we see that each IC ’ s traces

are sequestered, subdividing the board ’ s sixty pins into roughly equiva-

lent halves. The physical substrate illustrates in silicon the division of

labor that takes place when a Famicom cartridge is in play: the CPU exe-

cutes the program code while the PPU fetches the pattern tables for

display. So while the CPU may instruct the PPU to move a tile, update a

sprite palette, or cease rendering, it has no direct access to the tile data

nor the graphics onscreen. The cartridge ’ s distinct “ split architecture ”

mirrors the Famicom ’ s internal computational division.

 Another way to illustrate this point is to execute a decades-old

Famicom hardware technique that I call the “ cart swap trick. ” 74 After Super

Mario Bros. ’ s release in 1985, Japanese players discovered that they could

pause the game, carefully remove the cartridge, insert a Tennis cartridge,

reset, play a few points, pause, swap back to Super Mario Bros., reset, then

resume play by holding A while pressing Start at the title screen. Due to

similarities in RAM layout between both games, performing this arcane

hardware rite transported Mario to odd variations of the game ’ s fabled

 “ minus world ” (chapter 4). However, the trick ’ s result is not as important

as the visual artifacts that occur during the interstitial periods when carts

are being swapped.

 The left image in figure 1.4 shows Super Mario Bros. directly before

cartridge removal; the right image shows the same screen after the swap

(but prior to reset). 75 The underlying tile layout is identical, but the con-

stituent tiles have changed. If you are familiar with the graphics from both

1 Family Computer [33]

games, you can see that Mario ’ s body, for instance, is now composed

of odd bits of a tennis player, while the pipes are built from fragments

of net and court. The Mushroom Kingdom is rebuilt in the image of

Wimbledon.

 Removing a cartridge while the system is on halts the game, since the

CPU can no longer execute instructions from the absent PRG-ROM, but

the PPU continues to render graphics. With no CHR-ROM in place, one

can actually watch the contents of the PPU dynamic RAM (DRAM) slowly

decay as it “ forgets ” the tiles previously resident on-cart. Once another

cartridge is inserted, the PPU dutifully substitutes the new character

tiles in place of the old, populating our familiar mosaic with unfamiliar

bodies.

 The key point is that the 2A03 and 2C02 are independent compo-

nents, each administering dedicated regions of internal memory. In the

absence of new directions from the CPU, the PPU attends to its graphical

tasks, fetching tiles and updating the screen until instructed to do other-

wise. Dislodging cartridges mid-game has limited gameplay use, but it

provides a lovely, albeit glitchy, window into the Famicom ’ s hardware

processes.

 Patterns, Planes, and Palettes

 The PPU divides its 16KB memory map — its Video RAM (VRAM) — into a

series of related tables and palette indices, each contributing a crucial

part of the data that comprises the tiles we see onscreen. But how are these

tables related and what data do they contain?

 1.4 The “ cart swap trick ” helps visualize the underlying memory structure of the

Famicom and its cartridges. (Source: NES-101 capture)

[34]

 The first 8KB, known as the pattern tables, are stored in CHR-ROM

on the cartridge. Pattern tables contain the elements most recognizable

as Famicom graphics, since they store the individual bits that define the

8x8- or 8x16-pixel mosaics we commonly call tiles. The PPU contains two

pattern tables, each 4KB in size, which can hold 256 tiles apiece. Each

pattern table is dedicated to either sprites or background tiles. Software

emulators like FCEUX arrange the PPU ’ s pattern tables into symmetrical

grids that allow us to see the entire contents of CHR-ROM at a glance

(figure 1.5).

 Visually, sprite and background tiles are identical. In figure 1.5 , the

pattern tables are stacked side-by-side, divided by a thin center line, with

sprites on the left and background tiles on the right. The choice of which

tile type goes in which pattern table is up to the programmer, but each

table contains either sprites or background tiles exclusively.

 Whether sprite or background, each tile in the pattern table is

described by sixteen bytes (or 128 bits) of memory. Those individual bits

are divided into two 8-byte bitplanes , a matrix of binary values wherein

 1.5 The contents of Super Mario Bros. ’ s CHR-ROM. Each pattern table contains 256 8x8

tiles. In Super Mario Bros. , pattern table 0 (left) contains sprites and pattern table 1

(right) contains background tiles. (Emulator: FCEUX 2.1.5)

1 Family Computer [35]

each digit represents a single pixel of the final tile. Two bitplanes are

necessary because tiles may access up to four colors, so two planes must

be “ stacked ” atop one another to accommodate a 4-bit range of values.

 If the Famicom only had four colors total, the two stacked bits from

the pattern table bitplanes would be sufficient to describe any tile.

However, the Famicom allocates thirty-two bytes of VRAM to eight indi-

vidual palettes — half devoted to sprites and the other half to background

tiles — containing four colors each. 76 In figure 1.5 , the eight palettes defined

in World 1-1 of Super Mario Bros. are arranged along the bottom edge of the

PPU Viewer, each divided by a thick black line, with background palettes

on top and sprite palettes on the bottom. Every sprite and background tile

onscreen may select only one of its four allotted palettes at a time. However,

the first (leftmost) color of each four-color block must be identical —

 shared across all palettes — limiting the PPU to rendering twenty-five

individual colors onscreen simultaneously. 77

 In more modern videogame consoles, palette values encode RGB

data, the combination of reds, greens, and blues blended to create a com-

posite color. The Famicom, however, uses a hue saturation value (HSV)

model based on the NTSC color wheel, which cycles approximately from

blue to red to green to cyan. 78 Rather than a mixture profile, the byte

stored for each palette slot is a lookup index for sixty-four possible HSV

combinations. 79 However, several colors are duplicates (mostly in the

black range) and one is technically beyond the NTSC ’ s gamut range,

reducing the NES ’ s usable palette to approximately fifty-four colors. 80

 Though the shared color may seem like an arbitrary constraint, it is

actually a clever means to “ erase ” portions of sprite tiles that are meant

to be transparent. When a sprite is on top of a background tile, any color

bit set to the shared color will permit the underlying background tile to

show through. Mario ’ s constituent sprites in Super Mario Bros. , for

instance, use only three colors, drawn from the bottom left sprite palette

seen in figure 1.5 : red for his hat and overalls; a muted brown for his hair,

eyes, sleeves, and boots; and olive for his skin and overall button. All other

pixels in the Mario tiles are set to sky blue, but they render transparent,

permitting the background to pass behind his body as he moves.

 However, by rendering one color of every sprite palette transparent,

each sprite tile is limited to only three colors. Again, in Super Mario Bros. ,

Mario is painted solely with olive, brown, and red; in The Legend of Zelda ,

Link is olive, brown, and lime green; in Metroid , Samus Aran is orange,

red, and green. But observant Famicom players may notice that many

game graphics appear to violate this rule. In Mega Man 2 , for instance,

Mega Man ’ s head clearly uses more than three colors. The secret is sprite

[36]

stacking. Mega Man 2 ’ s programmers used a sprite with a separate palette

for the whites of Mega Man ’ s eyes, which sits atop the other sprites that

comprise his head. Numerous games use this trick to boost their charac-

ters ’ color count, though it too has drawbacks, since only eight sprites may

be visible on a single scanline and sixty-four onscreen simultaneously.

Using an additional sprite for Mega Man ’ s eyes sacrifices a slot from both.

 Names and Mirrors

 CHR-ROM ’ s division into sprite and background tables is not arbitrary —

 each has a role to play onscreen according to its strengths and weaknesses.

Sprites tiles may be positioned freely on the screen, even atop one another,

but they sacrifice a color to transparency and face hard limits both on how

many may appear in a row and how many may appear onscreen. Back-

ground tiles have access to one extra color and can fill the entire screen,

but they “ move ” only via scrolling, may never overlap, and remain fixed

to a rigid underlying grid.

 That rigid grid is a 32x30 matrix of values known as a name table, a

fancy technical name for the game ’ s background layer. However, the name

table is not an image stored in memory corresponding to the graphics we

see onscreen. Rather, each byte of the name table stores the reference

to the appropriate tile in the background pattern table. If the PPU had to

store pattern and palette data for every tile of the background, the memory

demands would quickly escalate. Referencing each tile by index reduces

the memory overhead considerably, allowing background tiles to repeat

in long stretches without duplicating each tile ’ s memory “ cost. ” The data

is stored once in pattern table memory, then referenced by its pattern

number for any subsequent uses.

 Though tiles dominated the 8- and 16-bit generations, they were not

the sole graphical format. The Atari VCS ’ Television Interface Adapter

(TIA) had no notion of pixels or tiles. It built its playfields and objects

scanline by scanline, slimming memory costs to a sliver of what the

Famicom would later require, albeit at the expense of graphical fidelity

and programmer sanity, since per-scanline rendering required exacting

timing and careful code economy. 81 Vector-based graphical systems like

those used in the Asteroids (1979) arcade cabinet, which also ran on a

6502, and the Vectrex home console (1982) used an electron beam that

could draw lines between arbitrary points onscreen rather than being

locked to a raster grid. While vector graphics were sharper and less

geometrically-constrained than their bitmap counterparts, they also

sacrificed the latter ’ s nuances of shading and color, since the display was

1 Family Computer [37]

limited to monochrome line art. In each case, the choice of graphical

displays was based on cost and design necessity, rather than a qualitative

measure of which was “ better ” or “ worse. ” For the Famicom ’ s engineers,

replicating their arcade games meant importing the same tile-based

systems used in Donkey Kong and its kin.

 Similarly, tile-based graphics were common in the early arcade and

console era not because they were the only “ natural ” way to paint a screen,

but because tiles were a particularly efficient means to store and display

graphics data in low-memory architectures. For one, tiles eliminated sig-

nificant graphical redundancy. The opening gameplay screen of Super

Mario Bros. , for example, predominantly displays blue sky. To paint this

sky, the PPU only has to reference one tile from the background pattern

table and repeat it as needed. In a modern, “ per-pixel ” graphical process-

ing unit, each individual pixel would need to be accounted for in memory.

Even if we imagined a rudimentary black-and-white videogame that only

needed to record whether each pixel was on or off (i.e., using one bit per

pixel), accounting for each pixel would require hundreds, thousands, or

millions of bits, depending on the resolution of the display. Adding even

a handful of additional color possibilities increases the necessary memory

by several magnitudes.

 Today, that memory escalation makes a minimal impact on cost. 1MB

of IC memory in 2014 costs roughly half a cent. But in 1983, that same

amount cost approximately $2,000. 82 Nintendo had to use any means pos-

sible to keep costs low so their console would be affordable. Every spare

byte of savings added up.

 The name tables ’ memory architecture reflects those cost concerns.

In the PPU memory map, Nintendo reserved 4KB for four name tables and

their accompanying attribute tables. Excluding attribute data, each table

was allotted 960 bytes — one byte for each tile reference drawn from the

background pattern table. Since each name table comprises an entire

screen, multiplying that area by four creates a graphical plane extending

beyond the television ’ s border. This is by design — the name tables are

arranged contiguously in a 2x2 matrix that the PPU can smoothly track

across via its dedicated scrolling registers. Hardware-level scrolling was

a powerful feature in 1983, as most arcade and console games were

designed for play on a single screen. Arcade titles like Defender (1980),

 Rally-X (1980), and Scramble (1981) had broken the one-plane barrier

a few years earlier, but Nintendo ’ s baked-in scrolling was remarkably

forward-thinking for a home console.

 Yet despite the four-screen name table layout, Nintendo only allo-

cated 2KB of onboard RAM (technically CIRAM) to store name table data,

[38]

meaning that only two background planes are unique — the remaining half

are mirrors. These are not actual mirrors, reflecting a reverse image

across a shared axis, but hardware-level data duplication that produces

two identical pairs of name tables. According to how the cartridge is wired

(figure 1.3), the name tables are set to either horizontal or vertical mir-

roring, as pictured below: 83

 Horizontal Vertical
 [A][A] [A][B]
 [B][B] [A][B]

 The mirroring setting had important repercussions for scrolling

games. With horizontal mirroring set, a character pushing past the right

edge of name table A would scroll the left edge of that same background

plane into view, breaking the illusion of a seamless space. Pushing toward

the bottom edge of name table A, in contrast, would scroll the top edge

of B into view, connecting contiguous spaces more naturally. In other

words — and somewhat counter-intuitively — horizontal mirroring was best

suited for vertical scrolling, and vice-versa. And since mirroring had to

be set in advance, developers typically had to settle on a single scrolling

direction for the entire game. 84

 Edge Cases

 The final component of the PPU ’ s VRAM arsenal is one of the trickiest to

grasp, but also one of the most important, since it sets the hard limit for

color variety in the background layer. Again, directly following each name

table in VRAM is a 64-byte attribute table. The attribute table is like a

second grid superimposed atop each name table, grouping its 960 tiles

into an 8x8 matrix of 32x32-pixel areas (excluding the final row, which is

truncated by half).

 The pattern table bitplanes described above contain only two bits of

the necessary four to describe a tile ’ s color. The pattern table bits select

which of the four colors within a palette a tile will use, but not the indi-

vidual palette from which those colors are selected. For background tiles,

these final bits are supplied by the attribute table. Again, each attribute

table has only sixty-four bytes of palette data to allocate to the entire name

table, so each attribute byte defines the palette values for one 32x32-pixel

area. And since each palette value requires two bits to use in conjunction

with the pattern table bits, only four palette values may be assigned within

that area. In other words, every 16x16-pixel unit of name table (i.e., 2x2

tiles) may use only one four-color palette.

1 Family Computer [39]

 Though blocking palettes into attribute groups saves hundreds of

bytes of memory, it imposes noticeable limits on the shape and granular-

ity of background objects. In general, background graphics are designed

to align along attribute table boundaries, making the 2x2-tile square the

architectural bedrock of Famicom games. Attentive designers were careful

to craft landscapes conducive to square shapes, like the pipes and stair-

wells in Super Mario Bros. or the sharply-edged forests in The Legend of

Zelda . 85

 Shapes defined by circular or diagonal edges risk so-called “ attribute

clashes, ” where the transition between borders of two attribute table

entries creates abrupt shifts in color. Snake Rattle N Roll , for instance,

uses an isometric perspective uncommon on the NES, making its faux

three-dimensional terrain appear as if it is diagonal to the player ’ s per-

spective. The off-axis background is graphically impressive but requires

significant palette concessions, since none of the terrain aligns at right

angles.

 In figure 1.6 , you can see obvious attribute clashes along terrain and

object edges. The pyramid that abuts the vine-covered platform near the

 1.6 A screenshot from Snake Rattle N Roll shows abrupt color changes across background

attribute boundaries, especially among the pyramids and waterfalls. (Emulator: Macifom

0.16)

[40]

center of the screen, for instance, has a portion of its apex colored green

to match the vines rather than the adjoining pyramids. Likewise, the tops

and faces of waterfalls exhibit sharp transitions between shades of blue,

while the gold mechanism near the lower right corner shifts abruptly to

green near its base.

 Avoiding attribute clashes required either careful planning near

attribute boundaries or significant alterations to color and terrain struc-

ture. Solstice adopts the same isometric perspective as Snake Rattle N Roll ,

for instance, but limits its level palettes to variations of a single color.

Doing so sacrifices the overall vibrancy of its levels, but avoids gaudy

color mismatches and allows the character sprites to appear that much

more vivid against the subdued backdrops. Metroid uses a standard side-

scrolling view, but pays careful attention to palette choices, keeping

radical color changes sequestered by area. Its Brinstar region has vibrant

architectures of blue, green, and amber, but never in contiguous blocks.

Palettes changes are instead marked by doors or tunnels, giving each area

a distinctive visual style.

 Since sprites float freely and tap separate palettes, they are often used

in atypical ways to bolster the colors capabilities of background tiles. The

most common use of this technique is seen in title screens and cutscenes,

which require minimal object interactions or player control, freeing

sprites to do color touch-up work. Since the title screen is the player ’ s

first impression of a game, it is regularly reserved for the game ’ s most

complex and detailed artwork.

 In figure 1.7 , Contra ’ s title screen is shown, via the FCEUX emulator,

in three graphical “ passes ” : the far left displays sprites only, the middle

background tiles only, and the right the final composite. Without

interleaving sprites for the hair, eyes, cigarette, and tank top, Contra ’ s

designers would not have been able to create such smooth transitions

between colors. They would have either had to reduce the overall color

detail of the two characters, square off the character designs, or else leave

distracting attribute clashes bordering curves. As we will see in later

chapters, Famicom programmers regularly used background and sprite

tiles against type. What we often expect to be background is composed

of sprites, and vice-versa.

 Sprite Adjectives

 Similar to how active background tiles are arranged in the PPU ’ s name

tables, active sprites have a reserved address space known as Object Attri-

bute Memory (OAM). OAM has slots for sixty-four sprites — the maximum

1 Family Computer [41]

 1.7 The Contra title screen uses combined sprite (left) and background tiles (middle) to

draw more detailed and colorful character portraits (right). (Emulator: FCEUX 2.1.5)

count the PPU can render onscreen simultaneously — occupying 256 bytes

of memory. OAM ’ s byte count might seem like overkill considering it

stores no actual pattern data, but sprites require more computational

overhead to display than background tiles. This is why OAM is called

 “ Object Attribute Memory ” rather than “ Object Memory. ” The visible

sprites are not housed there; rather, OAM stores a display list of qualities

for each active sprite.

 Each sprite ’ s display list is four bytes wide. In sum, the list identifies

which sprite from the pattern table will display, its orientation (flipped

horizontally or vertically), its priority (above or below background tiles),

[42]

its screen coordinates, and which sprite palette it will select. Separating

the sprites “ nouns ” (i.e., patterns) from their descriptive “ adjectives ”

(i.e., OAM) is yet another means to mitigate hardware memory costs and

eliminate unnecessary redundancy. Like the name tables, multiple OAM

slots can reference the same sprite without the need to store multiple

copies in pattern memory. This is especially useful in games where

multiple objects of the same type display onscreen simultaneously. Fur-

thermore, since there are far fewer sprites than name table tiles, each can

access its own palette entry, giving sprites a color advantage over the

attribute-bound background tiles.

 In OAM, all sixty-four slots are filled at all times, whether with the

sprites the programmer intends or with temporary junk data. In many

games, especially early Famicom titles, most sprites were not needed

onscreen at all times, yet those sprites had to have valid coordinates (i.e.,

OAM cannot contain a null value). In a pinch, sprites could be toggled on

and off, but doing so was an all or nothing affair — sprites were either all

visible or all invisible. To strike a compromise between extremes, pro-

grammers commonly used “ safe areas ” around the display ’ s borders to

tuck away unneeded objects.

 The PPU addresses the screen like a Cartesian graph flipped along its

x-axis, with the [0,0] coordinate at the upper left corner. Thus moving a

sprite right and down increments its x- and y-coordinates, respectively;

moving left and up decrements these coordinates. The key point is that

there are no negative coordinates and therefore no means to push a tile

past the leftmost and topmost screen borders. However, the Famicom/

NES PPU, regardless of region, renders a 256x240 pixel display, while its

sprite coordinate positions may contain any valid 8-bit value (i.e.,

$00-$FF or 0 – 255). Consequently, pushing a sprite ’ s y-coordinate past

$EF (239) hides that tile beyond the PPU ’ s rendering scope. 86

 Misunderstanding OAM ’ s sprite positioning and the PPU ’ s screen

perimeter can lead to peculiar graphical artifacts. A common initialization

step in Famicom games involved “ zeroing out ” OAM by manually writing

zeroes to all memory locations. Doing so assigned all visible sprites to the

first pattern table entry ($00) and shifted their coordinate position to

the upper left screen corner. With assurance that there was no unknown

garbage data sitting in OAM, the programmer could then assign and posi-

tion sprites as needed. Unfortunately, many programmers thought this

also solved the problem of hiding unused sprites, since many televisions

naturally clipped part of the visible frame with overscan .

 Zeroing OAM is not an airtight sprite hiding technique, since over-

scan varies from screen to screen, especially in emulation. 87 And since the

1 Family Computer [43]

PPU cannot render to negative coordinates, the sprite ’ s upper left pixel

nestles in the corner, while its remaining pixels “ dangle ” into positive

coordinate space. Tengen ’ s NES port of Pac-Man , for instance, has a con-

spicuous yellow sprite fragment floating above the upper left side of the

maze (figure 1.8). Though the errant graphic appears to be a single tile, it

is actually a stack of all OAM sprites not currently in play. To hide the stack

properly, Pac-Man ’ s programmers should have pushed the vivisected

sprites beyond the lower boundary of the screen rather than relying on

overscan to mask their presence.

 The lack of non-negative screen coordinates also creates problems

for characters that must exit the leftmost screen edge smoothly. Especially

in early single-screen arcade games where characters could wrap around

edges, characters might find half of their body ’ s sprites clipped at the

left edge while emerging from the right. Figure 1.9 shows object coordi-

nate limitations at work in the Famicom port of Mario Bros. Mario may

approach the left border until his leftmost pixel touches the threshold,

 1.8 In Tengen ’ s Pac-Man , the unused sprite stack is visible in the upper left corner of

the screen. Note that in some emulators that simulate CRT overscan, this portion of the

screen may be clipped. (NES-001 CRT capture)

[44]

but advancing any further chops his body in half. Due to the limits of 8-bit

math, subtracting from 0 causes the sprite to wrap to the rightmost edge

of the screen, causing Mario ’ s left half to emerge on the opposite side of

the screen. Mario ’ s right half will continue to push toward the left border

until its leftmost pixel reaches the threshold, at which point he will fully

transition to the right side.

 To compensate for such graphical anomalies, the PPU provides a

special mask that will hide sprites, background tiles, or both in the

screen ’ s leftmost 8-pixel-wide column. When enabled, the mask creates

a convincing curtain for sprites to slide behind as they cross the leftmost

screen border. As the Famicom aged and single-screen arcade fare gave

way to side-scrolling platformers and role-playing games, developers

increasingly used this feature to mask scrolling updates and attribute

clashes (chapter 6).

 The key quality of the Famicom ’ s graphics processor architecture is

that no single memory location in VRAM contains the colorful mosaic of

tiles we see onscreen. The bit patterns are stored in one location, the

palettes in another, the tile positions in another, and palette assignments

in yet another. Only at render time do these disparate bits of memory

cohere into what we see as graphics. Sequestering data in this way might

seem convoluted from a contemporary programmer ’ s perspective, but in

an era when memory was measured in hundreds, rather than millions, of

bytes, split architectures made good economic sense. Reducing graphical

redundancy reduced hardware costs, even if it meant extra legwork for the

programmer and the processor. In the end, it doesn ’ t matter if what the

 1.9 Without proper masking, single-screen games with wraparound spaces exhibit

clipping errors when sprite-based characters approach the left edge of the screen.

(Emulator: Nestopia v1.4.1)

1 Family Computer [45]

player perceives matches what the PPU perceives, so long as the tiles fall

into place before the cathode ray sweeps the screen.

 Low-Definition Television

 Until the recent adoption of high-definition television (HDTV) stan-

dards, the dominant display technology of arcade and console videogames

was the cathode ray tube (CRT). The CRT ’ s namesake is similar to a

vacuum tube — during manufacture, its interior oxygen is burnt away,

creating a highly pressurized interior seal. 88 At one end of the tube is a

barium-coated cathode that, when heated, emits negatively-charged

electrons. Positively charged anodes attract, accelerate, and focus the

electrons into a narrow beam. Together these components are known as

an electron gun.

 The portion of the tube opposite the cathode, which widens con-

siderably to a large curved surface — the television screen — is coated

with a luminescent phosphor material. When the electron gun fires at

this coating, the phosphor ’ s electrons momentarily become unstable

then settle, emitting a photon at a wavelength that human eyes perceive

as light.

 A beam shot directly down the cathode tube generates a single illu-

minated point. In order to draw a complete image, the electron beam must

be diverted in a predictable, consistent pattern. Along the exterior neck

of the tube, magnetic coils deflect the beam ’ s path using alternating volt-

ages. Two electrical signals, each synced to a separate oscillator, play

complementary roles in this process: one guides the beam horizontally,

the other vertically. The electron gun draws the television image line by

line, sweeping the beam left to right and top to bottom, much like a hand

composes a letter, repositioning each time it reaches the right margin.

Once the “ page ” is full, the gun resets to the upper-left corner to begin

anew. This process repeats dozens of times per second, creating a persis-

tent raster of scanlines that compose a moving television image.

 Color television requires a more elaborate mechanism. The electron

gun multiplies by three, each assigned to a single color: red, green, and

blue. The three electron beams are deflected at slightly different angles

by a small perforated plate called a shadow mask . Each beam then strikes

a grouped array of phosphors, known as triads, that emits their assigned

color. Television uses triads as additive primaries, meaning that the three

colored light sources are blended to produce the desired hue. 89 When all

three guns fire at once, for instance, the result is white, while a single gun

may light green alone.

[46]

 You can clearly see color triads by ignoring your parents ’ advice and

sitting directly in front of a CRT screen. In figure 1.10 , the triads are

visible within dozens of miniature columns of rectangles, like so many

vertical bricks stacked one atop the other.

 The columnar configuration is a result of a PIL, or precision-in-line,

tube. 90 In a PIL tube, the electron guns are mounted in a straight line,

rather than in a triangle, and the shadow mask is perforated with vertical

slots rather than circles.

 Triads do not produce the clean, squared pixels we associate with

8-bit videogames. Even at the focal length depicted above, it is impossible

to discern individual pixels. Paradoxically, the CRT ’ s flaws contribute to

a richer final image. Carefully choosing pixel color and placement creates

perceived hues and shades that the PPU does not actually output. The

illuminated bleed of CRT triads, caused by the constant excitement and

decay of the phosphor coating, both softens the edges of pixels and creates

pleasing blends between color borders. The “ X ” s and numerals above,

sourced from The Legend of Zelda ’ s inventory icons, appear to have a

golden tint around the upper edges and blue shadows beneath. On an LCD

 1.10 A macro-zoom photo of The Legend of Zelda ’ s key and bomb inventory showing the

individual triads of the CRT display. (Source: Author ’ s photo, NES-101)

1 Family Computer [47]

screen or in an emulator, the same tiles are simply white pixels on a black

background.

 Pixels are the fundamental graphical unit of the PPU, but not of the

display. CRT televisions have their own subatomic particles — phosphor

triads — that do not adhere to the strict gridded geometries associated

with pixel graphics. One or more triads can constitute a single pixel based

on the size of display, so CRTs “ natively ” scale bitmapped graphics. High-

definition LCDs, DLPs, and plasmas, on the other hand, have a fixed

resolution. As a result, their individual pixels are so small that if we

mapped the 256x240-pixel matrix of the Famicom PPU to a modern

HDTV, the resulting screen would be miniscule. Therefore, individual

pixels must be scaled according to the TV ’ s resolution, resulting in a

blurry, distorted image.

 Firing Blanks

 Before television was a mature technology, the number of times a full

vertical scan, or field , took place per second was not standardized. When

single-digit field rates were the norm, television had noticeable flicker,

as the electron gun simply could not generate enough fields per second

for persistence of vision to kick in. Field rates progressively improved,

but early on a rudimentary form of compression called interlacing helped

alleviate noticeable flicker.

 Interlacing is analogous to “ shoelacing ” — in the same way that one

might alternate laces along the tongue of a shoe in order to secure it

tightly, an interlaced image is drawn with alternating scanlines. Though

only half the image needs to be drawn at a time, it then takes two full fields

of interlaced scanlines to compose a single frame of video. Again, due to

phosphor ’ s luminous residue, human eyes do not perceive two alternating

sets of scanline window shades, but a single composite image. And since

the CRT ’ s phosphor luminance bleeds around the edges, it smooths the

gaps between scanlines, effectively masking the raster.

 Once early television experimenters settled on the minimum thresh-

old of fields necessary to overcome flicker, 91 standard field rates began to

emerge around technological, economic, and political interests. The three

established standards were NTSC, PAL, and SECAM. The first, a mono-

chrome system named for the National Television System Committee,

was adopted in the United States in 1941, then later revised to a color

standard in 1954 (called NTSC-2). However, NTSC had color instabilities

(necessitating manual hue controls) that European interests sought to

improve. Europe adopted the Phase Alternating Line color encoding

[48]

standard in 1963, eliminating NTSC ’ s hue inefficiencies — with the added

benefit of forcing non-European sets out of the domestic television

market. The French forged their own path in the early 1960s (also cor-

recting NTSC ’ s color limitations), introducing SECAM, or S é quentiel

couleur à m é moire.

 Though these standards branch into myriad subdivisions that describe

precise technical differences, the details relevant to the Famicom involve

geographic divisions and their associated field rates. Japan adopted the

NTSC standard, which eased the Famicom ’ s later export to the United

States. The bulk of Europe and Australia adopted the PAL standard, with

pockets of SECAM sprinkled throughout (obviously in France, but also in

other parts of Eastern Europe). The discrepancies required a hardware

revision for Nintendo ’ s European console launch, so the PAL-compatible

NES debuted after the U.S. version with a number of important differ-

ences that affected how video displayed. 92

 One modification handled the television standards ’ differing vertical

scan rates. An NTSC television draws its frame at approximately 60Hz, or

sixty individual top-to-bottom electron beam trips per second. The PAL

standard is slightly lower — approximately 50Hz — but the discrepancy has

a huge impact on graphics rendering and program timing. Much of the

important work of displaying a videogame is done while the electron beam

is “ at rest, ” either resetting from drawing a horizontal scanline or reset-

ting to the top after it reaches the bottom. By the time we see the results

onscreen, most of the preparation work has been done. Graphics updates

are ideally queued and ready prior to each sweep of the electron beam.

Those horizontal and vertical “ reset periods, ” or blanks , are key to the

Famicom ’ s operation.

 Image synchronization is a precision art. The electron beam not only

deflects at speeds the human eye cannot perceive, but the voltages con-

trolling horizontal and vertical positioning operate at independent fre-

quencies. Those of us alive in the CRT era may remember the delicate

choreography required to keep a television ’ s synchronization consistent.

 “ Rolling ” images are as common to the CRT generation as compression

artifacting is to the flatscreen generation. When the vertical syncing fre-

quency falls out of lockstep, the TV image wraps around the top and

bottom borders of the screen, separated by a moving black bar — the verti-

cal blank made visible. Similarly, when horizontal sync goes awry, the

image “ tears ” along jagged diagonals.

 Though the vertical and horizontal blank — or VBLANK and HBLANK —

 describe distances, their importance to programmers is temporal. In other

words, it takes time for the gun to travel, and that time is necessary to

1 Family Computer [49]

update or move the proper graphical elements into place before the

screen starts to draw again. But it is a slender margin that demands careful

prep aration. Updating the PPU while the scanline is actively being drawn

is a Famicom programming no-no, resulting in noticeable graphical

glitches. Any violations to this rule must be done deliberately and with

precise timing. The PAL NES ’ s lower refresh rate grants programmers

additional affordances: since the gun resets ten fewer times per second, it

can make its vertical ascent at a more leisurely pace. The PAL VBLANK is

a full fifty scanlines longer than NTSC, granting more time for code

to execute. 93

 A PAL television also has more graphical real estate than an NTSC set.

This is not a discrepancy of the PPU — on either PAL or NTSC systems, the

processor outputs a full 240 scanlines of graphics. The difference stems

from overscan, a variation in picture visibility common to CRT displays.

Overscan describes the area around the edge of the video frame that is not

visible based on variations in the individual monitor, often due to a televi-

sion ’ s physical bezel or the curve of the cathode ray tube itself. Due to the

vacuum inside the CRT, early televisions were tiny, curved, and typically

circular, all measures meant to keep the tube from imploding. As manu-

facturing tolerances improved, shapes resolved into the more familiar

rectangular 4:3 aspect ratio, curves decreased, and bezels receded. But

this refinement process took decades. Television and videogame produc-

ers learned to keep important content away from the edges of the screen,

lest it be invisible to some fraction of viewers. On NTSC sets, up to eight

pixels of the upper and lower borders of the PPU ’ s output are lost to over-

scan, reducing its visible scanline count to 224. PAL sets lose a single

upper scanline and two pixels on the left and right.

 Regional refresh rate differences create an ironic kinship between

consoles that share few external similarities. The Family Computer and

the U.S. Nintendo Entertainment System do not appear to be blood rela-

tives, but internally they have identical CPUs. Famicom systems play fine

on U.S. televisions with the proper step-down transformer and broadcast

channel for playback (i.e., channel 2 in Japan is not equivalent to channel

2 in the U.S.). In contrast, PAL NES consoles, which are externally identi-

cal to their U.S. brethren, contain a CPU variant known as the Ricoh 2A07.

To account for the 10Hz discrepancy in refresh rates, the 2A07 has a slower

clock speed (1.66 MHz) than the 2A03 (1.79 MHz). In practical terms, PAL

game cartridges played on an NTSC console will both play back faster

and have their sound pitched up in frequency (and vice-versa). In some

cases, the speed difference is bearable; in others, it renders a game

unplayable.

[50]

 Some Assembly Required

 Hobbyist game designers who aim to dabble in Famicom programming

are often surprised that its architecture does not support the high-level

languages common to modern platforms. The Famicom has no operating

system or firmware to boot into; it relies solely on the instructions stored

in ROM. Code must be written in assembly language, whose terse syntax

is quite different than modern compiled programming languages like C++

or Java. Those languages bear some resemblance to everyday grammar,

and even non-programmers can locate recognizable words and parse

basic instructions. 6502 assembly, which is a single abstraction layer

above machine code, is cryptic in comparison. Each line of code is com-

posed of a three-letter mnemonic, representing an instruction, followed

by an associated numeric value or address.

 Though I keep the code examples in the book to a minimum, it is

worthwhile to understand the basic structure of 6502 assembly, along with

a number of common addresses the Famicom uses to get its work done.

Unfortunately, there is no “ Hello World ” program for the Famicom, since

it has no straightforward command to output text to screen, much less a

built-in character set. Letters are tiles like any other graphic. Displaying

text requires creating custom bitmap letterforms, waiting for the Famicom

to initialize, clearing the contents of RAM, routing the background graph-

ics to the screen, setting the palettes, and so on. I do not have the space

to devote to a full code example, but a small excerpt can help us under-

stand the general look and feel of Famicom programming. Displaying a

background color is one of the simpler tasks one can program, so we will

walk through a few steps of that process. The following code sets the PPU

background color to green:

 LDA #$3F
 STA $2006
 LDA #00
 STA $2006
 LDA #$2A
 STA $2007

 Again, the three-letter mnemonics on the left are instructions for the

CPU, and the numbers to their right either designate addresses or specific

numeric values. (If the dollar signs seem strange, rest assured that they

are a common programmer prefix for hexadecimal values, not the cost of

the instructions.) Hexadecimal is a base 16 numeral system. In our

common base 10 (or decimal) system, we count from 0 to 9, then move to

the tens place, repeat until we require a hundreds place, and so on. Binary,

1 Family Computer [51]

which counts with only 1s and 0s, is a base 2 system. Base 16, as we might

expect, counts each digit place up to sixteen. Since we do not have single-

digit symbols to represent numbers above 9, the six digits places between

10 and 15 use letters A through F. 94 The $3F value above works out to 3x16 1

+ 15x16 0 , or 63, in base 10 notation.

 All data in the Famicom is moved via registers , or hardware memory

locations. Any in-game math, physics, AI, graphics, and sound synthesis

is controlled by moving data to and from a handful of registers, including

three of the CPU ’ s special registers: the accumulator, x, and y. The code

snippet above uses the accumulator — the primary register used for adding,

subtracting, and comparing numbers — to pass a number of values to the

PPU. $2006 is one of the 16-bit hexadecimal addresses of the Famicom ’ s

PPU I/O control registers. Changing the color of the background is a

graphical job, so the CPU must send data to the PPU via designated

addresses so it can act on that data appropriately.

 The first four statements do the following: LDA stands for “ L oa D

A ccumulator ” with the value that follows. In this case, it is the hexadecimal

value $3F (the “ # ” symbol tells the assembler to load the numeric value,

rather than the value stored at that address). $3F is only the first half of a

16-bit address mapped in PPU memory, so we must load and ST ore the

 A ccumulator (STA) twice in the I/O control register to designate the proper

destination. Via four commands, we have readied the PPU to receive data

at address $3F00, the location in memory where background palette infor-

mation is stored. With our data destination set, we can then pass along

information via the PPU data port, located at register $2007. To do so, we

load the accumulator with a color value ($2A, or green) then store that

value at $2007. In sum, the CPU tells the PPU, “ I have the value for green

and I would like you to store it in your palette at the requested address. ”

 As this short example illustrates, trivial procedures in today ’ s pro-

gramming languages require significant legwork in assembly. There are

few shortcuts, even for simple tasks. Today ’ s programmers might think

coding in such a manner is ludicrous. In most cases, they are right. But

assembly language ’ s close relationship to its processing infrastructure

grants programmers unprecedented hardware control, since there is little

abstraction between code and silicon. And once one understands the

locations and behaviors of a handful of registers, extraordinary things can

happen onscreen.

 Jump button makes Jumpman jump.

 — Donkey Kong arcade cabinet instructions (1981)

 When Uemura and his R & D2 team first played Galaxian , they were

astounded. Namco ’ s hit 1979 arcade space shooter was clearly indebted to

the look and structure of Space Invaders , Taito ’ s landmark hit from the

prior year, but it updated its predecessor ’ s formula with individually dive-

bombing aliens, colorful sprites representing distinct enemy types, and a

backdrop of scrolling stars. Nintendo ’ s R & D1 had attempted their own

alien invasion game in 1979 with Space Fever , but it was a minor tweak

of the Space Invaders formula, adding color and three selectable alien

patterns. Uemura knew Nintendo could match Taito ’ s and Namco ’ s suc-

cesses, but to do so, they would need to push their next game ’ s realism

even further. And better realism would require better hardware. 1

 With an ambitious design in mind, R & D2 tasked Japanese television

equipment manufacturer Ikegami Tshushinki to produce the sophisti-

cated circuitry for what would become Radar Scope . 2 The results were

impressive. Radar Scope coupled a unique vanishing point perspective

with alien sprites that appeared to scale in size as they dove toward the

player. Nintendo also upped the ante on Galaxian ’ s scrolling stars with a

feature they advertised as “ curvature of field. ” A dedicated chip drew the

 “ 3-Dimensional Vectors ” — an onscreen grid — and twinkling stars (driven

by the sound board ’ s noise generator) atop a gradient backdrop of black

and deep blue. 3 The net effect was a shimmering depth unmatched by

 2 Ports

[54]

other space shooters, promising to position the player in “ first-person ”

view of the action. 4 The audio hardware was equally sophisticated, featur-

ing “ supernatural ‘ Laser Sound ’ ” and, in certain board revisions, in-game

speech. 5 Nintendo and Ikegami Tshushinki threw all of their technical

muscle at the project, but the audio-visual marvels came at a significant

expense. Radar Scope cost ¥ 1,000,000, a hefty price tag for an arcade

game.

 It is unclear whether Radar Scope reached Galaxian -level popularity

in Japan, but according to Nintendo of America ’ s (NOA) then-president

Minoru Arakawa, it was second in popularity only to Namco ’ s monolithic

hit Pac-Man (1980) . 6 Whether this was true or not, the young president

was eager to debut a Nintendo hit in the States — Nintendo had recently

established their first U.S. office in New York and President Yamauchi was

watching Arakawa ’ s decisions closely. Confident of the space shooter ’ s

success, Arakawa requested a shipment of three thousand arcade cabinets

from Osaka. Unfortunately, after the months-long shipping wait, any buzz

preceding Radar Scope ’ s arrival had faded, and players were apparently

unimpressed by the game ’ s harsh sounds and perspectival rehash of Space

Invaders . 7 Without the luster of cutting edge hardware, Radar Scope was left

to rely on its derivative gameplay, a drawback that no amount of field

curvature could mask. American arcade owners showed little interest, nor

did players. Radar Scope was not the stunning debut Arakawa had hoped

for; NOA sold only one third of their order.

 As surplus cabinets lingered in NOA ’ s warehouse, Arakawa scrambled

for a solution. Radar Scope had sold enough to cover its manufacture and

transportation costs, but Arakawa and his staff were working strictly on

commission. Breaking even on costs meant no actual income for himself

or his staff. As resources dwindled, Arakawa turned to Nintendo head-

quarters for aid. President Yamauchi quickly devised a plan to resurrect

the unsold cabinets. In March 1981, he tapped R & D1 lead Gunpei Yokoi

and junior industrial designer Shigeru Miyamoto to produce a Radar Scope

conversion kit.

 Conversion kits were common in the arcade era. A game ’ s popularity

was subject to unpredictable player tastes, so lackluster titles might lose

their appeal after a few weeks. When games no longer drew players ’ quar-

ters, they were removed from the arcade floor to make room for newer

cabinets — only a rare few hung around for months or years. To combat the

inevitable ebb in popularity, arcade manufacturers devised kits to update

hardware without the need to replace the entire cabinet. This solution was

an obvious boon to arcade owners, since shipping, installation, and main-

tenance cost a fraction of an entirely new machine. A single cabinet could

2 Ports [55]

last for several years. Namco ’ s space shooter Galaga (1981), for instance,

hosted multiple conversions, including Bosconian (1981), Dig Dug (1982),

 Xevious (1982), and Super Xevious (1984). Updated ROM chips reworked

the gameplay and graphics while the existing CPU, sound hardware, and

monitor were left intact. With a fresh set of decals and an updated marquee,

 Radar Scope became a brand new game.

 Novelty Games

 Yokoi and Miyamoto had little time to design and engineer their Radar

Scope conversion kit. Rather than trying to compete with state-of-the-art

technology while mimicking the gameplay of a well-worn genre, they

thought innovative style and rich characters would attract players, regard-

less of technical specs. They opted to use the scenario for a Popeye game

they had originally planned for a Game & Watch handheld, drawing on the

cartoon ’ s familiar love triangle — Popeye, Bluto, and Olive Oyl — for both

character motivation and spatial structure: Bluto would hold Olive captive

at the top of the screen while Popeye would start at the bottom and work

upward to rescue her.

 However, Nintendo failed to secure the license from Popeye ’ s rights

holder, King Features, halting the designers ’ plans in the pre-production

phase. 8 According to Yokoi:

 Pretty early on we had decided that Popeye would go on the bottom of

the screen and Bluto would be on the top, thus establishing the frame-

work for the game, but we would later discover that we wouldn ’ t be

able to get the rights to use the characters after all. With no other

options, we decided to keep the content of the game as it was and just

change the characters. And so it was that those characters became

Mario, Donkey Kong, and Princess Peach. 9

 Miyamoto ’ s replacement designs were one-to-one translations of the

copyrighted characters: Bluto became a sizable ape named Donkey Kong,

Olive Oyl became the slender damsel eventually named Pauline, and a

squat carpenter named Jumpman stood in for underdog hero Popeye. And

even after the character swaps, Popeye continued to be an inspirational

resource, as Yokoi explained:

 There was an episode in the cartoon show for Popeye in which Olive

was sleepwalking and wandered around a construction site. Whenever

she was about to lose her footing, miraculously enough another

[56]

platform would come out of nowhere and support her, and this left

quite an impression on me. So we figured by using a construction site

as the setting, there would be all kinds of things we could do, and thus

chose that as the setting for our Popeye game. 10

 The referenced episode is a 1934 Popeye short called “ A Dream Walking, ”

wherein Olive Oyl falls asleep and wanders into a poorly-guarded con-

struction site. 11 As she sleepwalks across a series of perilous beams

and girders, Popeye and Bluto pummel one another as they race to save

her. The germ of a game idea was there, inspired by a veritable “ platform

cartoon ” (figure 2.1).

 Yokoi ’ s and Miyamoto ’ s reworked conversion became Donkey Kong

(1981), whose lighthearted cartoon design, inspired setting, and innova-

tive gameplay were a marked departure from the sci-fi and military

fare that populated arcades in the late 1970s. Donkey Kong , at heart, is a

running and jumping game. The player takes the role of Jumpman, an apt

descriptor for his and the player ’ s shared duties. Donkey Kong has

abducted Jumpman ’ s girlfriend, hauling her Fay Wray-style up endless

elevated construction sites. Kong resides at the top, hurling obstacles

downward as Jumpman makes his way to the top. When and if Jumpman

reaches the screen ’ s zenith, Kong snatches Pauline and climbs a ladder to

 2.1 A cropped still from the 1934 Popeye short (right) that directly inspired Donkey

Kong ’ s characters and setting, as seen in the opening construction site — or “ girders ” —

 stage (left). (Emulator: MAME)

2 Ports [57]

the next stage. The same scenario repeats on two additional stages,

one dominated by elevators and springs and another by cement pies

and conveyor belts. On the fourth and final screen, Jumpman must remove

a series of rivets holding the center platforms in place. If he succeeds,

the girders collapse, Kong plummets headlong to the bottom, and the

lovers reunite. After a brief respite, the game loops to a more difficult

version of the opening stage and Jumpman embarks once again on his

Sisyphean task.

 Donkey Kong ’ s spartan love story, played out in four distinct stages,

added a miniature narrative structure that Miyamoto later attributed to

comic storytelling:

 Thinking back, I would say that although it wasn ’ t done consciously,

I ended up designing Donkey Kong like a traditional Japanese four-

panel manga comic strip. That way of telling a story in four distinct

parts seemed natural to me, so I created four separate screens from

the opening to the conclusion. 12

 Miyamoto ’ s mini-narrative allowed players to work toward both higher

scores and the culmination of Jumpman ’ s quest. Additionally, each stage

required a distinct strategy. The opening “ construction site ” stage was

jump-heavy, as barrels poured erratically over girder edges and down the

same ladders that Jumpman clambered up. The “ elevator ” stage, in con-

trast, required patient timing to maneuver the rise and fall of the narrow

elevators, since Jumpman was not a competent Fallman; any plunge larger

than his height resulted in death. The “ cement factory ” stage threw Jump-

man ’ s momentum into disarray, as ladders shifted height and conveyor

belts changed direction beneath his feet.

 Like many innovative games of the arcade era, Donkey Kong ’ s play style

demanded a new genre. In the early 1980s, videogame magazines waffled

between a number of generic descriptors, from “ climbing ” and “ jumping ”

games to “ level ” and “ ladder ” games. Many settled on the least inventive

of the lot: “ Kong-style games. ” More curious was the “ novelty games ”

category used to describe the influx of (mostly Japanese) titles with

colorful, cartoon-inspired sprites and gameplay that focused more on a

character ’ s nimble movements than their fighting arsenal. The reviews

supplement in the March 1983 issue of Computer & Video Games pegged

two Japanese titles — Donkey Kong and Frogger — as key progenitors of a genre

whose stylistic differentiator was “ cuteness ” : “ Good graphics are by

definition crucial to the success of novelty games. The characters must be

cute or plausible, well-defined, and above all central to the general theme

[58]

of the game. ” 13 The “ novelty ” descriptor functioned more as a catch-all

non-category than a credible genre, and it frequently described blatant

rip-offs rather than games that were “ novel ” in their own right. In the

same issue, for instance, Computer & Video Games listed a number of

novelty PC titles like Pogoman and Hopper , whose lineages were not dif-

ficult to guess.

 The “ novelty ” designator carried two distinct and somewhat con-

tradictory connotations. “ Novelty ” was newness, a unique approach, a

style gamers had not seen before. Donkey Kong and its ilk felt fresh in

comparison to war, sports, and science fiction titles. Guiding a frog across

a busy intersection or dining on ghosts with a sentient yellow circle was

far afield from shooting Alien Invader X with Spaceship Y. But “ novelty ”

was also niche, an eccentric or even spurious outsider. This is the sense

in which novelty games served as the miscellaneous bin for a number

of games that resisted categorization. Frogger and Donkey Kong were not

similar in the same way that Galaxian and Galaga were, so critics relied

on a common visual style instead of concrete gameplay similarities. In

Steve Bloom ’ s 1982 book-length survey of the arcade field, Video Invaders ,

his introduction to Donkey Kong highlighted the conflicting senses of

genuine excitement for the game ’ s uniqueness and near-disdain for its

foreignness:

 Donkey Kong is another bizarre cartoon game, courtesy of Japan.

While we in America continue to invent new and improved methods

of exploring outer space and obliterating all we find there, our Eastern

rivals ’ seemingly frivolous comic mentality keeps spilling over into

their design of video games. 14

 Japanese videogames fulfilled both aspects of novelty in the U.S.-

dominated videogame market. They were outsiders in an industry they did

not create, a sentiment echoed in the “ Invaders ” half of the book title

quoted above. Yet the popularity of Japanese games was proving that they

had appeal beyond their native country.

 In Power-Up, an insightful look into the Japanese revival of the

American post-crash videogame industry, Chris Kohler argues that Nin-

tendo ’ s games, “ are not products or models of our culture . They are products

and models of Japanese culture, the ‘ action and reaction ’ of the Japanese

population, presented nearly unaltered for our consumption. ” 15 In

other words, Japan was not selling American culture; Japan was selling

Japanese culture, with little or no filter. The underlying assumption is

2 Ports [59]

that unmediated Japanese culture would be appealing to the West based

on its exoticism, a reflection of a people wholly other from them. This is

a longstanding Western conception of the Japanese people, what Susan

Napier calls “ the embodiment of a variety of fantasies ” that throughout

history has elicited fear, respect, admiration, fascination, desire, and

suspicion. 16

 Part of Kohler ’ s assertion is formal: the exaggerated proportions

common in manga were well-suited to the limitations of early videogame

hardware. Realism was tough to convey in a four-color, 16x16 block of

pixels. Cartoons, however, where exaggeration and abstraction are the

norm, made the transition easily. Simplified color and form conformed

well to the crudity of palettes and pixels in the early videogame era. Jump-

man ’ s visage and wardrobe, for instance, were largely determined by

hardware limitations: a cap obviated the need for animated hair, a mus-

tache defined an otherwise indistinct face, and overalls made fashion

sense when one had to rely on only two colors to sell an outfit. Kohler also

emphasizes how Japan ’ s distinct cultural interest in visual storytelling

translated easily to the videogame medium. Japan was a society cultivated

around images, from woodblock prints, Bunraku puppetry, and Noh

theater, to manga and anime. Unlike in America, where comic books were

child ’ s fare, graphic storytelling in Japan ran the gamut of age and inter-

ests, from cartoons to pornography. In all regards, Japan ’ s was a culture

primed for the transition to the vivid cartoon worlds and characters of

videogames.

 Kohler is correct in the broad view. Nintendo undeniably helped ease

the Western world into Japanese culture as a result of the monolithic

popularity of their characters and consoles. And the exoticism of foreign

products certainly played a part. Non-Japanese players could see, hear,

and feel the novel influence of Eastern culture in the games ’ designs, as

the uncertainty of genre labeling suggests. But to say their products were

 “ nearly unaltered for our consumption ” ignores the complexity of a

decades-long cultural exchange taking place between Japan and the West,

as well as the deliberate linguistic and cultural translations made in Japa-

nese media prior to their export. In many cases, the Japanese origins of

cartoons, comics, and videogames were obscured, or more generally

labeled as “ foreign ” rather than specifically Japanese. And the precedents

for Japanese media in America were extensive enough that we cannot

credit videogames alone with initiating the cultural handshake between

East and West.

[60]

 Exports

 Even prior to the flood of videogames in the early 1980s, Japanese media

had been gradually finding an audience on Western shores. Beginning

in 1961, the first Japanese animated films — Magic Boy (MGM), Panda and

the Magic Serpent (Globe Pictures), and Alakazam the Great (American-

International Pictures) — were shown in American theaters. These “ test

cases ” for American audiences followed the Disney model of adapted

folktales for children, featuring humans with a cast of adorable animal

companions. Though their stories were sourced from Asian lore, any ref-

erences to the films ’ foreign origin were scrubbed. These and subsequent

films were commercial failures, so American distributors shifted their

efforts to television and 16mm rental markets. Throughout the 1960s and

1970s, Japanese animated shows like Astro Boy , Gigantor , Kimba the White

Lion , and Speed Racer debuted on American television in local syndica-

tions, but the shows ’ foreign heritage was ambiguous when scrunched

between children ’ s fare from Filmation and Hanna-Barbera. As the pro-

duction of American kid-friendly cartoons increased and more stringent

rules regarding violence in children ’ s programming appeared, Japanese

animation became largely sequestered to networks catering to Japanese

communities.

 As journalist Fred Patten documents in Watching Anime, Reading

Manga , a series of important events reversed Japanese animation ’ s success

in America. 17 New sci-fi series like Brave Raideen (1976) debuted, featur-

ing teen heroes piloting enormous robots. These action- and drama-

heavy cartoons appealed to an audience older than the usual Hanna-Barbera

set. The serendipitous arrival of the Star Wars phenomenon further

bolstered interest in any space adventure-themed animation, comics,

and toys. There was also a concurrent shift in the tone and audience of

American superhero comics in the 1960s and 1970s. The Golden Age

of superheroes was making way for a new Silver Age, offering edgier inter-

pretations of familiar favorites (e.g., Batman and Superman) and new,

modern characters targeted for an older audience (e.g., Spider-Man and

the X-Men). Finally, the introduction of consumer video cassette record-

ers (VCRs) around 1975 created an inexpensive means to record, share,

and distribute Japanese films and television shows among fans.

 This synergy of social, cultural, and technological changes continued

to coalesce. America ’ s youth counterculture movement sought edgier

forms of art and pop culture that circulated outside mainstream norms.

Racial tolerance was shifting. The generation that thirty years before had

inaugurated atomic warfare against a Japanese enemy gave way to sons and

2 Ports [61]

daughters more receptive to cultural exchange. The time was right for

Japan ’ s cultural entrance in the West.

 By the early 1980s, Japanese media had seeped into all corners of

pop culture: the Cartoon/Fantasy Organization formed in Los Angeles, the

first fan group to cater specifically to anime; 18 Japanese animated films

and cartoons were screened at comic book and sci-fi conventions; fan-

zines devoted to “ Japanimation ” and manga were published; an influx of

Japanese sci-fi and robot toys were hitting American shelves; translations

of popular manga were sold in U.S. comic shops; and some of Japan ’ s

artistic luminaries, like Astro Boy creator Osamu Tezuka, were meeting

with fans in America. 19 By the time Donkey Kong debuted in 1981, there

was already a modest but enthusiastic fan base for Japanese media,

centered around the same adolescent, teen, and twenty-something

demographics that would flock to videogame arcades. There was a reason

the early crop of Japanese games were labeled “ cartoon ” games — they

resembled the first Japanese medium that made an impact on Western

pop culture.

 And just as anime ’ s foreign pedigree was hidden from American

viewers in the early 1960s, Japanese creators (and their American

distributors) modified, edited, or outright censored their media in

accordance with Western tastes, even as their work gained increasing

acceptance outside of Japan. In the 1980s, popular sci-fi anime series

 Space Cruiser Yamato and Macross were brought to American television,

respectively, as Star Blazers and Robotech . Some revisions were benign, like

the titles or character names — certainly Derek Wildstar was more palat-

able to American children than his original name, Susumu Kodai. Other

more significant changes reflected divergent cultural attitudes toward

sexuality or vice. Dr. Sano ’ s predilection for alcohol, for instance, was

whitewashed in his transformation to the good-humored Dr. Sane, while

transgender character Lance “ Yellow Dancer ” Belmont ’ s appearance was

explained away through plot contrivances that cast him as a secret agent

 “ disguising ” himself in drag.

 Robotech was also subject to drastic structural changes, as anime

scholar Antonia Levi explains:

 The long, drawn out stills used to convey moments of extreme emotion

or heroism were shortened, and the sound track was changed. Flaws

and contradictions in the heroes ’ personalities were softened. The

deaths of some significant characters were covered up. And just to

put the final kiss of death on the whole production, the networks

persisted in scheduling them at times suitable for children. 20

[62]

 As Levi implies, some of these changes were due to divergent audiences.

In Japan, Macross was not a children ’ s show — in America, nearly all car-

toons were children ’ s fare, so they had to be cut accordingly.

 The same attention to potentially problematic structure, content, or

form applied to videogames. Kohler remarks on the ambivalent cultural

status of Japanese videogames, many of which were designed with English

text: “ Video games in general were a contemporary American invention,

and there was nothing that clearly labeled newcomer Nintendo as Japa-

nese. ” 21 But he also reveals a litany of cultural translations necessary to

soften videogames ’ Japanese roots prior to their introduction to Western

markets: among them, the original manga drawings from Western Gun

arcade cabinets were not used for American release; Pac-Man ’ s original

onomatopoeic name Puck-Man was altered to discourage arcade vandals;

and NES games were scrubbed of potentially racist or religiously inflam-

matory content prior to American release. 22 Time and again, Japanese

videogame companies were surgically strategic in their modifications for

non-Japanese audiences. Nintendo was no exception — they were acutely

aware of their cultural product and its potential Western reception, from

their industrial design to outright censorship (chapter 3). This does not

discredit Japan ’ s cultural contributions nor valorize “ Western ” versus

 “ Eastern ” design, whatever those broad classifications might mean. But

it is crucial to recognize that calculated (and miscalculated) translations

were taking place on either side as part of a complex cultural exchange,

crossing borders of language, custom, technology, economics, and

politics.

 And the flow of cultural commerce was not one-sided. Osamu Tezuka,

widely considered the father of anime, was inspired in equal measure by

both Japanese wartime propaganda films and Disney animation. Though

Tezuka ’ s and Disney ’ s content and style were considerably different,

Tezuka was dubbed “ the Walt Disney of Japan. ” 23 The same fans in the

1970s who were copying and trading shows among themselves were estab-

lishing international connections, swapping cartoons with Japanese

science fiction fans hungry for American fare like Star Trek and Battlestar

Galactica . 24 The shared NTSC standard between the U.S. and Japan helped

facilitate the exchange (and equally hampered anime ’ s expansion to PAL

markets). Many of the first Japanese videogame consoles mimicked or

licensed Western machines, like Nintendo ’ s own Pong clone Color

TV-Game 15 (1977) or Atari ’ s Japanese version of the VCS, the Atari 2800

(1983). 25 The Japanese likewise picked and chose from a range of foreign

inspirations for their game designs, from medieval knights to Western

gunfights.

2 Ports [63]

 Consider the odd amalgam of Western influences in Donkey Kong .

The most obvious is King Kong , the 1933 RKO film directed by Merian

C. Cooper and Ernest B. Schoedsack, featuring an enormous gorilla

displaced from his native land and put on spectacular display in metro-

politan New York. The original theatrical poster featured a familiar pose:

Kong perched atop a tall structure, clutching Fay Wray, the helpless

damsel in a pink dress. Yet Pauline is no short-cropped flapper. Her

long hair, ankle-length dress, and blue heeled boots are distinctly 19th-

century American Western, a genre sensibility already rehearsed by

Nintendo in their early Wild West-themed arcade game Sheriff (1979).

Pauline ’ s attire, coupled with the damsel-in-distress trope, also evokes

the silent film serials of the 1910s, like the tied-to-the-train-tracks

classic The Perils of Pauline . 26 Meanwhile, Mario (named after NOA ’ s

landlord) is a workaday anachronism, an unlikely Italian hero who relies

on agility and carpentry tools to survive. Weirder still, when Mario dies,

a halo — the symbol of Christian saints and angels — floats above his supine

body.

 Some were not so keen to forgive Donkey Kong ’ s similarities to a

Western cinematic icon. Universal Studios famously threatened Nintendo

of America with copyright infringement, claiming that the game ’ s

name, ape, and premise were identical to King Kong . 27 Universal tried to

strong-arm Nintendo into a settlement, hoping the U.S. newcomer would

surrender to Universal ’ s formidable legal team. Nintendo stood strong

and Universal sued. In a grand twist of irony, it was revealed that Universal

had no legal claim to King Kong — in fact, in order to remake the 1933 film,

Universal had successfully argued in court in 1975 that RKO no longer

owned the character. Kong was public domain.

 Universal ’ s shaky ownership claims notwithstanding, Nintendo

would have prevailed. The New York Circuit Court of Appeals ruled in

1984 that the game ’ s premise fell under parody, thanks again to its

 “ cartoon ” sensibilities:

 The district court conducted a visual inspection of both the Donkey

Kong game and the King Kong movies and stated that the differences

between them were “ great. ” It found the Donkey Kong game “ comical ”

and the Donkey Kong gorilla character “ farcical, childlike and non-

sexual. ” In contrast, the court described the King Kong character and

story as “ a ferocious gorilla in quest of a beautiful woman. ” The court

summarized that “ Donkey Kong creates a totally different concept and

feel from the drama of King Kong ” and that “ at best, Donkey Kong is a

parody of King Kong . ” Indeed, the fact that Donkey Kong so obviously

[64]

parodies the King Kong theme strongly contributes to dispelling

confusion on the part of consumers. 28

 For his part, Miyamoto deposed that the Donkey Kong name was a transla-

tion error, meant to convey a meaning closer to “ stubborn monkey ” than

any allusion to the classic film. 29 He claimed that when he looked up

 “ stubborn ” in a Japanese/English dictionary, it read “ donkey, ” while

 “ kong ” was a general term for any large ape. 30 Since then, the true origin

of the game ’ s title circulates among numerous apocryphal tales. Regard-

less, the irony came full circle in 2010, when Nintendo attempted to

legally trademark the phrase, “ It ’ s on like Donkey Kong. ” 31

 Today we tend to gloss the patent absurdity of Donkey Kong and its

characters because they have been so tightly woven into the fabric of

videogame culture, but when we survey the broad reach of its cultural

quotations and allusions, we find that it is a strikingly weird media object.

Nintendo ’ s games had an uncanny familiarity to American audiences and

the decades of pop cultural exchange leading up to Donkey Kong ’ s release

paved the way for its success, though not without an initial measure of

trepidation. The Japanese were adopting an industry from the West,

infusing it with their own traditions, combining it with their own inter-

pretations of Western culture, then translating it back again into a novel,

de-contextualized pastiche. This complex process continued to foster the

same mix of attraction and puzzlement that struck players encountering

 Donkey Kong for the first time. And eventually, as the Japanese style

became more familiar, works like Kong changed from “ novelty games ” to

simply videogames.

 Kong at Home

 In the early 1980s, arcade machines were the lead platform for cutting-

edge videogame technology, since they benefited from dedicated hard-

ware: processors, memory, sound chips, cabinets, and control interfaces

built to suit the needs of each game (or a handful of similar games). Marble

Madness ’ s pseudo-3D graphics and control scheme demanded a different

hardware configuration — from increased ROM space to a “ rollerball ”

input device — than, say, the two-dimensional, single-joystick play of

 Pac-Man . Home consoles and computers were underpowered in compari-

son, especially cartridge-based systems and consumer PCs that tried to

provide flexible platforms for a range of software. By the time micropro-

cessors were cheap enough to mass market inside an affordable console

package, arcade technology had moved ahead by leaps and bounds. Though

2 Ports [65]

cabinets were expensive to design, manufacture, and ship, they could

make up for the large upfront costs through volume sales. Hundreds of

players might cycle through a single game each day, eventually earning the

arcade owner enough revenue to recoup costs, one quarter at a time.

 Despite the technology gap, arcade games still made their way to home

consoles. The process of translating game software from one platform to

another is commonly called porting . Thirty years ago there were multi-

tudes of PC platforms, confusing hardware forks within a single company

(e.g., the Atari 2600/5200/7800/400/800/ST), and region-specific

manufacturers. It was common for an arcade hit like Pac-Man to receive

ports for a dozen or more PCs and consoles — not to mention tabletop toys,

watches, board games, and the like. 32 Arcade ports ran the gamut from

near-perfect to abysmal, with cuts and concessions made according to

each platform ’ s affordances. Porting has never been a magical process

whereby a programmer copies the game ’ s source from one machine and

simply compiles it on another. At a time when computers were coded

 “ close to the hardware ” in assembly language, the internal architectures

of two competing platforms had a drastic impact on the visual results.

 Assembly language in itself is not a codified grammar — it is more like

a common base for a variety of dialects, each specific to a particular CPU

family. In the same way that someone does not speak the Romance

language, but rather speaks French or Spanish, one also does not code

assembly, but instead 6502 assembly or Z80 assembly. In other words,

assembly language is tied to its architecture. There will be similarities

between “ regional dialects, ” perhaps a few identical “ words, ” but no clean

one-to-one translation. Even identical cross-platform syntax cannot

account for the differences in, say, how a video processor draws to the

screen, available sprite sizes, palette variety, or even the number and

configuration of buttons on a controller. Source code notwithstanding,

how does one translate the complex multi-button control scheme of

 Defender (1980) to the single-button joystick of the Atari VCS? These

were the types of problems all programmers faced when tackling cross-

platform ports.

 When arcade developers were slow to deliver ports, third parties

picked up the slack. Especially in Europe, where the scope and variety of

low-cost PCs overshadowed the burgeoning home console market, games

inspired by or directly copied from arcade hits came fast and furious,

from professional and amateur programmers alike. British magazine

 CRASH , who published one of the first references to “ platform games ”

(chapter 4) in their “ Living Guide to Spectrum Software, ” often ran

reviews of Kong clones clearly “ inspired ” by Nintendo ’ s hit game. In

[66]

 CRASH ’ s blurb on Killer Kong , for instance, they referred to the game ’ s

protagonist as Mario, despite the lack of any similarity between Ninten-

do ’ s overall-clad carpenter and the shirtless stickman seen on screen. 33

Arcade fans were clamoring to play their favorite games at home, even if

they got cut-rate or imitation products. PC-oriented magazines catered to

the tastes of amateur programmers, providing pages of type-it-yourself

source code for clones of popular arcade titles. Despite its shortcomings,

home play was an understandable salve to the arcade ’ s relentless quarter

drain.

 Imitators proliferated in the arcades as well, often unabashedly lifting

a popular game ’ s screen layouts, gameplay, and characters. The most

egregious cases were outright theft. Disreputable manufacturers affixed a

new marquee to the arcade cabinet without bothering to alter the internal

hardware, spawning the likes of Crazy Kong, Konkey Kong, Congorilla,

Donkey King, and a plethora of other tragic name variations. 34 Nintendo

pursued these bootlegs and clones with litigious fervor in an effort to curb

piracy and economic losses. 35 Despite Nintendo lawyer Howard Lincoln ’ s

efforts in litigating thirty-five copyright infringement cases and confis-

cating thousands of counterfeit circuit boards, Nintendo estimated they

lost nearly $100 million to Donkey Kong copycats. 36

 Meanwhile, Nintendo was keen to meet legitimate demand for Donkey

Kong with an official console port. Home versions of popular arcade titles

provided new revenue sources, prolonged a videogame ’ s life for years, and

helped publicize the company brand. Nintendo, guided by Yamauchi, had

ambitions for worldwide success, so they licensed the arcade ape to nearly

every viable (and sometimes non-viable) platform of the day, from

Amstrad CPC to ZX Spectrum.

 The clear powerhouse among home console ports was Nintendo ’ s

first licensee, Coleco. 37 The ColecoVision ’ s pack-in version of Donkey

Kong was lauded by press and consumers alike for its arcade fidelity,

despite its decreased palette, altered sound and sprites, and missing

 “ cement factory ” stage. The game bolstered sales of Coleco ’ s fledgling

console, challenging Atari ’ s multi-year reign of the home market. The

ColecoVision was technologically superior to the aging Atari VCS, and

the accuracy of Coleco ’ s arcade ports drove that point home visually

and sonically. The ColecoVision soon became the arcade purist ’ s console

of choice.

 Coleco ’ s exclusive license with Nintendo lasted for six months, allow-

ing them to sell half a million consoles. Once exclusivity lapsed, Coleco

shifted roles from first-party to third-party development, 38 aiming to dip

their toes in both ends of the profit pool, producing ports for hardware

2 Ports [67]

rivals Atari and Mattel while continuing production of the ColecoVision.

Both competitors ’ machines were ill-equipped for Donkey Kong ’ s specifi-

cations. The Atari VCS port delivered a version of the ape that looked more

like a giant gingerbread man tossing chocolate chip cookies than Jump-

man ’ s fearsome, barrel-chucking antagonist. The Mattel Intellivision

port was less visually offensive, but still bare-bones: Kong, for one,

remained a brown monochrome mess. The Atari 7800 version fared best,

due to its more capable hardware, but Jumpman ’ s running and jumping

sound effects were gratingly brittle compared to the original. In the end,

the platform did not matter to Coleco. If they sold cartridges for Atari or

Mattel, they earned a cut; if consumers opted for the superior arcade

facsimile, they would buy a ColecoVision. 39 Coleco benefited either way.

 Orientation

 As the wide spectrum of quality attests, Donkey Kong was a challenging

console port. Like Pac-Man and many other Japanese cabinets, it ran on

the Zilog Z80, 40 clocked at a whopping 3MHz, nearly tripling the process-

ing power of console contemporaries Intellivision or Atari VCS. The

newer ColecoVision fared better partly due to a shared architecture, as it

ran on a slightly faster version of the Z80. However, ports did not auto-

matically benefit from similar CPUs or enhanced processing speeds. A

host of hardware differences, from input mechanisms to available video

RAM, had significant “ behind-the-scenes ” consequences that impacted

the final visual results.

 One such difference was Donkey Kong ’ s monitor. Arcade displays in

the early 1980s were not off-the-shelf consumer televisions. Most cabi-

nets of Kong ’ s era were stocked with screens from Electrohome (model

G07) or Wells-Gardner (models K4600, K4900, and K7000), typically

19 ” or 25 ” color raster scans. 41 Nintendo sensibly chose a Japanese sup-

plier, so Donkey Kong and its kin were outfitted with the Sanyo 20EZ. 42

Resolution- and frequency-wise, arcade monitors were identical to home

sets. The key difference was the video signal. Most home televisions had,

at best, a composite input. True to its name, the composite signal merged

the monochrome (i.e., black and white) and color information into a

single stream, significantly lowering the bandwidth necessary to convey

the signal.

 However, bandwidth savings were offset by a loss in quality. TV

cameras output color information in three separate streams: red, green,

and blue. Ideally, a monitor would accept and reproduce these streams

individually. Once combined, they could no longer be cleanly separated

[68]

again. As a result, composite signals produced display errors like dot

crawl , where checked patterns of color artifacts noticeably creep along the

border of two color bands. Arcade monitors, in contrast, were RGB (or

Red Green Blue) and thus kept the individual color streams separate and

intact. Compared to home televisions, arcade monitors looked sharper

and more vivid, with fewer image imperfections.

 Kong ’ s display, to accommodate Jumpman ’ s vertical ascent, was also

taller than it was wide. No custom hardware was necessary for such an

orientation — horizontal displays were simply rotated on their side, while

the arcade hardware handled the appropriate graphical flip. This “ trick ”

was more evident in cocktail arcade cabinets designed for seated play. Two

or more players sat on opposing sides of the cabinet, looking down at

the monitor. For each player ’ s turn, the screen would reorient to their

perspective. Typically the orientation was set in advance by an arcade

operator or technician. For Donkey Kong , a jumper switch on the CPU

could set “ upright ” or “ table ” orientation (along with the number of lives,

score level, and number of coins per play). 43

 The vertical 3:4 aspect ratio was common in arcade games, but a sig-

nificant hurdle for console ports. Videogame consoles, unlike arcade

cabinets and some PCs, did not include their own monitors. 44 Fortunately,

most game players had a convenient solution on hand: their television. By

1980, over seventy-five million U.S. households owned a television,

nearly 98% of the total population; half of these households owned more

than one. 45 Japanese households reported similar statistics. 46 This pro-

vided great flexibility for display choices, as nearly every household had a

screen suitable for videogames. Market saturation clearly benefited

console manufacturers, as they did not have to factor a monitor into man-

ufacturing costs. Of course, one tradeoff was the fixed orientation. Home

televisions were designed for broadcast television, not arcade games, so

they conformed to the industry-standard 4:3 aspect ratio. For Donkey

Kong , this meant either compressing vertical platforms or eliminating

them altogether. The ColecoVision port, for instance, had only five girders

in stage 1 (not counting Pauline ’ s platform), in comparison to the arcade ’ s

six.

 Donkey Kong ’ s graphics were similarly difficult to duplicate on a

console, due both to the default size of its graphical tiles and the memory

available to store them. The visual elements that comprised the screen

were split between two tile types — sprite and character — that occupied

distinct locations in memory, a clear precursor to the PPU ’ s pattern

tables. And as discussed in chapter 1, sprites were typically assigned

2 Ports [69]

to objects that moved: Jumpman, barrels, bouncing jacks, Pauline, and

Kong himself. Character tiles, on the other hand, customarily comprised

any static background elements: girders, ladders, letters, numbers, and

the GUI.

 Donkey Kong had the memory capacity to store 128 16x16-pixel sprites

and 256 8x8-pixel character tiles. Though both tile sets cover equal areas,

subdividing them differently had clear design advantages. Since character

tiles were used to draw the game ’ s architecture, smaller dimensions

allowed the designers to sculpt more granular variations in size and struc-

ture. As we will see shortly, the tile permutations necessary to construct

the girders ’ angled planes consumed a significant amount of character

space. Slimming girders to fit within an 8x8-pixel mosaic saved memory

and increased the variety of background elements.

 Building personable cartoon objects, however, was challenging in

such a narrow frame. Increasing the sprite tile size fourfold provided a

wider palette for character variety. Nearly every moving object in Donkey

Kong — barrels, fireballs, cement pies — fits within a 16x16-pixel perimeter.

Even Jumpman ’ s impressive range of animations — jumping, running,

climbing, falling, dying — is blocked within single sprites. Pauline and

Kong are the obvious exceptions. Pauline is taller than Jumpman, so her

head and shoulders require an additional sprite to accommodate her

height. Kong, as the titular antagonist who is meant to dwarf the other

characters, occupies six sprite slots — his head alone is larger than Jump-

man ’ s entire body.

 Donkey Kong ’ s chunky sprites also provided a significant program-

ming advantage for object movement. In tile-based graphics systems, one

tile is often not adequate to represent an entire object. Objects are thus

built out of multiple tiles that move in unison. Moving a single-tile object

is straightforward — simply update the tile ’ s x- and y-coordinates to the

desired screen position. Multi-tile objects require careful software coor-

dination to assure that all tiles move as a single unit, or metatile .

 Character animation compounds the complexity. Certain tiles in an

object may need to update while others remain static. In Jumpman ’ s case,

each frame of his walk animation occupies a single sprite, so the anima-

tion routine can cycle through single tiles with minimal programming

overhead. Animating Donkey Kong ’ s massive frame is trickier. At times,

his body will rotate, requiring all of his tiles to change. However, when he

faces the player and stomps his feet, portions of his body remain fixed,

while others move. Using larger sprites required fewer multi-tile updates,

simplifying Donkey Kong ’ s sprite animations and object movements.

[70]

 The Ape in the Background

 Nintendo ’ s first cartridge hardware was the Nintendo ROM, or NROM.

The initial spate of NROM games, such as Donkey Kong (1983), Mario Bros.

(1983), Door Door (1984), and Nuts & Milk (1984), had austere interiors.

At least initially, Famicom PCBs had only two unlabeled “ glob-tops ”

onboard. 47 This low-cost method of semiconductor production bonded

and protected the PRG-/CHR-ROM ICs and their connections with a

coating of black resin epoxy.

 Despite its unassuming appearance, the HVC-NROM-128 that housed

Famicom Donkey Kong was a good match for its arcade progenitor. Though

it only used half of NROM ’ s available PRG-ROM capacity (16KB), it still

doubled the program space available in arcade Donkey Kong. Tile-wise,

NROM ’ s 8KB of CHR-ROM matched the arcade ’ s sprite and character

outlay, although 16x16-pixel sprites were not an option. Nintendo wisely

struck a compromise by providing both 8x8- and 8x16-pixel tile options,

but the developers chose the former option for the Famicom port. And

while the 2A03 could not match the arcade ’ s Z80 processing speed, the

Famicom ’ s specs were a far cry from the VCS ’ s five movable objects or

even the ColecoVision ’ s 8KB of total cartridge ROM. It is clear that the

Famicom was engineered not only to port Donkey Kong, but to surpass any

competitors ’ prior efforts.

 Nonetheless, a few key platform differences made an arcade-accurate

port impossible. For one, there are fundamental aspect ratio differences

between platforms. The arcade monitor ’ s vertical resolution is 224x256

pixels, while the Famicom ’ s visible NTSC resolution, accounting for over-

scan, is the exact inverse. 48 Note that in this regard the Famicom ’ s PPU

has a clear advantage over the ColecoVision ’ s VDP. The latter outputs

256x192 pixels, constraining its vertical proportions even more signifi-

cantly than the Famicom ’ s. While the Coleco port omits the construction

site ’ s top girder and moves Kong and Pauline to the right side of the

screen, the Famicom port maintains the arcade girder count by subtly

compressing the space between platforms (figure 2.2). This is most

evident in the reduced gaps between broken ladders and the increased

clutter toward the top of the screen, where the score, life, stage, and bonus

indicators squeeze obtrusively into the playfield. Spatially, the arrange-

ment makes better sense for the game ’ s vertical narrative, since Donkey

Kong can carry Pauline directly off-screen, rather than into the score-

board. However, to save on tiles, the Famicom port eschews any animated

sequences. Once Mario reaches the top girder, gameplay freezes, a fanfare

plays, and the game cuts directly to the next stage.

2 Ports [71]

 As expected, stage 1 in Famicom Donkey Kong is composed almost

entirely of background tiles, since the girders, ladders, Kong ’ s barrel

supply, the blue oil can, and the score display remain largely static

throughout gameplay. The largest moving element is Donkey Kong

himself. He occupies a 48x32-pixel area, or twenty-four total tiles. But

that total only accounts for one position; when Kong moves, new tiles must

come into play. As a result, over half of one pattern table ’ s tiles are devoted

to drawing Donkey Kong (figure 2.3).

 Though he can pivot and stomp, Donkey Kong is not built of sprites,

a crucial platform-level distinction that fundamentally alters the Famicom

port ’ s fidelity to its source. Donkey Kong ’ s arcade hardware could handle

up to sixteen sprites on a scanline, and with their 16x16-pixel area, it was

possible to accommodate Kong and other moving objects without risk of

exceeding that count. The Famicom PPU, however, can only display eight

sprites on a single scanline. To circumvent this limit, programmers shuf-

fled sprite priorities in OAM frame to frame, causing sprites to visually

flicker but preventing any one sprite from disappearing completely. If

a player ’ s character was, for example, built from multiple sprites (as is

usually the case), portions of that character ’ s body might appear and

reappear as it passed a particular horizontal vector shared by other

sprite-based objects.

 If Kong were built of sprites, there would be situations where he (six

tiles wide), multiple barrels (two tiles wide), and even Jumpman (two tiles

wide) might simultaneously occupy the same horizontal plane, causing

one or more objects to flicker out of existence. If that object happened to

 2.2 The title screen (left) and construction site stage (right) from NES Donkey Kong .

(Source: NES-101 capture)

[72]

be Jumpman, it would not only be aesthetically unappealing, but would

distract from Donkey Kong ’ s precision jumping demands. 49 Moreover, a

flickering Kong would have been visually unacceptable for Nintendo ’ s

marquee port. Nintendo chose not to compromise on the port ’ s visual

integrity and instead constructed Kong from background tiles.

 Not that Famicom Kong is flicker-free. There are circumstances where

the game ’ s multiple moving objects align horizontally, but they are rare.

Players focused on the action likely never notice the split-second flickers.

In this respect, Donkey Kong ’ s vertical gameplay design is ideal for transla-

tion to the Famicom, since elements that travel horizontally, like barrels

or fireballs, are sequestered into discrete “ bands, ” i.e., each stage ’ s plat-

forms. Since the arcade hardware permitted double the sprites per scan-

line, the game design did not have to be as stringent about the quantity of

cascading objects. Subsequently, the original version feels a bit more

frantic and fast-paced than the console port, since more sprites can crowd

each platform.

 Compare Donkey Kong to another of Nintendo ’ s early arcade ports,

 Balloon Fight. The game is similar to Williams Electronics ’ 1982 arcade

game Joust , though the latter ’ s ostrich-riding knights are replaced with

men suspended by balloons who flap their hands to gain altitude. The goal

in Balloon Fight is to pop your competitors ’ balloons by colliding into them

at a slightly higher elevation. Collide face-to-face and you and your rival

will bump off one another harmlessly; collide slightly lower and your rival

will pop your balloons. Like Donkey Kong , Balloon Fight is vertically ori-

ented (the original arcade version also scrolled vertically, though the

Famicom port does not), but the floating mechanic creates wider varia-

tions in sprite movement. Players and enemies can move along vertical,

horizontal, and diagonal axes, space often shared with both static and

dynamic environmental obstacles. Donkey Kong has more of a “ gravita-

tional pull, ” where most objects (besides Jumpman) are flowing toward

the bottom of the screen. In Balloon Fight , the balloon men can flap their

hands to actively fight gravity. Consequently, there is much less control

over how many objects will appear on a single scanline simultaneously. As

a result, Balloon Fight exhibits significant flicker, as sprites float about the

screen erratically.

 Sprite conflicts also help explain Pauline ’ s revised placement. In the

arcade version, Pauline is captive atop the highest platform, a horizontal

girder parallel to Kong ’ s line of sight. There, she cries “ Help! ” while

waving her arms and waddling back and forth in anticipation of Mario ’ s

arrival. On the Famicom, Pauline is relocated to a new horizontal girder

aligned with Kong ’ s torso. This placement puts Mario ’ s damsel awkwardly

2 Ports [73]

close to the ape, but it also clears space for the score indicators and keeps

her out of the horizontal vector of barrel movement. From a narrative

perspective, it also allows Mario to reach the uppermost platform without

spatially “ reuniting ” with Pauline, since their girders are not attached.

Arcade Kong snatches Pauline from her girder and carries her upward.

The console version defers Mario ’ s victory and makes a more sensible

transition to the following stage, turning a hardware-necessitated con-

cession into a narrative device.

 Versatile Girders

 With Kong occupying a majority of the background pattern table, how did

 Donkey Kong ’ s programmers allocate the remaining space? Primarily to

letters, numbers, and girders. The first two should not be surprising,

since each letter and number requires its own tile. Reserving tiles for ten

numerals, twenty-six characters, and assorted punctuation and decora-

tion (e.g., the brackets surrounding the BONUS text) quickly absorbs

pattern memory. But why so many girders? If we look closely at the stage

1 screenshot in figure 2.2 , we can see that each platform is composed of

the same 8x8-pixel girder segment, positioned one after another in a row.

And if that ’ s the case, shouldn ’ t the programmers only need one pattern

tile in CHR-ROM to draw the entire structure?

 As explained in chapter 1, there is an important difference in the way

sprites and background tiles are placed on the screen. Each sprite has

manipulable x- and y-coordinates that allow the programmer to place

them with pixel precision, while background tiles are “ locked ” to the

32x30 name table grid. As a result, Jumpman can run along angled girders

with relative ease, since his position can be shifted a single pixel at a time.

But the girders themselves pose greater difficulties. Due to the 8-sprite-

per-scanline limit, the girders are too wide to be built with sprites. But as

background tiles, there is no way to shift them pixel-by-pixel to create the

construction site ’ s graded slopes.

 Consequently, the incline comes at a cost: each pixel shift in the

girders ’ angular ascent requires a separate tile. Inspecting Kong ’ s pattern

table data reveals twenty-eight individual background tiles necessary to

build the construction site, including those girders that have ladder

attachments (figure 2.3).

 While wasteful from a memory perspective, the incremental tile

arrangement is true to both the look and process of arcade Donkey Kong ,

which renders and stores its girder tiles in an identical fashion. The dif-

ference is that arcade Kong ’ s girder slopes are more drastic. Vertical pixel

[74]

increments occur every sixteen pixels, so one beam may have up to thir-

teen individual segments. The Famicom port ’ s decreased vertical space

cannot support such steep inclines, so its middle girders are nine seg-

ments long, with each segment measuring four tiles across. Straight plat-

forms were a necessary concession for some ports, but flattening Donkey

Kong ’ s girders not only does aesthetic disservice to the arcade game, it

breaks the stage ’ s risk/reward structure: taller ladders make Jumpman

more susceptible to falling barrels, but they provide a quicker route to the

top. 50 Changing the angles changes the game.

 With the majority of background tiles accounted for, there was little

space left for decorative flourishes like custom title screen letterforms.

To make use of the tiles at hand, Donkey Kong ’ s programmers used a single

tile — the platform graphic from the rivets stage — to spell out “ DONKEY

KONG ” in large letters on the title screen (figure 2.2). 51 Using background

tiles as letterforms was not solely an aesthetic decision. In most tile-based

graphics architectures like the Famicom ’ s, there are no system-level

character sets or pre-fab fonts. Every element seen onscreen is sourced

 2.3 Donkey Kong ’ s background pattern table viewed in tile-editing software YY-CHR

(detail). Note the number of tile variations necessary to draw Kong and the angled

girders.

2 Ports [75]

from the sprite and background tiles, so adapting the rivet tiles for use in

the title saves valuable ROM space.

 Both arcade and Famicom versions of Donkey Kong include a full

alphanumeric set: twenty-six letters, digits from zero to nine, and a few

special characters. It is evident that Nintendo borrowed directly from the

arcade ’ s character set for the home version, since the alphanumerics are

nearly pixel-for-pixel identical. Only a few are subtly modified (e.g., the

arcade ’ s “ W ” has angled strokes rather than vertical stems). Lifting an

entire alphanumeric set makes sense for an arcade-accurate Donkey Kong

port, but only if the port adopts their purpose: the scoreboard. Many

contemporary Donkey Kong reviews mentioned various ports ’ lack of the

cement factory or elevator stages, but few mentioned the lack of the

arcade ’ s high score screen. During its attract cycle, Donkey Kong shows

the title screen, the high-score table, then demonstration play. 52 The

order is significant. Imagine a skilled player who returns to the arcade on

a regular basis to check up on her competition. She is not interested in a

gameplay demo since she has played the game many times. She wants to

see the leader board first. Kong ranks the five highest players with rank,

score, and most importantly, a three-character name. The user-editable

 “ NAME ” column justifies the ROM space devoted to the full (English)

alphabet. It is a limited palette for competitive expression, but it serves

the purpose of allowing a skilled player to leave her signature. 53

 Famicom Donkey Kong , in contrast, adopts the full alphanumeric set

without a real need to do so. The cartridge maintains the player ’ s current

score and the overall high score, but both revert to defaults when the

system powers down. In fact, the high score is wiped from RAM even on

a soft reset. Beyond the score displayed along the upper portion of the

screen during demo and game play, there is no high score leader board,

no rankings, nor any meaningful score persistence. Unless a player left

the machine running continuously as in an arcade (an unlikely scenario

for home play), the scores reset. Players could not enter their initials, so

the hi-score lacked any competitive attribution. If Nintendo had elimi-

nated the tiles for letters that never appear onscreen, 54 they could have

liberated nine slots of pattern table memory, which coupled with the

thirty-odd tiles of unused space in the sprite pattern table, might have

allowed them to restore a few of the port ’ s deleted animations.

 Missing Pies

 While interstitial animations were arguably supplemental to Kong ’ s core

gameplay, the port ’ s most significant cut was an entire stage — the

[76]

so-called “ pie factory, ” nicknamed after the cement trays that roll along

multiple tiers of shifting conveyor belts. In arcade Donkey Kong, the pie

factory was stage 2, directly following the construction site. 55 It was also

the most visually and programmatically sophisticated of the four stages,

since belts shifted direction, ladders raised and lowered, and obstacles

and enemies spawned from multiple locations. Even Kong glided left and

right as the belts turned — a necessary visual cue since the belts themselves

did not animate (though their end caps did rotate).

 Conveyor movement was likely the biggest barrier to stage 2 ’ s inclu-

sion. Since Kong was a sprite in the arcade version, dragging him along

the belts was a matter of simple coordinate updates. For home platforms

with smaller sprites or harsher sprite-per-scanline restrictions, porting

this behavior was challenging. The Atari 800 port included the pie factory,

but left Kong stationary. The DOS and Apple II ports scrolled Kong appro-

priately, but allowed his tiles to merge with the ladders as he passed by.

Between the two Commodore 64 ports, only Atari ’ s featured a sliding

Kong, 56 but he stood motionless as the conveyor carried him to and fro.

On the Famicom, shifting Kong ’ s position via background tiles would

require either expending large numbers of tiles to increment his body

within the name table grid, much like the girder inclines, or a sophisti-

cated mid-screen scrolling effect that is practically impossible without

added cartridge hardware.

 Despite these programming challenges, there is a code-level clue that

Nintendo at least considered including the pie factory. Famicom Donkey

Kong reserves an address in RAM ($53) to hold the current stage variable,

which may contain three valid values — 1, 3, or 4 — that correspond to the

construction site, elevator, and rivets stages, respectively. Value 2 is con-

spicuously absent. With an emulator, it is possible to manually “ poke ”

stage 2 during gameplay, creating a glitchy hybrid of game elements from

all three stages: barrels fall, a duplicate Kong (with improper palette) is

on the center of the top platform, and Mario can plummet through invis-

ible elevators. Though no graphical evidence remains from the excised

pie factory stage, the mismatched behaviors and reserved slot in RAM

indicate the programmers at least experimented with its inclusion.

 In 2010, Nintendo officially rereleased Famicom Donkey Kong pre-

loaded on the PAL Wii as part of the 25th anniversary of Super Mario Bros . 57

The updated ROM (i.e., game image) ran on the Wii ’ s Virtual Console via

emulation with a few minor visual differences from the NES/Famicom

version, among them a revised title screen that read “ © 1983 – 2010 NIN-

TENDO ” instead of “ © 1981 NINTENDO CO., LTD. ” 58 But most surprising

in the Wii rerelease was the return of the pie factory in its proper position

2 Ports [77]

at stage 2. The update also reinstated a few interstitial animations — once

Mario reaches the top of each platform in the first three stages, Donkey

Kong grabs Pauline and carries her up the ladder. However, none of the

opening cinematics or stoner favorite “ How High Can You Get? ” screens

were included. Similarly, Kong ’ s tiles remained unaffected by the shifting

conveyor belts on his platform — though the programmers cleverly chose

not to animate the end caps, opting for a diegetic mechanical solution to

a technical limitation.

 But how were Nintendo ’ s retroactive additions possible? After a few

industrious hackers at Lost Levels managed to extract the Wii ’ s Donkey

Kong ROM and examine its contents, 59 they found that the ROM no longer

fit the NROM profile — rather, it was updated to the more spacious CNROM

mapper (chapter 6), allowing for 32KB of bank-switchable PRG- and

CHR-ROM, which in turn provided ample space for additional stage logic

and animation tiles. Disassembly of the revised ROM revealed that much

of the source code was identical to the 1983 release, with a few rather

slapdash patches to shoehorn stage 2 into the existing game structure.

(Accordingly, poking “ 2 ” into the current stage variable in the 2010 revi-

sion now produces expected glitched behaviors, e.g., barrels moving like

cement pies.) Based on the disassembly ’ s structure, Lost Levels forum

members conjectured that Nintendo hacked their own ROM image rather

than digging up the original source code. 60

 The pie factory ’ s inclusion also makes the Famicom ’ s per-scanline

sprite limits glaringly obvious. Since the cement trays convey along flat

horizontal planes, there is considerable flicker when multiple trays share

the same platform. Barring the other technical reasons Nintendo may

have chosen to drop the cement factory, the rampant flickering likely

helped ease the decision of which stage to omit. All things equal, it made

sense to drop the stage that suffered the most glaring visual drawbacks.

 Binary Kill

 Donkey Kong received one other notable amendment during the porting

process: its infamous kill screen. Due to a programming oversight in

 Donkey Kong ’ s code, arcade play cannot progress past level 22 (in-game,

each level equals one cycle of multiple stages). The BONUS timer, which

serves as the countdown clock for each stage, is calculated by multiplying

the current level number by ten then adding forty. 61 Once the player

reaches level 22, the calculated result exceeds the maximum value of a

single byte, $FF (or 255). Rather than catching the byte overflow and

adjusting accordingly, the value wraps around to zero and loads the BONUS

[78]

with inadequate time to finish the stage. After a few seconds of play,

Jumpman halts, spins, and dies. Donkey Kong ’ s kill screen earned

widespread attention thanks to the 2007 film King of Kong , since the

programming bug set a hard limit on high scores. Unlike many arcade

games, competitors cannot play Donkey Kong until they are too tired to

continue or the score counter resets. Besting the world record requires

careful strategy to maximize the score before the kill screen occurs.

 Though arcade and Famicom Donkey Kong do not share the same

source code, the latter remarkably “ ports ” the kill screen. The difference

is that the Famicom version delays its appearance for far longer. 62 In addi-

tion to the current stage variable, the game also stores a separate variable

in RAM for the current level. Each time the player completes the three-

stage cycle (girders, elevators, rivets), the level variable increments.

(Internally, the level variable initializes to 0, but displays onscreen as L1.)

The BONUS counter can only be one of four values — 5000, 6000, 7000,

or 8000 — corresponding to current level values 0, 1, 2, and 3. To deter-

mine the BONUS counter (in reality, its first two digits, since the second

two are always zero), decimal value 4 is subtracted from the current level

variable. If the result is negative, a code branch occurs and the leading

digits are fetched from data stored in a small lookup table. Any positive

result (as well as zero) ignores the fetch and loads the BONUS with its

maximum value. Ideally, any level beyond the third should yield a BONUS

of 8000.

 The subtraction check functions properly until the level variable

reaches $84 (or 132). Subtracting $04 from this value yields $80. Though

it appears the result should pass the positive check, it does not, due to

a quirk of binary math. A single byte can represent either unsigned

values 0 to 255 or signed values − 127 to 127. The latter choice is called

 two ’ s complement and relies on a special binary bit flag to determine the

appropriate sign. Two ’ s complement reserves the leftmost bit of a byte to

indicate either positive (0) or negative (1) numbers. When Donkey Kong ’ s

BONUS check yields $80, whose binary form is %1000000, the CPU may

evaluate the number as either 128 or − 128. Since the programmers did not

include a check for the negative flag, the CPU reads a two ’ s complement

value, causing the code to branch improperly and fetch the wrong leading

digits for the BONUS timer (04). With only 400 time units allotted,

Jumpman cannot reach the top of the stage. Consequently, level 133

(internally, 132) is Famicom Donkey Kong ’ s kill screen.

 It is likely the two ’ s complement edge case was not a pressing concern

for Donkey Kong ’ s programmers. Few people have the skill or patience

to endure the 300-plus stages buffering the player from Mario ’ s

2 Ports [79]

binary-induced death spin. In fact, the programmers appear to have

accommodated fewer than ten level iterations. The subroutine that fetches

the background tile to display for the current level has no safeguard to cap

its incrementing beyond numeral 9. Even if it did, the screen layout does

not provide the adequate space to display double-digit values in the level

bracket. And since the numeral tiles are stored at the beginning of the

background pattern table, the code uses an index value to seek the appro-

priate digit to display on screen. 63 Venturing beyond level 9 first causes

the graphic index to cycle through the alphabet tiles, then the sequential

array of background graphics. Far before they made it to the kill screen,

the finest Donkey Kong players would have noticed peculiar tile fragments

in the level display — a section of barrel or a bit of Kong ’ s body — indicating

that they were in dangerous, uncharted territory.

 Beyond Jumpman

 Few home consoles were capable of porting Donkey Kong accurately. Dedi-

cated hardware was impossible to match with an all-purpose machine, but

Nintendo ’ s console and cartridges were valiant efforts. While NROM ’ s

base outlay of PRG-ROM and CHR-ROM bested the arcade giant, the lat-

ter ’ s larger sprite size and impressive sixteen sprite-per-scanline limit

forced Nintendo to make a pattern table concession that snowballed into

cutting tiles, animations, and ultimately an entire stage.

 Nonetheless, the NROM board served the technical needs of Nin-

tendo ’ s opening salvo of games, supporting excellent arcade conversions

that would stabilize the Famicom ’ s launch, prove its hardware mettle, and

attract the attention of third-party developers. Moreover, Donkey Kong ’ s

dual appearance in arcades and on the Family Computer bookended a

rapid corporate transformation. In two years, Nintendo evolved from

eclectic Japanese toymakers to global players in the videogame industry.

And they did so by deftly navigating a series of challenging ports —

geographically, culturally, and technologically.

 The Family Computer was designed with Donkey Kong in mind, but it

was engineered with affordances that looked beyond Donkey Kong toward

new styles of play. None of Nintendo ’ s three Famicom launch titles

required scrolling, for instance, but Ricoh and R & D2 designed a PPU

capable of panning across name tables with ease. By all accounts, Nin-

tendo was not looking to capitalize solely on their arcade successes; they

were looking ahead to the possibilities of future game experiences. There

was more in store for Jumpman.

 Overall, if anybody can bring video games back, Nintendo, with its

new fourth-generation game system, will be the one.

 — Edward Semrad, Milwaukee Journal , Oct. 5, 1985

 I only want three things for Christmas, this year. I ’ m getting older so

I don ’ t want any toys. I want a ten to nineteen inch color television, a

jean acid washed, insulated jacket and last but not least the Nintendo

Entertainment System.

 — Andrea Way, Evening News: Letters to Santa , Dec. 24, 1987

 Today, the debut of a videogame console is a worldwide media event.

Years prior to its appearance, the rumor mills churn over leaked details

from microchip vendors, overseas assembly lines, and game developers

tapped to receive advance development kits. Hardware prototypes are

revealed during industry showcases like E3, Gamescom, or the Tokyo

Game Show. Technical specs are scrutinized and compared. Preview

builds of “ next generation ” software are unveiled to showcase the supe-

rior capabilities of the new machine. Excitement and anticipation build

until the console ’ s launch date, a term borrowed from the maiden

voyages of nautical craft. Hyperbolic perhaps, but an apt comparison —

 these multi-million dollar experiments in cutting edge technology are

jettisoned into the treacherous waters of free markets to either sink

or sail.

 3 Entertainment System

[82]

 In the early 1980s, there was no such mania. Videogame consoles

rarely had publicized launch dates. Their manufacturers introduced them

to department and toy stores like any other new product, typically testing

the waters in select target markets before moving on to a nationwide — not

worldwide — rollout. A simultaneous global launch was both financially

risky and a significant manufacturing and distribution challenge. This is

still true today. While the “ Big 3 ” publishers — Sony, Nintendo, Micro-

soft — manage to launch their home consoles “ worldwide, ” the adjective

typically describes Japan, Western Europe, and the United States. India,

Asia, Australia, South America, and other parts of the world receive new

consoles on a staggered schedule, often years after their initial launch

date. Portable systems and videogame software tend to follow traditional

distribution models, launching in their native market first, then dissemi-

nating across the globe. The difference between staggered launches of the

1980s and the 2010s is timing. While American consumers may wait six

months to receive the latest iteration of Nintendo ’ s DS handheld, they had

to wait years for the Famicom to reach Western shores. And in reality,

there were few waiting for it at all. Save for a handful of the most devoted

videogame importers or games journalists, nobody outside Japan had ever

heard of the Family Computer.

 When the Famicom did arrive as the Nintendo Entertainment System,

or NES, it looked radically different than its elder sibling. A subdued

monochromatic box replaced the colorful red and white plastic toy. It was

no longer a family computer, but an austere “ entertainment system, ”

meant to sit inauspiciously among one ’ s VCR, stereo system, and cable

box. The Famicom ’ s colorful cartridges — now stark gray “ Game Paks ” — no

longer protruded from the top of the console, but slid discreetly into

the front of the system. The console ’ s packaging floated the system and

its peripherals against a gradient of deep blue melding into a star field

(not unlike the backdrop of Radar Scope) and marketed its contents with

assertive adjectives: “ Control Deck, ” “ Deluxe Set, ” “ Action Set, ” “ Power

Set, ” “ Super Set, ” and “ Challenge Set. ” It was all serious, futuristic busi-

ness — a strategy calculated over months to introduce Nintendo ’ s domestic

console to the world at large.

 American Crash

 It took a remarkable mixture of talent, timing, and tenacity to bring

the NES to life. By all industry accounts, Nintendo was heading toward

a massive failure far beyond the scale of a few thousand unsold Radar

Scope cabinets. In 1983, when the Famicom debuted in Japan, the U.S.

3 Entertainment System [83]

videogame market was tumbling toward disaster, threatening to wither

away just as it had begun to bloom.

 The so-called “ videogame crash ” of 1983 is well-trodden in surveys

of videogame history. 1 A complex series of economic, industrial, and cul-

tural factors coalesced into the systematic collapse of the industry ’ s major

players. But prior to the crash, the industry was booming. In 1981, arcade

revenues exceeded $4 billion — Pac-Man alone accounted for $150 million. 2

By 1983, home videogame sales, then dominated by Atari ’ s eighty percent

market share, contributed an additional $3 billion, a more than sixfold

increase from revenues in 1981. 3

 Atari ’ s explosive success became part of their downfall. With millions

of consoles in American homes, the Atari VCS was the target platform for

first-rate, second-rate, and cut-rate software alike. Beyond its in-house

development teams, Atari had little control over the quality of software

that reached its console. The flood of mediocre games surged so steadily

that it became difficult for consumers to differentiate quality from shov-

elware. When Atari bet big on licensed properties like Pac-Man and E.T. ,

then shirked on the time allotted for programmers to produce quality

code, the situation worsened. 4 Retailers slashed prices on poor or over-

printed games, creating a race to the bottom for software prices that made

it difficult for quality games to stay profitable.

 Supply-side troubles, again prompted by the videogame boom, led to

unwieldy product lead times and increased competition among console

manufacturers. Chip shortages compelled toy companies to hedge their

inventories, forcing excess product into the retail channel. Videogame

hardware crowded warehouses and store shelves. As more competitors

followed the gold rush, advertising budgets skyrocketed. 5 The growing

personal computer market exacerbated these effects, as those manufac-

turers were now sourcing the same components for their systems while

competing for the same consumer dollars. PC encroachment likewise

spurred videogame manufacturers hoping to capture part of the emerging

market to produce ill-considered hybrids, like the Coleco Adam, that

failed to distinguish themselves as either capable computers or video-

game systems.

 Cultural differences between external management and free-

wheeling Silicon Valley programmers were also coming to the fore.

Development cycles were compressed to capitalize on the boom, while

game designers were given little or no credit for their work. Videogame

companies were acquired by large media and communications conglom-

erates. In a symbolic move, Nolan Bushnell, Atari ’ s founder and a figure-

head for the early videogame industry, left two years after Warner acquired

[84]

his company. As videogames became big business, the atmosphere of fun,

creativity, and innovation gave way to profit margins, corporate infra-

structure, and market demands.

 Likewise, public perception of videogames was faltering. As children

and teens spent increasingly more time in arcades or in front of TV

screens, parents and legislators became concerned for their moral forti-

tude. Surely the barrage of twitchy, fast-paced graphics and violent

gameplay was causing long-term harm. As Donovan recounts in his

survey of videogame history, even the U.S. Surgeon General Dr. Everett

Koop weighed in: “ Everything is ‘ zap the enemy, ’ there ’ s nothing

constructive. ” 6 Arcades began to face tighter restrictions, even outright

bans. All the pieces came tumbling down, as Kline et al. explain in Digital

Play :

 The reckoning was brutal. What began as a general slow-down in

demand careened over the brink into a vertiginous crash that all but

wiped out the industry in North America. Time Warner/Atari sales of

two billion dollars in 1982 dropped forty percent the following year

and the division lost $539 million. The crisis worsened because com-

panies had leveraged capital in anticipation of constantly escalating

sales. By 1984 revenues had dropped to less than half of what they had

been two years before. 7

 Several promising U.S. consoles and companies were caught in the

ensuing death spin. The ColecoVision, despite its early success as the lead

console for arcade ports, was swept into the dustbin. GCE/Milton Brad-

ley ’ s innovative Vectrex console, featuring a built-in vector display, was

abandoned before it had a chance to find an audience. Even Atari ’ s 7800,

a marked improvement over the VCS that rivaled the Famicom ’ s graphic

capabilities, drowned in the wake of the crash.

 Journalists speculated that the console videogame craze was giving

way to a PC-centric future as computers reached price parity with video-

game hardware. In 1983, the New York Times reported that, “ For $75 to

$200, consumers can buy a basic computer that can play games — although

without some of the advanced graphics available on video game machines —

 and can also serve some educational functions and figure the family

finances. Computer makers are betting that consumers will sacrifice

better game-playing for more serious pursuits. ” 8 In the United States, the

future for dedicated videogame consoles seemed bleak in the face of

cheaper, all-purpose machines.

3 Entertainment System [85]

 Advanced Video System

 With the U.S. videogame industry in steep decline, Nintendo knew that

they would not be able to export their Family Computer without signifi-

cant alterations. Toy retailers were fleeing at the slightest whiff of a new

videogame console. They had learned a calamitous lesson with Atari that

they were not keen to repeat. Nintendo ’ s success would require a radical

rethinking of the Famicom ’ s design, more consistent with the trends

of the U.S. PC, toy, and consumer electronics industries than the tastes of

Japanese children.

 Nintendo ’ s first attempt at the American Famicom, dubbed the

Advanced Video System (AVS), debuted at the January 1985 Winter

Consumer Electronics Show (WCES) in Las Vegas. 9 The AVS was an

inspired sample of 1980s futurist industrial design, prompted by Nin-

tendo of America ’ s request that designer Lance Barr make the U.S. version

of the console “ high-tech sleek yet accessible, ” 10 more computer than toy.

Ironically, his initial concepts were far more “ family computer ” than the

Famicom ever turned out to be.

 An early concept sketch of the AVS depicted a black unit with a sloped

trapezoidal shape, wider in the front than back, with controllers docked

along its upper edge, separated from the remainder of the system by a

narrow track of ridged black plastic. 11 Barr axed Nintendo ’ s patented plus

controller for a square plate with red arrows indicating the four cardinal

directions, but revived the Famicom ’ s ill-fated square buttons. 12 And

like the Famicom, only the leftmost player one joypad included Select

and Start buttons, though they were stacked vertically, aligned to the

immediate right of the directional pad rather than the center of the joypad.

 Interestingly, two keyboards dominated the console ’ s face. The first

had alphanumeric characters set flush with the surface but scalloped

slightly to accommodate typing. Below were two rows of additional keys

arranged like a piano keyboard, covering nearly two octaves and a half.

The “ sharps ” were labeled numerically from one to twelve, allowing them

to pull double-duty as standard PC function keys (labeled F1 to F12). A red

Nintendo logo emblazoned the left corner of the system, a stark emblem

on an otherwise monochromatic console. Overall, the concept was dark,

sleek, and angular, ironically reminiscent of the MSX PCs popular in

Japan.

 Though Barr ’ s initial concept sketch was never realized, the final AVS

prototype shown at WCES carried over several of its design cues, albeit

in an exploded view. Barr scrapped the integrated system in favor of a

[86]

modular design: three main components — control deck, keyboard, and

tape deck — were meant to stack together symmetrically and, Voltron-like,

form the complete Video System. The concept sketch for this version of

the AVS revealed a mildly enhanced palette of white, gray, and black, with

red accents — the same palette used for the final NES hardware.

 But like the previous concept, the keyboard was still the largest com-

ponent, meant to supply the base for the tape and control decks, 13 whose

combined widths matched its footprint. The text in the AVS concept

drawing labeled the top components as the “ Tape storage subsystem ” and

the “ Video game subsystem. ” These labels reflected Nintendo ’ s shifted

focus in the American market — the videogame component was now a sub-

system of a complete computational device, rather than the central unit.

It was a computer that also played videogames, rather than a console with

optional PC features. Likewise, the tape deck was meant to be one part of

a larger ecosystem of ambitious peripherals, including a standalone

musical keyboard, a futuristic update of the Famicom light gun, and an

arcade-style joystick. Barr also planned to obviate the nested controllers —

 and cords altogether — with infrared.

 Barr purposely designed the AVS prototype to “ look more like a sleek

stereo system rather than an electronic toy, ” 14 integrating easily with

similar components in a home entertainment system. When not in use,

the console ’ s bevy of wireless peripherals and modules could be stowed

discreetly. Nonetheless, the potential buyers at WCES were not impressed

by the AVS prototype. 15 The design was both too evocative of a PC and too

complex for a toy, a worst-of-both-worlds scenario that failed to please

either potential market. As Sheff explains, “ No one cared about the remote

control, and they hated the keyboard — a turnoff to kids, industry executive

believed (parents were irrelevant). The AVS had all the problems not

only of the video-game business but of computers too. No one would

touch it. ” 16

 Barr simplified the design. The tape deck, keyboard, and joystick

disappeared. The infrared was nixed for cost and reliability reasons, so

cords returned. 17 A number of new concept sketches appeared, each

maintaining the simple palette, but experimenting with all manner of

surface shapes, controller storage solutions, and hardware switches. But

ultimately, the flattened control deck design prevailed.

 Based on all extant documentation, blueprints, sketches, and proto-

types of the Nintendo Entertainment System, it appeared as though the

final console would have a “ top-loading ” cartridge slot like the Famicom.

A pre-release promotional photograph sent to U.S. journalists in 1985

(figure 3.1) showed the slimmer AVS style control deck, a wired AVS light

3 Entertainment System [87]

 3.1 An early NES promotional image featuring the prototype AVS. (Source: Marty

Goldberg, personal collection)

gun, wired versions of the prototype controllers, a new robot peripheral,

and an unlabeled game (Duck Hunt appears onscreen) that matched the

dimensions of a Famicom cartridge. 18 It was not until late in the design

process that Barr would once again have to rethink the console ’ s form to

accommodate one final — but major — revision.

 Zero Insertion Force

 In most cartridge-based consoles prior to the NES, videogames were

inserted vertically, typically by slotting the cartridge into an exposed port

that contained a card edge connector. Atari, Magnavox, Coleco, and Sega

had all used similar loading mechanisms in their consoles. 19 Nintendo did

the same with the Famicom and looked to follow suit for the AVS. But

convention had a cost — a cartridge protruding from the top of an appliance

was unequivocally a videogame console and Nintendo was adamant about

positioning their new video system as something different. At the elev-

enth hour, Nintendo devised an alternative that literally hid the cartridge

from view.

 Nintendo engineer Masayuki Yukawa invented a novel “ low insertion

force connector ” — essentially a spring-loaded cartridge bay — to guide

cartridges toward the internal card edge connector, now mounted

horizontally. Users flipped the hatch on the front of the NES, held the

[88]

cartridge by its ridged grip, eased it into the console until they met

resistance, then pushed it down into the hollow recess of the machine. If

loaded properly, the tray locked into place.

 The mechanism was unlike any prior console design and handily kept

the cartridge out of sight. 20 But the cart ’ s atypical travel and orientation

warranted additional redesigns. As Barr explained, the pivoting tray

required a roomier console interior “ designed around the movement of

the game, ” as well as a lengthier cartridge shell: “ Many of the features

remained, such as the two-tone color, left and right side cuts, and overall

 ‘ boxy ’ look, but the proportions changed significantly to accommodate the

new edge connector. ” 21

 Nintendo ’ s U.S. patent for the front-loading design claimed that

their “ zero insertion force ” (ZIF) mechanism solved a number of

problems: it protected the circuit board from “ spurious radiation, ” it

minimized “ the abrasion of the connecting electrodes of the circuit board

of the memory cartridge, ” and required less force for a small child to

operate. But Nintendo ’ s mechanical solution to a market problem

ultimately spawned more problems than it solved. The ZIF ’ s spring mech-

anism and pivoting tray introduced more moving parts, which in turn

introduced a greater potential for mechanical breakdown. The delicate

spring mechanisms either gave way over time or enabled too much contact

between the cartridge PCB and NES motherboard. The 72-pin connector

that coupled with the game pak ’ s exposed ROM would bend or corrode

over time, leading to either the NES ’ s infamous blinking screens or a

 3.2 The final design of the Nintendo Entertainment System. (Source: Evan Amos,

Wikimedia Commons)

3 Entertainment System [89]

mess of garbled graphics (indicating a poor connection between the CPU/

PPU and cartridge ROM).

 An inherent design flaw of all edge connecting game cartridges

exacerbated the issue. 22 The exposed edge of the PCB was more susceptible

to dirt, moisture, and all manner of unforeseen abrasions a child could

invent. Nintendo aimed to preempt mishandling by including coated

vinyl dust covers to store games, similar to slip covers used to protect VHS

tapes, vinyl records, or Nintendo ’ s own Famicom disk cards. Though

Famicom owners experienced their own errors due to dirty or corroded

contacts, the top-loader design and swiveled plastic cover made them less

prevalent. Tellingly, Famicom games were never sold with vinyl sleeves.

 NES owners invented ad hoc solutions to “ fix ” the machine as it

gradually became less reliable: blowing into cartridges, sliding the cart in

at strange angles, wiggling the cart inside the tray, or simply giving the

console a few well-placed smacks like a malfunctioning CRT. Ironically,

every cart had a cautionary warning sticker affixed to its back that read,

 “ DO NOT CLEAN WITH BENZENE, THINNER, ALCOHOL OR OTHER

SUCH SOLVENTS. ” It was a reasonable advisory for children, but an alco-

hol-soaked cotton swab was far better at cleaning dirty contacts than

blowing along the exposed PCB edge. Nintendo even used the flaw as a

market opportunity, patenting and selling authorized cleaning kits —

 essentially a custom alcohol-soaked cotton swab — and opening official

service outlets throughout the United States. Even today, a vibrant after-

market of 72-pin edge connector replacements has arisen to repair the

inevitable effects of the ZIF mechanism.

 Nintendo ’ s miscalculated engineering unwittingly became part of the

NES ’ s folklore. Blowing along the exposed edge of the cart (which does

more harm than good) has become part of the lingua franca of the Nin-

tendo Entertainment System. 23 But as we will see in the next section, it

was not only the ZIF that caused consoles to go haywire — another NES-

exclusive revision would further contribute to the millions of blinking

screens.

 10NES Racket

 In 1986, the Famicom received a disk drive peripheral that supported

expanded ROM space, cheap rewriteable media, and the ability to save

game progress without unwieldy passwords. The Family Computer Disk

System (FDS) included numerous anti-piracy measures, both physical

and digital, that users, hackers, and pirates summarily circumvented. As

a result, Nintendo eventually dropped support for the FDS and opted to

[90]

develop cartridge-based augmentations that quickly surpassed the ben-

efits of disk-based media (chapters 5 & 6).

 A U.S. patent for a disk-based peripheral indicates that Nintendo

considered exporting the FDS to the United States. 24 Presumably, the

add-on would have connected to the NES via its expansion port, located

on the bottom of the console beneath a snap-on plastic cover. The 48-pin

port had lines for audio I/O, joypad reading, and CPU interface, among

other functions, 25 so it would have been capable of supporting an FDS-like

device, along with many other peripherals, much like the Famicom ’ s own

expansion port. However, by the time the patent was awarded, the Family

Computer Disk System was already on the decline. The U.S. FDS never

came to fruition and the expansion port remained unused for the duration

of the console ’ s lifespan. 26

 Nintendo ’ s regional piracy problems were not limited to disks.

Though significantly more costly for pirates and hackers, cartridges could

be dumped and copied. Manufacturers of bootleg cartridges thrived (and

continue to thrive) in markets located outside Nintendo ’ s primary North

America/Europe/Japan triumvirate. Russia, for instance, never received

an official Nintendo Famicom release. Instead, the Dendy, a Chinese-

produced “ Famiclone ” system distributed by Russian company Steepler,

arose to meet market demand, sustaining a vibrant ecosystem of pirate

hardware, software, television shows, magazines, and even an official

mascot — the Dendy elephant — throughout the 1990s. 27 Architecturally, the

Dendy was a peculiar hybrid, similar to a PAL NES, albeit with a faster

clock speed (1.77MHz) and a truncated VBLANK period. 28 Its exterior case

and cartridges, however, resembled the Famicom ’ s, though it lacked the

trademark red accents. 29

 Because of this Pandora ’ s box of hardware and software bootlegs

afforded by Famicom ’ s lack of copyright protection, Nintendo aimed to

preempt all threats of piracy, importing, and unlicensed software with the

NES redesign. Their solution was the Checking Integrated Circuit (CIC),

or lockout chip, a custom IC borne inside every NES console and game

pak. 30

 The CIC was a 4-bit microcontroller with its own registers, instruc-

tion set, and ROM. 31 When players inserted game paks into the NES, each

respective lockout chip executed a special handshake algorithm, known

internally as 10NES. Both cart and console contained identical CICs, but

they performed different roles based on how they were wired to one

another. Among the CIC ’ s sixteen-point pinout, there was one pin apiece

devoted to data input, output, and a lock/key setting. 32 Console and cart

chips could both send and receive data from one another when their I/O

3 Entertainment System [91]

pins were wired to the other ’ s opposing pins, but the former chip served

as the “ lock ” while the latter functioned as the “ key. ” The lock was wired

to a capacitor whose output was used as a random seed to pick from among

sixteen possible encryption streams. The lock relayed the stream selec-

tion to the key, then both had to output that stream while monitoring

the input from one another to ensure a match. If a conflict occurred, the

lock triggered a system reset, which also reset the CIC communication.

Consequently, if a player inserted an unauthorized (i.e., keyless) cart, the

reset cycle would repeat indefinitely.

 With the CIC and 10NES, Nintendo implemented an early form

of digital rights management (DRM), a hardware/software encryption

mechanism meant to deter unauthorized access to their proprietary

hardware. Of course, under the auspices of consumer and copyright

protection, they had also barred unauthorized developers from produc-

ing NES software. Furthermore, thanks to the CIC ’ s potential for

malfunction, Nintendo had engineered another means for the NES to

break down.

 In a study of the CIC ’ s influence on the establishment and evolution

of DRM, O ’ Donnell argues that, “ The 10NES chip in the NES … shifted

user and consumer understandings of and expectations for videogames in

ways that differ from music, movies, and other forms of emerging digital

media technologies. ” 33 He adds, “ In nearly all respects, DRM was birthed

by the videogame industry with very little media user and consumer

resistance. ” 34 While it is true that the CIC forcibly revamped the video-

game industry ’ s licensing structure and served as a model for future

copyright protection mechanisms, it is questionable how much “ con-

sumer understandings ” were altered, especially by implicating them as

passive participants in a copyright sea change. CICs were housed in cart

and console interiors. Few customers had any idea that the lockout chips

existed. The only artifact of their operation was system failure. To the end

user, the cycling resets triggered by a failed CIC handshake was identical

to those caused by a bent or corroded ZIF mechanism. There were no error

messages or user prompts indicating whether the game, hardware, or user

was at fault.

 Beyond thwarting bootleggers (and legitimate users), the CIC ensured

a competitive advantage by enforcing Nintendo ’ s strict licensing

practices. In order to avoid their industry predecessors ’ fates in the U.S.

videogame crash, Nintendo erected legal and hardware barriers to protect

the integrity of their software catalog. Only sanctioned licensees could

produce cartridges for the NES and said licensees were subject to

stringent rules governing both the manufacture and content of their

[92]

videogames. Developers were unaccustomed to such strict control after

the software free-for-all of the late 1970s and early 1980s. European

developers in particular balked at the restrictions, in most cases refusing

to be cowed into compliance and instead focusing their efforts on the

burgeoning PC market. 35 U.S. developers had no such luxury, as the NES

quickly came to represent the videogame industry in toto. Nintendo ’ s

early wager on the NES paid off; they filled the vacuum of the post-crash

market and seized control mercilessly, lording over vendors, retailers,

and developers alike. 36

 Exclusive manufacturing rights ensured Nintendo ’ s supply control,

but it also exposed them to supply-side risks. An industry-wide chip

shortage in 1988 impacted not only Nintendo ’ s first-party game supply,

but all of their subsidiary licensees. 37 Zelda II ’ s American release, for

instance, was delayed for months, while third-parties suffered worse,

with delays of a year or more. Some publishers claimed that Nintendo was

purposefully throttling the supply chain to artificially inflate demand. 38 A

CES report from the October 1988 issue of Electronic Game Player conveyed

the growing sense of dissatisfaction surrounding Nintendo ’ s licensing

practices:

 Since they claim they have only limited quantities of the necessary

chips, they are allocating only a small percentage of the third-

party licensees ’ original orders (thus, if SNK originally ordered

500,000 copies of Iron Tank , they ’ re provided with possibly as few

as 50,000 copies). This is already causing tremendous supply and

demand problems (take Double Dragon for instance), since you won ’ t

be able to find copies of the games for months after their first

production. 39

 Sega and Atari saw this as an opportunity to capitalize on developer dis-

satisfaction. Electronic Game Player further reported that both companies

 “ approached several third-party manufacturers in an attempt to persuade

them to their machines. ”

 CES ’ 88 was not Atari ’ s first attempt to undermine Nintendo. In 1986,

displeased by Nintendo ’ s licensing demands, Atari employees worked in

earnest to reverse engineer the lockout chip. They first attempted to

intercept and decode the communication between cart and console CICs,

but that proved too difficult. They then decapped the chip, chemically

peeling apart the silicon substrate to study its underlying physical struc-

ture. According to subsequent court accounts, Atari ’ s engineers failed to

crack the code in either effort. 40 In December 1987, Atari grudgingly

3 Entertainment System [93]

agreed to Nintendo ’ s licensing arrangement and produced three sanc-

tioned game paks: Pac-Man, Gauntlet, and R.B.I. Baseball . However, by

early 1988, Atari ’ s lawyers resorted to social engineering to break

Nintendo ’ s code, as the U.S. Court of Appeals ’ decision explained:

 Atari ’ s attorney applied to the Copyright Office for a reproduction of

the 10NES program. The application stated that Atari was a defendant

in an infringement action and needed a copy of the program for that

litigation. Atari falsely alleged that it was a present defendant in a case

in the Northern District of California. Atari assured the “ Library of

Congress that the requested copy [would] be used only in connection

with the specified litigation. ” 41

 At the time, the threat of litigation was a lie, but Atari had the bravado to

make it true. They sued Nintendo under antitrust law in December 1988,

citing unfair monopolistic practices. Meanwhile, Atari ’ s engineers had

successfully produced the Rabbit chip, a microprocessor that mimicked

the 10NES key. 42 Nintendo countersued in 1989, claiming breach of con-

tract and patent and trademark infringement, petitioning the district

court of appeals to halt further production of Tengen cartridges. Nintendo

prevailed; the courts ruled that Nintendo designed an “ original program ”

and that 10NES contained “ protectable expression ” subject to copyright

law. 43

 Other unlicensed cartridge developers devised inventive means to

outwit 10NES without resorting to Atari ’ s subterfuge. Dan Lawton, a pro-

grammer for Color Dreams, managed to stun the CIC temporarily with a

 − 5V surge as the NES booted. 44 Consequently, Color Dreams carts, housed

in distinctive powder blue cases, included a DC voltage pump mounted

on the PCB to permit their games to run unhindered. American Game

Cartridges (AGC), American Video Entertainment (AVE), Camerica, Bit

Corporation, Active Enterprises, and Bunch Games (a low-price subsid-

iary of Color Dreams) employed similar mechanisms in their cartridges.

 Australian company Home Entertainment Suppliers (HES) ported

many of the aforementioned companies ’ unlicensed titles for play on the

Australian NES. Contrary to the common usage of the word, HES “ ports ”

did not involve software conversion from one hardware architecture to

another. Instead, HES transplanted game ROMs into new cartridge enclo-

sures, swapping the CIC stun for a bizarre “ piggyback ” case design. In lieu

of shocking the lockout into submission, players could attach a licensed

NES game pak to the piggyback cart, using the former as a pass-through

device that could deliver the necessary encrypted handshake. The kludgy

[94]

workaround actually solved a new problem facing unlicensed developers.

Once Nintendo got wind of the voltage spike technique, they released NES

revisions that defeated the CIC stun, once again rendering unlicensed

games unplayable. The piggyback cart ’ s Trojan horse solution obviated the

need to defeat the CIC at all.

 The debacles surrounding the ZIF and the CIC eventually led Nin-

tendo to discard both when the Nintendo Entertainment System model

NES-001 was revamped as the NES-101 in 1993. Nintendo shrunk the

console considerably — thanks to a “ new ” top-loading card edge con-

nector — discarded the CIC (along with region lock), dropped the RCA

composite out, and excised the expansion port. As Barr recounted:

 The redesigned NES did not use the “ zero force ” connector, but

instead relied on a direct insert connector. Form following function,

the new connector placed the game 90 degrees to the main PCB and

eliminated much of the bulk needed for the old electronics and con-

nector. The redesign was made several years after the original, which

was designed in 1984. The boxy look was out and I thought it was time

for a more sleek and inviting look.

 As a portent of future regional console unity, the NES-101 also brought

the NES and Famicom into design parity. A similarly-revised Family

Computer, the AV Famicom, was identical to the NES-101 save for its flat-

tened top (to accommodate the FDS RAM Adapter Cartridge), 60-pin

edge connector, 15-pin expansion port, and higher-quality composite

A/V output.

 Though the NES/Famicom redesign was a compact, reliable machine,

it came too late in the console ’ s lifespan. By 1993, the Super Famicom/

Nintendo was already three years old in Japan and two years old in the

United States. And though the NES-101 ’ s exterior drew cues from its

younger, more capable successor, inside it was still the same old chips

from 1983.

 Operating Buddy

 The Nintendo Entertainment System Deluxe Set, Nintendo ’ s first NES

retail bundle, was the culmination of many months ’ work of design refine-

ment and marketing strategy. The sizable box included the NES control

deck, RF switch, AC adapter, a host of instruction manuals and warranty

cards, two controllers, the Zapper light gun, and the Robotic Operating

Buddy (or R.O.B.). 45 Two bundled games, Gyromite and Duck Hunt , served

3 Entertainment System [95]

to showcase the Deluxe Set ’ s peripherals, but R.O.B. was the clear

centerpiece.

 The robotic toy was the bait that finally caught the industry ’ s interest.

When Nintendo introduced R.O.B. to the NES family, the toy industry saw

a glimmer of potential. An all-new console was a non-starter post-crash,

but a robotic playing buddy could divert consumer attention from the

NES ’ s core purpose. And in light of Nintendo ’ s long and successful past

as a toy-making company, R.O.B. made perfect sense in the NES lineup.

Unsurprisingly, Yokoi, the veteran toymaker, and his team in R & D1

helmed the project, delivering a remarkable marriage of mechanical

design and novel console interface that would appeal to consumers and

retailers alike.

 Nintendo marketing aggressively worked the robot angle — their early

promotional materials made R.O.B. the center of attention. NOA ’ s first

in-store point-of-purchase displays were oversized R.O.B. replicas,

whose illuminated torsos bore the full lineup of NES software. At Nin-

tendo of America ’ s New York launch party, “ silver-plated R.O.B.s were

strewn around the room as showpieces, ” with another oversized robot

serving as the sculptural centerpiece. 46 The first televised NES commer-

cial featured R.O.B. emerging from an egg, marking “ the birth of the

incredible Nintendo Entertainment System. ” 47 The picture of R.O.B. in a

1985 Macy ’ s ad for the NES dwarfed both the system and its games. 48 The

headline copy, “ VIDEO ROBOTS, ” was set larger than any other text on

the page, including the name of the console (figure 3.3).

 Likewise, R.O.B. ’ s purple-backlit head, glowing red LED and vacant-

lensed eyes occupied the majority of the Deluxe Set box. On the back, the

requisite posed tableau of a family crowded around a TV, transfixed by

 Duck Hunt , featured R.O.B. staring idly back at the viewer. The text on the

back promised “ The first truly interactive home video game system, ”

thanks to its futuristic pair of peripherals:

 No other video system features R.O.B. — the wireless video robot who

plays games right along with you. Or the Zapper, the amazing light-

sensing gun that puts sharp-shooting accuracy right in the palm of

your hand. This extraordinary pair of video partners interacts with

you and the screen, allowing you “ hands on ” video action.

 How these peripherals trumped other consoles ’ “ interactivity ” is unclear —

 nearly every prior console had its host of unique and bizarre accessories —

 but R.O.B. did watch the television screen alongside its human players. In

fact, the robot fulfilled the promise of Barr ’ s abandoned wireless

[96]

peripherals in a unique, if roundabout manner. R.O.B. was wireless, but

not due to embedded infrared or any other proprietary wireless protocol.

Instead, R.O.B. received its commands from the television via a sequence

of carefully timed flashes it detected with photosensitive lenses (i.e., its

eyes). However, its only means to relay commands back to the console was

through the same interface as the player — the controller. So R.O.B. did

play alongside the user as advertised, albeit in a strange circuit connecting

human, console, software, and television.

 R.O.B. ’ s body comprised a plastic hexagonal base with a central post

supporting its torso (with two attached arms) and head. The robot ’ s move-

ments were coordinated by a series of battery-powered motors and gears.

Six notches along the “ spine ” allowed R.O.B. ’ s entire torso to ratchet up

and down. The central post could also rotate to align R.O.B. with five of

the base ’ s six sides (the torso could not twist completely backward). The

same five sides were notched to accommodate accessories included with

 3.3 Excerpt from the NES Macy ’ s ad featured in the New York Times , November 17, 1985.

3 Entertainment System [97]

the game software. Attached to its torso were two articulating arms that

could open or close. Detachable hands allowed R.O.B. to grip accessories

like gyroscopes or stackable blocks. No matter how the robot twisted, its

head remained fixed, since it required a solid line of sight with the televi-

sion. One could also angle R.O.B. ’ s head up or down if its base was not on

the same level surface as the television. To ensure proper signal reception,

supported games provided a calibration step to test R.O.B. ’ s vision. If the

television picture was too bright, R.O.B. could malfunction, so a special

filter was included to fit over its photosensors.

 Gyromite was one of only two NES game paks that R.O.B. could

play. (Since Nintendo sold the console in myriad hardware/software

configurations after its initial launch, a standalone version of Gyromite

came in an oversized box that included R.O.B. ’ s accessories.) 49 A special

armature used to hold Gyromite ’ s namesake gyroscopes clipped into the

two accessory notches on R.O.B. ’ s right-hand side. The front and front-

left notches supported another armature meant to hold a joypad plugged

into the second controller port. Along this armature were two mechanical

levers that terminated in small circular “ platforms, ” one red and one

blue. When weight (i.e., a gyroscope) was placed on the platform, the lever

would mechanically depress either the A or B button on the second

controller.

 The rear-left accessory notch held a motorized spinner. Using the

included pincer hands, R.O.B. could grasp the gyroscopes and place them

inside the spinner, where they would rotate rapidly around their fixed

post. R.O.B. could then drop the spinning gyroscopes on the circular

platforms. There they could spin in place and keep the buttons held

down for a short time, until they spun down and toppled. If the player was

agile enough, they could instruct R.O.B. to drop both gyroscopes in turn,

allowing the A and B buttons to activate simultaneously.

 Gyromite ’ s gameplay involved guiding a balding, lab coat-clad charac-

ter named Professor Hector (Player 2 controlled Professor Vector) over a

series of multi-tiered platforms blocked by blue and red cylindrical

columns and a number of roaming birdlike foes called Smicks. The player

had limited interaction with Hector — the professor could move horizon-

tally across platforms, move vertically along ropes, and pick up turnips to

drop and distract his adversaries. If Hector collected the bundles of dyna-

mite scattered throughout the stage before the allotted time expired, the

round completed and the next stage began. However, the red and blue

columns served as gates blocking Hector ’ s progress. The only way to raise

and lower gates was to instruct Hector to issue commands to R.O.B., his

robot companion.

[98]

 In many NES games, pressing Start paused the game. In Gyromite ,

Start triggered a ready state, indicated visually by the screen ’ s background

changing from black to blue (what the manual calls “ Robot transmission

mode ”). Hector then faced the player and cupped his hands as if holding

a joystick, a visual cue indicating that he was looking “ outside ” the frame

of the television screen. At this point, R.O.B. was now drawn into the

diegetic space of the videogame as a participant. The player/Hector could

then issue commands: Pressing up or down on the D-pad ratcheted

R.O.B. ’ s torso up or down two notches, left or right rotated the central

post, and B or A respectively closed and opened R.O.B. ’ s hands. Using

these simple commands in various combinations allowed R.O.B. to inter-

act with its accessories and, ultimately, the second controller. In order to

lower a blue column, for instance, the player had to enter a string of button

presses to make R.O.B. do the following:

 A) rotate to the proper position above a gyroscope

 B) lower the hands into position near the gyroscope post

 C) grasp the gyroscope

 D) raise and rotate to the proper position above the motorized spinner

 E) place the gyroscope into the spinner and allow it to fully oscillate

 F) lift and rotate the gyroscope into position above the blue circular

platform

 G) lower the gyroscope onto the platform

 H) release the gyroscope

 This entire robotic retinue performed a single mechanical function:

pressing the A button on the second controller.

 Green Screen

 More interesting than R.O.B. ’ s laborious choreography was the means

through which it received instructions. Whenever the player/Hector

issued a command during “ transmission mode, ” the screen would notice-

ably flicker between black and green. The flash was not meant for human

eyes; R.O.B. ’ s optical lenses were synced to the refresh rhythm of the

cathode ray television, so it perceived a sequence of optically-encoded

 “ bits ” meant to trigger the appropriate movement. 50

 Commands were encoded in two sequential, binary “ data packets. ”

The first was a “ ready ” signal, indicating that R.O.B. should anticipate

3 Entertainment System [99]

further instructions. In Gyromite , the on and off bits of a message were

represented by the screen color: off was black and on was green. 51 For each

bit of the issued command, the screen flooded with a single frame of color.

Using an emulator, one can slow down the flashes in order to read the

color sequences that correspond to each command. The ready packet was

three frames of black, one frame of green, then a final black frame, a

binary message encoded as %00010. Directly after, an 8-bit ‘ instruction ’

packet requested one of R.O.B. ’ s handful of mechanical commands. For

example, the eight-frame sequence green, black, green, green, green,

green, green, black (%10111110) instructed R.O.B. to close its hands,

while %11101110 opened them.

 Gyromite ’ s programmers employed two simple but efficient tech-

niques to display R.O.B. ’ s optical commands onscreen. First, to accom-

plish the screen flashes, they flood-filled all onscreen tiles with green and

black. Rather than manually shuffling sprites offscreen or substituting

blank background tiles, Gyromite ’ s programmers simply updated all four

entries of all eight palettes to a single color. In other words, during the

screen flashes, all the tiles are still in place — they are merely painted a

uniform color to render them invisible.

 Second, the programmers used a unique PPU feature called sprite 0

to accurately time the frame-length flashes. Sprite 0 is a special, high-

priority tile, so named because it occupies the first — or zero — position in

sprite OAM. When an opaque pixel of a background tile overlaps an opaque

pixel of sprite 0, a special collision flag is raised. In fact, it is the only

built-in collision detection that the PPU offers. Programmers conven-

tionally used sprite 0 to execute mid-screen scrolling splits (chapter 4).

In Gyromite ’ s main play mode, for example, the screen is divided into two

sections: a narrow status bar that contains the player ’ s score and timer,

and the lower play area. At the beginning of a round, when the game

reveals the stage ’ s entire two-screen layout, the upper status bar remains

stationary while the play area scrolls horizontally underneath.

 The NES has no hardware capability to split scrolling points at an

arbitrary scanline — such an effect must be properly timed and executed in

software. Sprite 0 marks the boundary between two sections and signals

the CPU that the boundary point has been “ hit. ” Once that boundary is

known, the PPU ’ s scroll registers can then be manipulated, creating a

region of name table tiles that can scroll independently of those above the

boundary. Scores of Famicom/NES games use this technique to divide the

screen into two distinct regions: status bar and scrolling playfield.

 Disabling Gyromite ’ s background tiles in an emulator during game-

play reveals a lone pixel hovering near the top of the screen. That graphical

[100]

point is the opaque portion of sprite 0 used to trip the status flag. As soon

as the PPU encounters that pixel and notices that it is nestled behind an

opaque portion of a background tile, a sprite 0 hit is fired.

 In many Famicom and NES games that use sprite 0 in this way, you

can use an emulator to hunt for a conspicuous tile or pixel that marks the

scrolling boundary line (figure 3.4). In Tecmo Bowl , it ’ s a single white pixel

like Gyromite ’ s ; in Ninja Gaiden , a slender pink line; in Excitebike , a black

block; in The Legend of Zelda , a bomb; 52 and in Super Mario Bros. , the bottom

sliver of a coin (chapter 4). In all cases, it is a graphical artifact meant to

be hidden from player view, a signal only the PPU is meant to see.

 While R.O.B. was an innovative feat of optical, electrical, and

mechanical engineering, its ponderous motorized movements limited

its gameplay practicality. R.O.B. was too slow to control any videogame

that might require fast reflexes or quick timing. It is telling that one mode

of play in Gyromite involved raising and lowering gates while an auto-

mated Professor Hector literally sleepwalked through the stage. Players

discovered that it was less time consuming simply to take control of the

second gamepad themselves (or have a friend play R.O.B. ’ s part) and cir-

cumvent R.O.B. ’ s involvement altogether.

 The robot was an impressive showpiece that served Nintendo ’ s pur-

poses, but it wasn ’ t particularly fun. As Nintendo employee Gail Tilden

recalled, “ That thing was definitely like watching grass grow … It was so

slow, and to try and stand there and sales-pitch it in person and try to

make it exciting; you had to have the eyes lined up just right or it wouldn ’ t

receive the flashes. It was kind of a challenge. ” 53 Nonetheless, the robot

helped divert attention, at least temporarily, from the NES ’ s gaming core

and instead focus consumers on a novel gadget. Once players discovered

that the NES was an enjoyable console based on the merit of its games

alone, R.O.B. was quickly forgotten. After its initial two games, the oper-

ating buddy was no longer allowed to play. 54

 “ AFTER THE EYES FLASH … ”

 The Deluxe Set ’ s light gun peripheral fared better than R.O.B. throughout

the NES ’ s lifespan. The Zapper was one of the few hardware add-ons that

emerged relatively unscathed from the console ’ s AVS-to-NES metamor-

phosis, but its legacy reached further into Nintendo ’ s past than the

Famicom, Game & Watch, or even videogames. Photo-electric shooting

ranges, hosted in converted bowling alleys, were popular in Japan prior

to the Space Invaders -fueled arcade explosion, and Nintendo had their

own successful “ Laser Clay Ranges. ” 55 For home play, Yokoi had created

3 Entertainment System [101]

 3.4 Annotated screenshots of six games with their background tiles disabled, permitting

a better view of the sprite 0 flags used to divide status bars from scrolling playfields.

Clockwise from upper left: Super Mario Bros. , Gyromite , Excitebike , Tecmo Bowl , Ninja

Gaiden , The Legend of Zelda . (Emulator: FCEUX 2.1.5)

[102]

toy target games like Custom Gunman Target (1976), Custom Lion Target

(1976), and the remarkable electro-mechanical target game called

 Kousenjuu Duck Hunt (1976), which used a projector to cast flying ducks

on a wall. 56

 Following these early models, in 1984 the Famicom received its own

light gun (ガ ン) peripheral, fashioned after a classic Western six shooter,

that attached to the console ’ s 15-pin expansion port. And since the light

gun already had respectable software support in Japan (billed as the

 “ Video Shooting Series ”), it was a logical choice to port to the NES, though

not without a few important translations.

 Nintendo was rightfully concerned that American parents would

find a realistic revolver unacceptable for children. As a result, Lance Barr

prototyped a more futuristic gun design to match the AVS ’ palette and

form factor. Though the initial model folded into a wand and used infra-

red like the original prototype gamepads, the final retail light gun nixed

these capabilities in favor of a more economical and ergonomic design — a

cabled, non-collapsible laser gun painted gray and white. The NES Zap-

per ’ s new aesthetic conformed well to toy trends in the mid-1980s,

sharing retail space with a host of other gun-shaped toys like Lazer Tag,

Photon, and the sundry Star Wars accessories that stocked department

store shelves. And while the Zapper successfully skirted any anti-gun

outrage, Nintendo did eventually have to make one further alteration. In

compliance with a U.S. federal regulation requiring “ toy, look-alike, and

imitation firearms ” to be either translucent or painted in bright pastels,

Nintendo opted to repaint their Zapper barrel and handle blaze orange. 57

 While the Zapper was not as mechanically sophisticated as R.O.B. — its

sole moving part was a red, spring-loaded trigger that sounded a resonant

metallic clang when squeezed — the photodiode housed in its barrel func-

tioned similarly to the robot ’ s eye lenses. The light gun did not rely on a

sequence of coded flashes, but it did require the same frame-accurate

light/dark discrepancies that drove the robot ’ s movements. And unlike

R.O.B. (or the Famicom Gun), the Zapper connected to the NES ’ s standard

joystick ports. In fact, two Zapper status bits were located in the same

internal joypad registers ($4016 and $4017) used to poll for controller

input: one bit recorded whether the Zapper trigger was pulled or released,

while another monitored whether light was detected. 58

 Among the four light gun-compatible titles available at the NES ’ s

launch, 59 Wild Gunman (1985) best illustrated both the hardware

mechanics underlying the light gun ’ s function and Nintendo ’ s continued

eagerness to repurpose early game concepts for new platforms. In its

introductory mode (Game A), a large outlaw moseyed into a nondescript

3 Entertainment System [103]

desert landscape punctuated by cacti, tufts of foliage, scattered fossils,

and a distant red mesa. Once the outlaw reached center screen, he paused,

yelled “ FIRE!! ” , and his eyes flashed like jewels. A timer then started,

and the player was meant to fire before it reached the designated

time limit.

 The gameplay scenario mimicked a Western duel, though with less

fatal results. Pull too early and you triggered a “ FOUL! ” ; pull too late and

the screen blinked in shades of red, presumably indicating a survivable

wound, since you were permitted to draw again. Precision gunplay was

not necessary. Game A required that the player simply pull the trigger

while the Zapper barrel pointed at any portion of the television screen.

Shoot the cactus or the sky if you liked — you would still register a success-

ful hit.

 Wild Gunman ’ s name, Wild West dueling scenario, and flashing eyes

were all callbacks to Nintendo ’ s innovative light gun game from 1974, a

Yokoi-designed hybrid of toy hardware, photosensors, and film projec-

tion. As the International Arcade Museum describes, “ The game has an

image projection system that uses a 16mm film showing an outlaw gun-

slinger appearing in an alley and the player has to draw his or her gun and

shoot that outlaw before the outlaw draws his gun and shoots. ” 60 When the

game began, a pre-recorded narrator announced the instructions,

repeated in truncated form onscreen: “ AFTER THE EYES FLASH …

SHOOT! ” Players wore a belt to holster a six-shooter that was wired to the

game ’ s cabinet. Inside there were two projectors used to branch between

film reels depending upon whether the player drew and fired in time. Like

its NES successor, the arcade version of Wild Gunman relied solely on

speed rather than accuracy. Aiming at any part of the screen registered

a hit.

 Keen-eyed gunslingers who spent time with the NES update of Wild

Gunman might also have noticed that, similar to Gyromite ’ s transmission

mode, the screen flashed briefly when they pulled the trigger. And as

expected, this flash contained the visual information necessary to com-

municate with the Zapper. Inside the gun barrel was a small photodiode,

a light-sensitive transistor that converted light into electrical signals. Via

the controller port, the converted signal fed into the joystick registers

described above. To poll for successful shots, Game A first flashed a full

frame of black, then white. If the Zapper detected the white target, its light

sensor bit triggered, and the game logic registered a hit.

 But there was also a sly bit of built-in signal translation that took place

to prevent false positives — i.e., player cheating. Pointing the gun at a light-

bulb, fluorescent overhead, or any other ambient light source resulted in

[104]

a lost gunfight. In short, the Zapper would not signal a hit unless its

photodiode detected light from the television. To ensure that the target

was located onscreen, Nintendo ’ s Satoru Okada engineered a unique

electrical filter that rejected any frequency content that did not match the

television ’ s horizontal oscillation frequency. 61 If the light source was

the proper frequency, the light sensor bit recorded a hit.

 The Zapper ’ s reliance on the oscillation of the CRT ’ s sweeping

horizontal blank precludes its use on modern televisions. NESDev

community member Damian Yerrick, who coded an extensive Zapper test/

demonstration program called Zap Ruder , explains why this is so:

 The Zapper and similar light guns have the photodiode connected to

a 15.7 kHz resonator to detect whether light is actually coming from

adjacent scanlines of a CRT’s raster scan and not a light bulb. The

trouble is that LCD TVs don’t have that 15.7 kHz flicker. The only sort

of Zapper game that works on an NES connected to a modern TV is

one that uses the trigger and not the photodiode. 62

 In other words, a chasm of perception divides human sensors (eyes) and

electro-mechanical sensors (photodiode). Besides the sharper, higher-

resolution display of a modern LCD, we still see television the same

way — whether with liquid crystal or electron gun, our eyes are consistently

and sufficiently fooled to perceive believable moving images. But the

Zapper ’ s photodiode, trained to the rhythms of the CRT, is rendered blind.

 Black Boxes

 Early NES games had a uniform packaging style. Keeping in line with the

outer space backdrop of the console ’ s packaging, the first seventeen NES

launch titles (and a subsequent thirteen post-launch titles) arrived in

boxes printed front-to-back in black, dotted with small glimmering stars.

The upper half of the box front displayed a sample of the game ’ s graphics,

zoomed to a scale that showcased their flat pixellated topographies. And

nowhere on the box could one find the words “ video game. ”

 Nintendo was purposefully foregrounding the NES ’ s graphics capa-

bilities in direct response to the marketing tactics of earlier competitors.

Atari ’ s beautifully-painted box covers, for instance, were speculative

leaps of fancy that relied on strong imaginations to link them with the

chunky graphics seen in-game. Nintendo could not risk such a disconnect

during their tenuous launch. Gail Tilden, NOA ’ s VP of Brand Manage-

ment, felt that, “ There was an over-promise in the games that had been

3 Entertainment System [105]

introduced prior … The consumer might see some beautiful fantasy graph-

ics on the front, or a photographic image of people playing tennis, and

then it was really just some enhanced version of Pong . ” 63 The idea was to

advertise exactly what the hardware could deliver.

 The black boxes represented Nintendo ’ s concentrated focus on an

unambiguous, unified, and regulated product line. Nintendo stamped

each game with a “ seal of quality ” assuring consumers that all software

met the company ’ s approval standards. The stream of mediocre unli-

censed games that clogged the U.S. market in 1983 would find no quarter

on this new Entertainment System. In reality, the seal was more market-

ing gimmick than quality guarantee. A more accurate moniker would have

been “ seal of control, ” the final symbolic mark of Nintendo ’ s licensing

practices. The seal did not fend off bad games, but it did guarantee that

Nintendo had had their hand in sculpting the game ’ s content to conform

to the corporate image.

 Beyond the graphic illustration, the sole differentiator between black

box titles was Nintendo ’ s own sub-classification system. Nintendo created

seven series headings grouped by genre and peripheral: Action, Arcade,

Light Gun, Programmable, Sports, Education, and Robot. As expected, the

Action, Arcade, and Sports series were stocked with familiar Famicom

titles. The Arcade series — Donkey Kong , Donkey Kong Jr. , Donkey Kong 3 ,

Mario Bros. , and Popeye — were further distinguished by a metallic silver

band beneath their title text with “ The Original! ” printed in script above

and “ Arcade Classics Series ” printed in bold blue text below, showcasing

Nintendo ’ s marquee titles. The promise of arcade-quality console ports,

absent since the ColecoVision ’ s demise, was now a reality. The oddball

Programmable series (Excitebike, Wrecking Crew, Mach Rider) showcased

games with built-in level editors, albeit with no means to save in-game

creations. 64 The Education series, represented solely by Donkey Kong

Jr. Math , was clearly meant to placate parents ’ fears about bringing

videogames into the home.

 Though they aimed to distance themselves from Atari in the name of

honesty, Nintendo was not above cover embellishment. Most of the char-

acter graphics were given comic book motion lines to make the artwork

more dynamic: the ball bounced from left to right in Pinball , the skier

zoomed into frame in Slalom , and barrels whooshed from Donkey Kong ’ s

hand. Most cover graphics also ignored the PPU ’ s capabilities, tilting

sprites at diagonals, bumping up palette counts, and adding sub-pixel

details. Nintendo also cleverly swapped Jumpman for Mario on the Donkey

Kong cover, leveraging the more marketable platforming plumber to

sell their arcade classic. The recasting made marketing sense, but

[106]

misrepresented the cart ’ s actual CHR-ROM contents. Nintendo certainly

scaled back the fantasy of earlier Atari fare, but the artwork was not a one-

to-one representation of the product within.

 There were also differences between NES and Famicom boxes, due in

part to the size of the cartridges within. As discussed in chapter 1, Famicom

carts were designed to resemble audio cassettes. The Sony Walkman

was wildly popular in Japan in the early 1980s, and it made marketing

sense to evoke a visual resemblance between cassettes and videogames.

However, as cartridge hardware expanded to accommodate additional ICs,

batteries, and the like, Famicom cartridge shapes began to diversify. This

happened as early as 1984, when the Family BASIC cartridge ’ s extended

WRAM and battery switch required a taller PCB and cartridge enclosure. 65

Famicom cartridges likewise came in a kaleidoscope of colors and shells,

whose designs were apparently left to the discretion of the licensee. The

only consistency in Famicom design comparable to the black boxes

were the fourteen Famicom cartridges manufactured between July 1983

and October 1984 that featured the “ pulse line ” graphic — named after its

resemblance to the output of an electrocardiogram — in lieu of game graph-

ics or illustrations. 66

 As the NES became entrenched in the U.S. market, Nintendo relaxed

its uniform marketing aesthetic. The final few titles to use the black box

style weren ’ t even black. Metroid and Kid Icarus adopted the pixelated

illustrations and overall graphic design, but shipped in silver boxes.

 Ice Hockey was grouped into the Sports Series but had a solid blue box

with the photograph of a hockey player in place of the usual pixels. Nin-

tendo gradually abandoned the uniformity of their first-party titles,

maintaining no consistent house style beyond the prominent Nintendo

logo. Likewise, the Series moniker was unceremoniously discontinued

with the black boxes.

 Some third-party developers adopted Nintendo ’ s packaging aesthetic

to establish their own brand identity. Bandai, one of the first Japanese

licensees to release games in the U.S., hewed closest to the black box

aesthetic. Their boxes featured a black-to-gray gradient background, a

Nintendo-style diagonal marquee, and an actual screenshot in place of

Nintendo ’ s augmented pixel art. They also overlaid a cartoon illustration

of the game ’ s lead character and invented their own series categories.

 Chubby Cherub (1986), Ninja Kid (1986), and M.U.S.C.L.E. (1986), for

example, were part of Bandai ’ s short-lived “ Character Action Series. ”

 Other licensees developed house styles that strayed from Nintendo ’ s

black box brand. Konami adopted silver boxes with vibrant cartoon illus-

trations of in-game action dominating the cover, reviving the Atari

3 Entertainment System [107]

artwork tradition that Nintendo initially abandoned. 67 Early titles by

Capcom, like Trojan and Mega Man , featured a gradient blue background

with floating neon wireframe grids, while their later boxes (e.g., Duck

Tales , Mega Man 2, Gold Medal Challenge ’ 92) shifted to a solid purple back-

drop. Other third-parties followed suit: Jaleco opted for white boxes,

unlicensed manufacturer Tengen chose gold, and Tecmo titles had a

simple red band across the box bottom.

 While packaging styles shifted to better differentiate their developers

and distributors, cartridge manufacture was kept under strict control.

Nintendo was the sole gatekeeper to their console. Submitting to their

licensing terms meant relinquishing unprecedented control over produc-

tion, release schedule, content, and quantity. 68 Worse still, developers had

to pay upfront for the privilege, as Donovan explains:

 Licensees had to pay Nintendo to manufacture their game cartridges

so even if the game sold badly Nintendo made a profit. Nintendo

also took a cut of every NES game sold, dictated when the game

could be released, told licensees how many games they could release

every year, and got to decide whether a game was good enough to be

released. 69

 The same company that had supplicated itself to U.S. toy retailers now

had unprecedented power over their own corporate image, from content

to hardware. As Nintendo steamrolled the competition, the situation

worsened for developers, now caught in a double bind. Producing a vid-

eogame hit meant tapping into the massive NES audience, but obtaining

a license meant bending to Nintendo ’ s will. Nintendo further stifled their

competitors ’ efforts by demanding all games developed for the NES be

exclusives. Atari, NEC, and Sega were hard-pressed to find developers

willing to risk their licensee status by porting their NES titles to compet-

ing platforms.

 Color Dreams

 Alongside the controller and the console ’ s monochromatic palette, the

distinctive shape and color of the NES game pak is one of the platform ’ s

most enduring cultural icons.

 NES game paks measured approximately 12cm x 13.3cm x 1.6cm,

though they were not symmetrical rectangular solids. The cartridge

bottom was notched by several millimeters on either side so it would seat

properly in the console, but its plastic enclosure also protected the narrow

[108]

PCB pin edge that protruded from the cartridge interior. A recessed area

near the top left edge of the cartridge fit the forefinger and thumb, a

welcome aid for inserting and removing the cartridge from the ZIF mech-

anism. Ridges were molded into both sides of this recessed area and

extended vertically along the front of the cartridge, providing both a con-

venient gripping surface and a subtle aesthetic flourish echoing the

striped ridges of the NES. Unlike most top-loading cartridges, which

could be grasped with the entire hand or levered out with an eject mecha-

nism, game paks were built to be pinched, pushed, and pulled.

 To differentiate games, Nintendo affixed a rectangular sticker to the

cart front, each featuring a reproduction of the game ’ s box artwork. The

upper lip of the sticker, displaying the game ’ s title, folded around the top

of the cartridge. This served two purposes: the title was visible both when

the pak was inserted into the console and when it was stacked with other

games (a common way to store games, since most boxes were discarded).

And thanks to the ridged grip described above, the sticker was positioned

slightly right of center, providing the cartridge face a striking asymmetri-

cal design. Finally, a small embossed triangle below the bottom left edge

of the sticker indicated the proper way to insert the game pak into the

console.

 Game paks were roughly 1cm wider than Famicom carts due to twelve

additional pins lining the PCB edge. 70 But they were also nearly double a

standard Famicom cart ’ s height thanks to the ZIF mechanism. The pak

had to be long enough to reach the internal card edge connector without

also losing one ’ s game (or fingers) within the chassis. Though most cart

interiors were largely empty space, the taller shells did have one side

benefit: they could accommodate cartridge hardware expansions. Later

Koei titles like Gemfire (1992), for instance, that used the MMC5 mapper

(chapter 6), a battery, and added RAM, needed additional interior clear-

ance to fit their extended PCBs. 71

 Beyond the obvious mechanical reasons, Nintendo ’ s industrial

designers appear to have chosen the cart ’ s dimensions based on a popular

consumer electronics format: the VHS tape. If the NES console was meant

to integrate discreetly with similarly boxy home entertainment equip-

ment, the games would need to do the same. Of course, extending the

game pak even further to mimic a VHS tape would have made them both

absurdly tall and far too large to fit in the console. Instead of adding more

empty space to the game pak, Nintendo extended the packaging height.

Consequently, all NES games had styrofoam risers nested at the bottom

of their boxes to prop up the cartridges. Though a touch shorter and

3 Entertainment System [109]

thinner than VHS sleeves, NES boxes fit comfortably alongside a movie

library or video rental display. 72

 Several early NES titles shared a hidden bond with their Famicom

siblings that was not obvious from their exterior appearance: they smug-

gled Famicom boards with Nintendo-manufactured adapters built in.

Cracking open early NES conversions like Excitebike often revealed a

60-pin Famicom glob top protruding from a black plastic housing labeled

NES-JOINT-01, an in-house Famicom-to-NES converter. The NES-

JOINT not only did the proper pin conversion to make the game

NES-compatible, it also added the CIC lockout chip, effectively piggy-

backing copyright protection onto the Famicom board. If one dismantled

the adapter from the cartridge and pulled out the Excitebike PCB, the

NES-JOINT functioned as a makeshift converter for any Famicom PCB.

Aftermarket Famicom-to-NES convertors, like the Honey Bee Family

Adapter, were eventually sold as standalone products, but Nintendo added

their own covert solution in order to speed the manufacture of carts for

the U.S. market.

 The earliest NES carts were also fastened at five points with flat-head

screws, meaning they could be easily disassembled with a standard screw-

driver. However, once Nintendo discontinued using the NES-JOINT, they

also replaced the five slotted screws with three 3.8 mm security screws (by

removing two interior posts) that required a special bit to remove. To

compensate for the removal of the upper two screws, the flat cartridge top

was replaced by two interlocking plastic prongs used to secure the cart ’ s

halves in place. 73

 Nintendo had several reasons to limit access to the cartridge ’ s inte-

rior. First, they could prevent children from opening and potentially

damaging the delicate PCBs. Second, they could deter pranksters or

thieves from swapping PCBs between cartridge shells, a potential problem

for videogame rental stores. Third, they could bolster their nascent service

industry. As the popularity of the NES skyrocketed in the States, official

Nintendo Service Centers popped up nationwide. Locking down access to

the cartridge ensured that consumers would bring their service dollars

to authorized technicians rather than fixing problems themselves.

 Nintendo received a U.S. patent for their distinctive cartridge

design, 74 legally solidifying their resolute gray shells as the de facto look

for tens of millions of NES games. Beyond a few exceptions, like the

gold Legend of Zelda and The Adventures of Link game paks, the rest of

the world never experienced the Famicom ’ s kaleidoscopic spectrum

of game cassettes. 75 And while Nintendo ultimately failed to curb

[110]

unlicensed game production, they did protect their industrial design.

Though unlicensed companies ’ box designs could pass easily for a “ real ”

Nintendo game (minus the seal of quality), 76 they had to alter their car-

tridge shells to avoid infringement. This resulted in a number of cartridge

redesigns that creatively avoided Nintendo ’ s industrial design while still

enabling the cart to seat properly within the console. Tengen produced a

svelte black cartridge with symmetrical ridged notches built into the lower

half of its prominent angled lip. While aesthetically distinctive, the lack

of finger holds on either side made the cart difficult to remove. American

developer Color Dreams, who later transformed to the Christian-centric

software house Wisdom Tree, designed a curved gripping surface and

attention-grabbing powder blue cases (which they later replaced with

black). Camerica opted for metallic gold and silver carts, while AGCI

simply chose an alternate shade of gray to complement its starkly minimal

exterior. Today, the colorful banner of the unlicensed game pak is carried

on by the fan community. Homebrew manufacturer and distributor Ret-

rozone, for example, produces carts in several translucent hues — green,

blue, red, and clear 77 — finally introducing a touch of Famicom color to the

reserved NES palette.

 Devil World

 Nintendo ’ s control over NES cartridges extended beyond manufacture

and distribution; they had the final say on content as well. Agreeing to be

a licensee meant that Nintendo could amend any game-related materials,

from commercials to graphics, that they felt might be objectionable

to their audience. Among Nintendo ’ s content guidelines were rules

governing in-game portrayals of religious iconography, sex, nudity, racial

stereotypes, controlled substances, profanity, violence, and politically

incendiary content. 78 According to former NOA Product Analyst/

Specialist Phil Sandhop, these rules were clearly documented and uniform

for all publishers — “ Everyone had a copy of the policy and it was the same

for all games ” — including Nintendo. “ We maintained an even hand with

our games as well as the third parties, ” Sandhop recalled. 79

 Indeed, Nintendo ’ s content guidelines were not reserved solely for

licensees. Many of their own games were either modified for Western

audiences or withheld from certain regions altogether. One conspicuous

example is デ ビ ル ワ ー ル ド , or Devil World , released for Famicom in

1984. Co-designed by Shigeru Miyamoto and Takashi Tezuka prior to

 Super Mario Bros ., the game was an amusing marriage of Pac-Man -

style gameplay and Christian iconography. The player controlled a small,

3 Entertainment System [111]

fire-breathing dragon named Tamagon, who was confined within a shift-

ing maze administered by a winged blue demon named Devil. Tamagon

collected crosses, Bibles, and white dots while avoiding either being

crushed by scrolling pillars or colliding into wandering pink cyclopean

creatures. Despite its Christian allusions, Devil World was likely not a work

of deliberate blasphemy — Tamagon and his foes were colorful cartoon

sprites and the titular Devil perched at the top of the screen was clad in

red boots and underwear. Nonetheless, Nintendo chose not to release the

game in the United States based on its potential to offend conservative

parents. Europe, however, received a PAL conversion with no alterations

in 1988.

 Even Nintendo ’ s star franchises were subject to drastic revisions.

Based on the monumental success of Super Mario Bros. in Japan and abroad,

Nintendo sensibly followed up with a sequel. Super Mario Bros. 2 , a Family

Computer Disk System exclusive, expanded the gameplay of its predeces-

sor without significant graphical alterations. Instead, the design team

ratcheted up the difficulty and introduced a number of devious gameplay

changes: Mario and Luigi had noticeable differences in running and

jumping ability; power-up blocks could yield harmful poisonous mush-

rooms; gusting winds made jumps more treacherous; and vaulting the

flagpole was specifically programmed into the engine, albeit to punish

players by warping them to earlier levels. Directors Miyamoto and Tezuka

worked directly against many of the conventions established in Super

Mario Bros. , creating a far more challenging game. As a result, the disk ’ s

booklet and sleeve featured a gold ribbon that read, “ For Super Players, ”

meant to warn away those who had not mastered the first game. 80

 Nintendo of America deemed the game unsuitable for American

audiences due to both its difficulty and its close visual resemblance to its

predecessor. Nintendo chose an alternate Famicom Disk System game,

 Yume K ō j ō : Doki Doki Panic (1987), to take Super Mario Bros. 2 ’ s place. Doki

Doki , directed by Kensuke Tanabe, had actually begun as the prototype for

a possible Super Mario Bros. sequel, but both he and Miyamoto were dis-

satisfied with the early results. Super Mario Bros. ’ s horizontal gameplay

was shifted to a vertical orientation and designed around co-operative

platforming, but early prototypes did not prove to be much fun. 81 Tanabe

and Miyamoto decided to shelve the project.

 The abandoned prototype was eventually revived for a cross-promo-

tional videogame designed to coincide with Fuji Television ’ s 1987 Yume

K ō j ō festival. The festival mascots starred as the four lead characters in

the game, now set in an Arabian Nights -inspired dream world. Miyamoto

and Tanabe worked in earnest to infuse Doki Doki with more Super Mario

[112]

Bros. -inspired elements, like horizontal scrolling, warp zones, and hidden

power-ups. As a result, Doki Doki ’ s gameplay evolved into a sensible

substitute for the American sequel to Super Mario Bros. The FDS disk was

cross-ported to an NES cartridge and received a graphical overhaul,

replacing the Yume K ō j ō mascots with Mario, Luigi, Peach, and Toad,

along with other visual and audio tweaks meant to bring the game further

in line with the Mario universe. 82

 Despite Sandhop ’ s earnest insistence, Nintendo ’ s guideline enforce-

ment was frequently inconsistent, even arbitrary. This was especially true

in the case of modifications made to Western - developed PC titles that

were ported to the NES. American developer Jon Van Caneghem ’ s first-

person RPG Might & Magic was originally released for the Apple II in

1986. Due to its popularity, it was ported to a range of PCs and consoles,

including both the Famicom and the NES as Might & Magic: Secret of

the Inner Sanctum (in 1990 and 1992 respectively). The Famicom/NES

ports received graphical upgrades, additional dialogue, and new loca-

tions, puzzles, and enemies. However, in its transition from American PC

game to Famicom port and back again as an NES cartridge, Might & Magic

underwent a number of Nintendo-mandated content revisions, including

the erasure of small halos above the angels ’ heads on the Wheel of Luck,

the deletion of a plaque adorned with a minotaur head (reminiscent of a

Satanic goat ’ s head), and the revision of all in-game instances of “ devil ”

to “ incubus. ” 83 Other objectionable content apparently eluded Nintendo ’ s

testers. The female Water Elemental and Medusa sprites, for example,

appear topless, with the latter fully exposed. 84

 Translations

 As with any emergent media, the rising popularity of videogames attracted

the attention of franchises from film, television, and a host of other media

and products that hoped to cash in. Thus the NES library received a glut

of licensed properties, including cartoons (The Little Mermaid , The Simp-

sons: Bart vs. The World , Tiny Toon Adventures), toys (Teenage Mutant Ninja

Turtles , Micro Machines), sports (Major League Baseball , NFL, Michael

Andretti ’ s World GP), television game shows (American Gladiators , Jeop-

ardy! , Fun House), movies (Robocop , Total Recall , Mad Max , Darkman), and

even food (M.C. Kids , Spot , Yo! Noid). 85 The Famicom saw the same influx

of cross-media ventures, though understandably they were drawn from

commercial and pop culture sources familiar to Japanese audiences,

including anime/manga series like Dragon Ball , Akira , Captain Tsubasa ,

 Tetsuwan Atom , and Crayon Shin-chan .

3 Entertainment System [113]

 Although Japanese comics, cartoons, and animated films were gaining

fans in the 1980s (chapter 2), Famicom publishers did not expect Ameri-

can children (or their parents) to accept these unfamiliar or otherwise

 “ weird ” foreign characters. When Japanese media properties did cross

over, they were largely revamped for NES release. In Power-Up , Kohler

writes:

 Some major graphical alterations happen when the game in question

is based on an anime series, and the game publisher would rather that

Americans didn ’ t know that. So the famous manga character, a strange

duck-like ghost, in Bandai ’ s Famicom game Obake no Q-Taro was

changed to a curly-haired angel for the game ’ s US release as Chubby

Cherub . The hero of Gegege no Kitaro , a Famicom game based on an

anime about a strange little boy who hunts ghosts, was changed to a

ninja and the game was released in the US as Ninja Kid , stripped of its

anime roots. 86

 Another notable example was Kamen no Ninja: Akakage , a 1988 Famicom

game based on the anime series Akakage . The TV show, set in feudal Japan,

starred the titular ninja wearing a distinctive red mask shaped like a bird ’ s

spread wings. In 1990, Capcom released the FDS game Kamen no Ninja:

Hanamaru , itself a cartoonish adaption of the Akakage series starring a

child-like version of the protagonist. Based on their source material,

neither game was suitable for U.S. release, so Capcom undertook a sub-

stantial localization of the latter title. The result was Yo! Noid , a NES cart

starring the Noid, a commercial mascot used to market Domino ’ s pizza in

the 1980s.

 Yo! Noid ’ s localization was an impressive, wholesale graphical update.

Not only did Capcom replace Hanamaru with the Noid, but the natural

landscapes — islands, arctic tundra, etc. — were redrawn to resemble urban

locales reminiscent of New York City. However, the underlying structure

of the levels remained unchanged, even when that structure made little

logical sense. An island level in Kamen , for instance, became a pier-side

cityscape in Noid , but the patterns of platforms and the distinctive vertical

bobbing motion of the level were identical in both versions. In Kamen ,

Hanamaru ’ s primary attack was a mechanical bird perched on his shoul-

der that he would send out to dispatch foes. Capcom swapped the bird for

a yo-yo, an object that could feasibly replicate the avian swooping attack,

but made little sense in the Noid ’ s repertoire. Similarly, the card game

used to resolve boss confrontations in Kamen was converted into a pizza-

eating contest.

[114]

 Though not all developers could afford such drastic updates, Famicom

games routinely had their cover artwork altered for worldwide release. 87

The wide-eyed cartoon characters typical in Japanese anime and manga

were swapped for characters inspired by Western comic book, sci-fi, and

fantasy traditions. For instance, the cover of Argos no Senshi: Hachamecha

Daishingeki portrayed the cartoonish hero Senshi, who would not look

out of place in an Astro Boy episode, wielding the Diskarmor, a shield/

boomerang hybrid that closely resembled Captain America ’ s trademark

weapon. The English localization changed the title and Senshi ’ s name to

 Rygar , updated the character artwork to resemble a He-Man knock-off,

and dropped the Diskarmor ’ s potentially copyright-infringing look. But

beyond those updates, little else was changed for the NES version. 88

 Even in cases where Nintendo ’ s guidelines benefited cultural sensi-

tivity, their application was inconsistent. Capcom ’ s unique “ jump-less ”

platformer Bionic Commando , featuring a protagonist with an extendable

robotic arm that allowed him to swing across platforms and grapple

objects, was first released for the Famicom as Hitler ’ s Resurrection: Top

Secret (1988). The game ’ s primary antagonists were soldiers of the Impe-

rial Army, a neo-Nazi regime led by General Wiseman. The Famicom

cover art portrayed the hero Raddo (ラ ッ ド) swinging into the fray while

riddling an enemy soldier with bullets. Looming large in the horizon

was an oversized Hitler who, true to the title, was resurrected for the

game ’ s concluding boss fight. In-game locations were littered with Nazi

regalia — swastikas adorned flags, podiums, dossiers, and architectural

facades — while a cutscene featuring Wiseman showed him raising his left

fist in the manner of the Nazi heil salute.

 Nintendo rightfully decided that the game ’ s scenario and imagery

would be distasteful outside Japan — or outright banned in Germany, where

allusions to Nazism were strictly regulated according to Strafgesetzbuch . 89

The resulting localization was comically inadequate. Prior to U.S. and

European release, Capcom changed all swastika graphics to eagles (still

vaguely reminiscent of Third Reich propaganda), renamed the Nazis as

 “ Badds, ” updated Wiseman to Generalissimo Killt, and provided Hitler

the pseudonym “ Master D. ” 90 Hitler ’ s in-game character sprites, however,

remained unaltered, a significant detail in light of the game ’ s concluding

sequence. As Master D attempts to flee in a helicopter, Raddo swings from

above and launches a missile into the cockpit. Master D then yells “ AH … ! ”

as a four-frame animation shows his head graphically disintegrating into

fragments of blood and flesh.

 Judging by the makeshift translations and roughly four-month turn-

around time between Famicom and U.S. release, Capcom likely did the

3 Entertainment System [115]

best they could to revise the game ’ s content. Much like Famicom Donkey

Kong ’ s kill screen, few players were likely to see this gory sequence, since

 Bionic Commando was a challenging game. Substituting a non-violent

finale would have meant either overhauling the game ’ s pattern tables or

excising the sequence from the source code altogether, a diversion of time

and resources that were already dedicated to translating the game ’ s text

and supporting documentation. 91

 From its uncertain launch to its market peak, the Family Computer ’ s

conversion from a Japanese to an international console was fraught with

translation problems, from exploding Hitlers to dodgy instruction

manuals to ill-advised industrial design. Nintendo ’ s calculated effort to

preempt their domestic piracy problems led to a machine burdened with

an effective but flawed lockout chip. The market pressure to conform the

console ’ s exterior to the expectations of a U.S. videogame industry reti-

cent to risk investment in an unproven console led to a novel but faulty

spring-loaded cartridge mechanism. The desire to protect both consum-

ers from objectionable content and their own console from the fate of its

predecessors led Nintendo to implement draconian content regulations

and licensing policies that frustrated developers and hampered Ninten-

do ’ s reach in the European market.

 And yet the Nintendo Entertainment System persevered and pre-

vailed, reviving a U.S. console market on the brink of disappearance.

Millions of Nintendo players absorbed the console ’ s errors and flaws into

the lexicon of videogame culture. Players remember the Metal Gear guard ’ s

exclamation “ I FEEL ASLEEP ” or Error ’ s existential phrase not as unfor-

givable flaws, but as playful, ridiculous, and even mysterious expressions

of a specific era of videogame history. T-shirts portraying an NES game

pak with the caption “ Blow Me ” encapsulate, albeit tastelessly, a shared

cultural lore. “ I AM ERROR ” is as much a personification of Nintendo ’ s

8-bit console as it is a mistranslated line of dialogue from one of its

games.

 I don ’ t think anyone at Nintendo ever thought we would be able to

pack so much value into a cartridge with a ROM of that capacity, or

that we would sell so many worldwide.

 — Masayuki Uemura, Iwata Asks, Volume 2: NES & Mario

 Of course you know about Worlds 1 – 1 through 8 – 4 in Super Mario

Bros., but did you know that there is a World − 1 as well?

 — Agent 826, Nintendo Power, 1988

 ス ー パ ー マ リ オ ブ ラ ザ ー ズ , or Super Mario Bros. (hereafter SMB), is a side-

scrolling platformer released for the Famicom on September 13, 1985.

Although Shigeru Miyamoto is often credited singularly for its creation,

he worked alongside a small team of programmers, designers, and com-

posers over a period of several months to bring the game to life: 1 Takashi

Tezuka, the game ’ s co-designer, had worked with Miyamoto on the dot-

eating maze game Devil World; Koji Kondo, who composed the game ’ s

inspired soundtrack, was also a Devil World alum; and Toshihiko Nakago,

the game ’ s lead programmer, had worked on Famicom ports of several

Nintendo arcade properties, including Donkey Kong and Donkey Kong Jr.

The Miyamoto/Tezuka/Nakago/Kondo team would collaborate for many

years on a number of Nintendo ’ s most famous Famicom titles, including

 The Legend of Zelda for the FDS (chapter 5), which they developed concur-

rently with SMB .

 4 Platforming

[118]

 Genre firsts are notoriously difficult to pin down. SMB was not the

first platformer, nor even the first from Nintendo, as we see elements

of the genre in Donkey Kong ’ s multi-level play. The “ platform ” — or

 “ platformer ” — label describes the various obstacles that the player ’ s

character must run across, vault, or climb as they make their way to a

specified goal. 2 In Donkey Kong , the platforms are girders that Mario must

traverse to reach the top of the stage. Though Donkey Kong ostensibly

took place at a construction site, the limitations of its arcade hardware

dictated that the girders hung inexplicably in space, bound only to the

ladders that connected them. In SMB , the platforms are arrangements of

various bricks and blocks that comprise the architecture of the world.

Here, the fantasy setting precluded any need to explain why these blocks

floated in mid-air. They were simply there for Mario, Luigi, and their foes

to clamber across.

 The original arcade Mario Bros. was one of the first Nintendo video-

games to offer a theme and variation on Donkey Kong ’ s seminal mechanics —

a shorthand gaming term loosely describing both the range of available

character actions and their haptic feel. The object was no longer to reach

the top quickly, but to defeat the myriad turtles, crabs, flies, and icicles

that spilled from enormous green sewer pipes. The critters emerged from

the top of the screen, dropped down to platforms suspended at multiple

levels below, then crawled into pipes at either side of the screen to repeat

the cycle. Mario (and brother Luigi) could eliminate their foes only by

bumping platforms from below. This would flip the enemy and leave them

helpless for a short amount of time. Mario then had to jump on the plat-

form and touch the incapacitated foe to boot them from the screen.

Mario ’ s range of motion was not significantly enhanced from Donkey

Kong , but the transformation of jumping from a simple evasive tactic to an

offensive strategy would have a huge impact on SMB ’ s gameplay. Mario

Bros. also introduced a number of franchise mainstays: the subterranean

setting, Mario ’ s job change from carpenter to plumber, green pipes,

bumpable terrain, Mario ’ s sibling Luigi, green and red turtles, 3 collectible

coins, Mario ’ s skidding stops, the POW block, and even fireballs (though

they chased Mario, rather than serving as an offensive tool).

 SMB inherited the platformer conventions of Donkey Kong , Mario

Bros., and other early Nintendo games and exploded them beyond the

borders of the single screen. Again, SMB was not the first game to do so. 4

On the arcade front, games like Defender (1981), Xevious (1982), and Moon

Patrol (1982) all featured backdrops that scrolled smoothly along either

horizontal or vertical axes. In Moon Patrol , your agile lunar craft could even

jump obstacles. Of course, these games were all firmly embedded in the

4 Platforming [119]

sci-fi genre popular at the time, so their looped or infinite scrolling often

reflected the vastness of outer space. Rock-Ola ’ s little-known Jump Bug

(1981), featuring a hopping red automobile, and Namco ’ s Pac-Land (1984)

were also early predecessors of SMB that involved running and jumping

across a scrolling plane.

 The Atari VCS had its share of scrolling games, but few that could

rightfully be called platformers. Pitfall! (1982) is the closest to form, fea-

turing both a world that extended to the left and right of the visible screen

and a memorable character, Pitfall Harry, who could leap barrels, swing

on vines, and shuffle across alligator heads. However, instead of scrolling,

 Pitfall ’ s screens progressed one at a time, triggered by Harry crossing

the screen ’ s border on either side. Mountain King (1983), while visually

rudimentary, copped the familiar “ levels-and-ladders ” gameplay style of

 Donkey Kong , but added continuous four-way scrolling — an impressive

programming feat for the VCS.

 With so many able predecessors, why and how did SMB succeed so

tremendously? What is it about the game that entertained tens of millions

of videogame players and drove the world to Mario mania? To modern

eyes, Super Mario Bros. ’ s pop cultural familiarity and gameplay simplicity

perhaps obscures the sophistication of its inner processes. In twenty-odd

thousand lines of assembly code, burnt to mask ROMs and housed in

plastic cartridges, Nintendo inaugurated a new era of console videogames.

And despite the tens of millions who have played it, few have taken the

time to lay its code and cartridge bare to examine how and why it works.

 This chapter delves into the game ’ s source in order to analyze

how code and platform coordinated to shape the Famicom ’ s seminal

platformer, the game that would become the archetype for thousands

of clones, homages, and play-alikes. SMB is the consummate demon-

stration of the Famicom ’ s strengths and limitations, a tiled world of

plumber-sized pipes and expansive blue skies built around the platform ’ s

distinctive hardware affordances. The technical terms introduced in

chapter 1 are explored in greater depth, using SMB ’ s engine to illustrate

practical implementations of scrolling, metatiles, data compression,

attribute tables, mirroring, sprite 0 splits, and assembly language pro-

gramming. If Donkey Kong was the game the Famicom was engineered for,

a minimum set of hardware specs necessary to feasibly reproduce the

arcade hit, Super Mario Bros. was the game the Famicom was designed for,

pushing those specs to their technological and creative limits.

 Ironically, as a game that was a spiritual sequel to Mario Bros. and that

would quickly receive its own arcade port, SMB served as an important

bridge title between the rapidly disappearing age of arcade play and a new

[120]

era of games designed specifically for the home. SMB had a simple narra-

tive with a clear endpoint that became an objective in and of itself. Mario

could complete his quest in a way that Jumpman never could. More impor-

tantly, Mario ’ s Mushroom Kingdom, dense with secrets, permeable

borders, and non-linear warping, encouraged players to spend hours

combing through its brickwork structure. With SMB , Nintendo was coming

home.

 Kinoko Kingdom

 Super Mario Bros. ’ s scenario is dead simple, albeit bizarre. A malevolent

turtle king named Bowser has captured the Princess Toadstool and

secreted her into a castle. Meanwhile the peaceful residents of the Kinoko

(or Mushroom) Kingdom (キ ノ コ) have fallen under Bowser ’ s sorcery

and have subsequently been transformed into “ rocks, bricks, and horse-

tail plants. ” 5 It is the Mario Brothers ’ task to rescue the Princess from

Bowser and restore peace to the Kingdom.

 The damsel in distress trope has countless precedents in literature,

film, and videogames, 6 but the locale and residents of the Mushroom

Kingdom are, like Donkey Kong , a unique amalgam of Eastern and Western

influences. But SMB is arguably weirder than its arcade forebear. Miya-

moto and team steeped the game ’ s design in influences from Japanese

manga, folklore, geography, and cuisine, meanwhile infusing the brew

with anachronistic Western ingredients. Yet despite its hybrid origins,

 SMB required no localization for its in-game content. The minor bits

of text and dialogue were already in English in the Famicom original. The

real translation work went into the game ’ s supporting texts, namely

the manual, box, and artwork.

 This is particularly evident in the original Japanese names of Mario ’ s

enemies. Bowser, for instance, is an English-exclusive name. In Japa-

nese, he is called ク ッ パ , akin to “ Great Demon King Koopa, ” 7 a

name that clearly would not have passed NOA ’ s strict guidelines on reli-

gious imagery (chapter 3), but does allude to King Koopa ’ s resemblance

to the demons of Japanese art history, both in ancient scrolls and mid-

century anime. 8 Miyamoto, who drew the original box art for the game,

modeled Koopa ’ s design after the Ox King from the 1960 Toei animated

feature Alakazam the Great. 9 Thus the artwork presents Koopa in a form

far more bovine than reptilian, bearing little resemblance to his in-game

sprite — a discrepancy later pointed out by Tezuka and amended by, ironi-

cally, former Toei artist Yoichi Kotabe. 10

4 Platforming [121]

 Additionally, the ク ッ パ (kuppa) portion of Bowser ’ s Japanese name

contains a cultural reference that would be lost to Western audiences,

since it is the Japanese name for a Korean soup dish. 11 Miyamoto,

apparently designing while hungry, picked this name in favor of two

other Korean dishes: ユ ッ ケ (yukke) and ビ ビ ン バ (bibinba). Similarly,

Princess Toadstool was originally Princess Peach (ピ ー チ) and the

small brown Kuribo (ク リ ボ ー), or “ chestnut people ” were inspired by

shittake mushrooms. 12 In English, they translated to the culturally ques-

tionable “ Goomba, ” a term that might better stereotype Mario and Luigi

than ambulatory fungi.

 Several enemies are named after the Japanese onomatopoeia that

describe their behavior: the “ Pakkun Flowers ” (パ ッ ク ン フ ラ ワ ー) are

named after the paku sound made when eating (also the original deriva-

tion of Pac-Man ’ s name); the fish are called “ Puku-Puku ” (プ ク プ ク),

a sound that denotes swelling up; and the flying turtles are called

 “ Pata-Pata ” (パ タ パ タ) to describe their flapping wings. 13 Other names are

culled directly from Japanese folk tales: “ Jugemu ” (ジ ュ ゲ ム), the cloud-

bound turtle who rains spiny eggs on Mario in World 4 – 1, is borrowed

from a Japanese rakugo (a form of theatrical monologue) wherein two

parents cannot decide on the name of their child. When advised by

a priest on several possible names, the father remains indecisive and

thus chooses all of them. The comically long string of names begins

with Jugemu. Likewise, the name of the eggs that Jugemu throws, “ Paipo ”

(パ イ ポ), is borrowed from the same tale.

 The Mushroom Kingdom ’ s cloud motif derived from the same source

material as Alakazam the Great , namely Journey to the West , a 16th-century

Chinese novel. 14 Journey ’ s primary protagonist, Sun Wukong (the Monkey

King), possesses numerous magical powers, including the ability to jump

across and ride upon clouds, transform into other living creatures or

inanimate objects, and alter his size. Considering Miyamoto ’ s familiarity

with Alakazam and the Monkey King tale, it is no surprise that Wukong ’ s

fantastic feats found their way into Mario ’ s repertoire, not only in SMB ,

but in future games in the series. 15

 The unlikely flora, fauna, and even the name of the Mushroom

Kingdom drew directly from the creators ’ cultural landscapes. As Miymoto

explained:

 Since the game’s set in a magical kingdom, I made the required

power-up item a mushroom because you see people in folk tales

wandering into forests and eating mushrooms all the time. That, in

[122]

turn, led to us calling the in-game world the “ Mushroom Kingdom, ”

and the rest of the basic plot setup sprang from there. 16

 Tezuka contributed the concept of enormous sprouting vines, cribbed

from the Jack and the Beanstalk fairy tale, that led to landscapes of over-

grown mushroom caps and traversable clouds. 17 The trademark green

pipes first seen in Mario Bros. were inspired by the ubiquitous “ waste

ground with pipes ” found in manga. 18 Miyamoto thought oversized pipes

could sensibly transport Mario and Luigi through the gameworld. The

curved hills punctuating the backdrop of the Kinoko Kingdom were call-

backs to the hills of rural Sonobe, where Miyamoto spent his childhood. 19

And thanks to the concurrent development of SMB and The Legend of Zelda ,

a few objects, like the spinning fire bars, were plucked from the latter for

use in the former — yet another example of Nintendo adapting and repur-

posing its own creative work.

 Amid this menagerie of noisy foes, ambling food, and fairy tale allu-

sions, we once again find Mario and Luigi, the sibling pair of Italian

plumbers. Clad in workaday caps, overalls, and mustaches, they make for

unlikely foils to Kinoko ’ s psychedelic fantasy world. It is hard to imagine

middle-aged plumbers starring in any contemporary big budget video

game save Nintendo ’ s own, as they would likely suffer the judgment of

online forums and internal focus testing. Not that Nintendo didn ’ t have

the market in mind — according to Tezuka, the game was not designed

from the outset to include the unlikely heroes. However, after he discov-

ered continuing strong sales of the Famicom ’ s Mario Bros. port a year after

its release, he and Miyamoto decided that the Mario Brothers should be

the stars of their new game. 20

 As we saw with Donkey Kong , the exaggerated cartoon figures of

Japanese manga and animation suited the limited tile mosaics of 8-bit

platforms like the Family Computer. Realism was never the Famicom ’ s

strong suit; Princess Peach ’ s mangled sprite in SMB is unfortunate proof.

And offering a grab bag of cultural and popular quotations, both Eastern

and Western, certainly lent force to SMB ’ s universal appeal. It had a touch

of familiarity that connected with children and adults across the world,

despite its surrealistic tenor. As Miyamoto said:

 When we make our games we try to make things that are not focused

on one market or one particular culture or one particular people, and

where there are some difficulties in that, I really think it does free us

up in a different way to just make what we want and hope that univer-

sal appeal will branch across all cultures. 21

4 Platforming [123]

 Tens of millions of copies of Super Mario Bros. later, it is clear that Miya-

moto, Nakago, Kondo, and Tezuka accomplished their goal.

 In the end, the look and profession of the characters or the narrative

cohesion of the story are all mere set dressing for the game ’ s core

conceits: running, jumping, stomping, swimming, bumping, bashing,

skidding, kicking, and climbing. It made the most sense to import the

characters ’ physical abilities above all other attributes. Abstracted away

from the Kinoko Kingdom, these activities defined the model for a genre

that would sustain the Famicom, its hardware successors, and a duo of

athletic plumbers, for decades. And at the heart of the platformer was

a platform custom-engineered to render colorful worlds of scrolling

blocks.

 A World of Attributes

 In chapter 1, we saw that a single name table contains 32x30 tiles. Simply

storing a single screen ’ s worth of data as a sequential list of tile IDs — each

requiring one byte — would require 960 bytes of ROM. Dividing NROM ’ s

max capacity (40KB) by this value would provide enough space to store

forty-one screens — assuming we leave no memory for graphics, sound, or

code. But SMB has far more than forty-one screens. In fact, it has eight

worlds containing four areas each — a total of thirty-two individual levels —

 each of which comprises dozens of screens. Within those levels, there are

myriad terrain types, ranging from cracked stonework to smiling billows.

Mario travels over ground, underground, among clouds, and underwater.

He climbs vines, descends pipes, skirts whirlpools, grabs flagpoles, and

navigates lava-filled mazes. So how is it possible to cram so much data

into the modest NROM, to build a world in only forty kilobytes?

 The answer is twofold: metatiles and compression. A metatile is an

aggregate of two or more tiles treated as a single computational object.

Mario is a metatile, as are Koopa Troopas, as are coin blocks, as are clouds,

as are pipes, and so on. All Famicom games use metatiles of some fashion,

and many use meta-metatiles, aggregate objects comprised of metatiles

which are themselves composed of smaller tiles. Limiting objects to an

8x8-pixel area would quickly impose debilitating restrictions on graphi-

cal complexity.

 Metatiles have important computational advantages for data storage

and manipulation. First, metatiles simplify tile updates. Moving a single

Mario “ object ” is simpler than updating four individual tile coordinates.

Of course, a metatile ’ s constituent patterns do not congeal automatically;

custom software must control such aggregations. But well-planned game

[124]

engines do not create individual subroutines to handle every metatile

object. Such an approach would bloat source code beyond a manageable

scale. Instead, object handling is grouped according to type, i.e., a “ player

object handler ” can perform the backend calculations and tile coordina-

tion necessary to move Mario and Luigi metatiles, while an “ enemy object

handler ” can perform similar functions for their foes.

 Second, breaking the game world into larger repeatable chunks and

spooling them out in varied combinations permits larger and more diverse

levels. With careful tile and level design, developers can mask the ter-

rain ’ s underlying patterns. Repetition of a handful of building blocks can

even contribute to the overall style and coherence of the game environ-

ment. SMB , for instance, employs palette swaps to great effect to introduce

variation in otherwise identical bricks and tiles. Simply swapping brown

for blue gives SMB ’ s overworld and underworld stages distinct visual

styles, despite using identical pattern tiles.

 In a scrolling engine such as SMB ’ s, compression takes on additional

importance. The PPU does not have sufficient VRAM to store more than

two name tables worth of tiles. Prior to the release of Excitebike, Spartan

X , and similar scrolling games, few Famicom titles demanded more than

two contiguous screens — if they scrolled at all. Once scrolling became the

norm, programmers had to devise efficient methods to update name

tables offscreen, just beyond the screen ’ s perimeter, without breaking the

continuity of the game world. With sufficiently lengthy levels, updating

uncompressed name table tiles became both processor- and memory-

intensive. Metatile compression served to alleviate both problems by

grouping associated tiles into larger data structures that could be stored

and unpacked efficiently.

 More sophisticated multi-directional scrollers like Blaster Master

pack metatiles within metatiles to produce even larger aggregate objects.

Game-specific tools like snarfblam ’ s Blaster Master level editor ReMaster

help illustrate the game ’ s meta-metatile structure visually, allowing us to

see its objects from an “ engine-level ” view. In figure 4.1 , a portion of the

game ’ s first overhead stage appears on the left with black borders dividing

its individual screens. On the right, the game ’ s “ structures ” (meta-meta-

tiles) are arranged in a grid display. Note how every screen on the left is

composed of structures from the right.

 The downside of an engine using such structures is that they restrict

the granularity of a level ’ s design. The stone arrangements that appear

multiple times throughout the stage, for instance, cannot be edited at the

individual stone level — the level designer may only choose from structures

that contain stones in pre-ordained arrangements, then “ paint ” patterns

4 Platforming [125]

 4.
1

 T
h

e
 B

la
st

er
 M

a
st

er
 l

ev
el

 e
d

it
o

r
R

eM
as

te
r

re
ve

al
s

th
e

ga
m

e ’
 s

u
n

d
er

ly
in

g
m

et
a-

m
et

at
il

e
st

ru
ct

u
re

.
(S

o
u

rc
e:

 R
eM

as
te

r
1.

0
)

[126]

using those structures. The upside is that aggregate structures save sig-

nificant programming overhead, since they can be packed and unpacked

in ROM as needed, saving hundreds or thousands of bytes.

 Metatile structures are equally advantageous for the PPU attribute

table architecture. Again, attribute tables are the 64-byte areas immedi-

ately following each of the PPU ’ s four name tables. Each byte contributes

palette data to a 32x32-pixel area of the name table, which is then further

subdivided into four 16x16-pixel areas. These sub-areas receive two bits

from the attribute table, meaning that any 2x2-tile area of background

tiles is limited to a single four-color palette. In-game objects larger than

those dimensions must either share the same palette or exhibit abrupt

clashes along the attribute table ’ s seams.

 Consequently, SMB ’ s entire world is carefully structured around

attribute table boundaries so no unsightly clashes arise. The smallest

background objects — bricks, terrain, ? blocks, coins — are all one 16x16-

pixel metatile in size. Kinoko Kingdom abounds with sharp right angles,

best exhibited by the massive stair-step structures that conclude each

non-castle level. And these shapes are perfectly suited to the platformer

genre. Various heights and widths of rectangular blocks make excellent

obstacles for running, jumping, and climbing.

 Single Engine

 A videogame engine is its code core. It functions like a software CPU,

coordinating the processes that drive the game: preparing which graphics

to render onscreen, handling physics, defining objects and their colli-

sions, switching major game states, etc. Today ’ s industry standard engines,

like Epic ’ s Unreal Engine or Crytek ’ s CryEngine, are designed to abstract

these functions into modular APIs adaptable to myriad videogame genres,

from first-person shooters to real-time strategy. Such solutions are

popular among publishers and developers because building a custom

engine from scratch demands massive investments in time and resources.

Licensing a capable middleware solution can speed up videogame devel-

opment substantially. Reusing and adapting an existing engine, especially

for a familiar game type, is often more time- and cost-effective than

recoding the wheel.

 Famicom game engines were much less flexible. Memory limitations

meant that engines were catered to the needs of a single game or a series

of similar games. Adapting the turn-based role-playing engine of Final

Fantasy to a platformer like Mega Man would be, at best, a painful test of

programmer patience — but more likely impossible without massive code

4 Platforming [127]

modifications. Nonetheless, Famicom-era engines still strove toward

abstraction and modularity. Like the metatiles described above, efficient

engines were designed to group objects and processes into like types

to avoid redundancy. It is far better to design a physics routine that

handles multiple objects than to apply the same basic rules individually

to fifteen similar enemies. In other words, the engine should not care if

the object is a Koopa or a Goomba — they both fall into a pit and die identi-

cally. SMB ’ s engine is designed with an elegance and sophistication that

belies its modest ROM footprint. Nagako and his co-programmers used a

multi-layered, back-to-front approach that parses objects in surprising

ways, contrary to how both player and processor perceive the final visual

results.

 SMB ’ s engine renders levels according to three related processes,

each handling its own range of objects. The first of these, what I will call

 “ set decoration, ” is an “ automatic ” algorithm that unrolls the level based

on a set of initial conditions. The second is the area object data, primarily

the platforms — bricks, pipes, power-up blocks — that Mario bashes, vaults,

and bumps. The third is the enemy object data, governing the number and

position of enemies blocking Mario ’ s path. 22 Keep in mind that each of

these processes is primarily handling background tiles (enemy sprites are

a clear exception), meaning that any “ layers ” we speak of are merely pro-

grammer-constructed abstractions. The Famicom ’ s PPU can only ever

render a single layer of background tiles. Sprites may be above and behind

background tiles based upon their priority, but even this aspect of depth

is an abstraction. Placing a sprite in front of another tile simply means

that the PPU renders that object ’ s pixels rather than another ’ s. A televi-

sion only has one plane of pixels; there are no pixels hidden behind other

pixels.

 Also keep in mind that the term object is not used in its conventional

programming sense. Objects in modern object-oriented programming

(OOP) languages like Objective-C or Java are data structures consisting of

 properties with associated procedures (i.e., methods) that can manipulate

those properties. Individual objects are actually instances of a common

 class , an abstracted construct used to prototype all objects of a given type.

To use a common programming analogy, we could define a “ Car ” class that

includes some basic properties, like wheels, color, and body type. Until

we create a particular instance of that class, we are not describing any car

in particular, merely an abstract model. Likewise, we might define a

number of methods to query, update, or manipulate our class properties.

For instance, a “ PaintJob ” method could change the color of our car, the

 “ FlatTire ” method could subtract a wheel, and so on. One of OOP ’ s key

[128]

benefits is modularity. It is far easier to instance thousands of different

cars for a traffic simulator, for instance, than to create new data constructs

for each individual car.

 6502 assembly language is not object-oriented. It contains no classes

nor even pre-built data structures. Data is moved to and from registers,

where it can be added, subtracted, compared, or bitwise operated. Assem-

bly source executes from top to bottom until an interrupt fires. Once the

interrupt is handled, it returns to the sequence and continues. The code ’ s

only modularity derives from simple jump commands and branches that

can detour the program counter to alternate memory locations. As such,

I use the term object loosely to describe groups of tiles handled as a single

entity, or, in rarer cases that I explain below, a behavior or event that trig-

gers at a specific location onscreen. With that in mind, let ’ s look at each

of the engine ’ s processes in turn.

 The set decoration is itself divided into three successive computa-

tional layers, what doppelganger ’ s Super Mario Bros. disassembly labels

 “ background scenery, ” “ foreground scenery, ” and “ terrain. ” 23 Back-

ground scenery is the dominant backdrop of each level, comprising the

Kinoko Kingdom ’ s weather, flora, and architecture. These are the hills,

clouds, bushes, trees, and fences that give the Kingdom its distinctive

character and break up the monotony of the saturated blue and black

skies. There are sixteen individual 1x3-metatile (16x48-pixel) back-

ground blocks, or meta-metatiles, used to construct three different forty-

eight metatile-wide background patterns. The first of these the player

encounters is the hills, clouds, and bushes motif seen in World 1 – 1, 4 – 1,

6 – 1, and 6 – 2 (figure 4.2). Next is the clouds motif, used as the backdrop

for any stage that appears to be suspended in midair: 1 – 3, 2 – 3, 3 – 3, 4 – 3,

 4.2 The hills, clouds, and bushes motif, one of three forty-eight metatile-wide

 “ background scenery ” patterns rendered by the Super Mario Bros. engine. If Mario jumps

the flagpole in World 1-1, this pattern will repeat indefinitely, until the timer runs out.

(Emulator: FCEUX 2.1.5)

4 Platforming [129]

5 – 3, 6 – 3, and 7 – 3. The final motif of clouds, trees, and fences appears in

2 – 1, 3 – 1, 3 – 2, 5 – 1, 5 – 2, 7 – 1, 8 – 1, 8 – 2, and 8 – 3. Any remaining levels have

either solid black (underground, castles, nighttime cloud bonus level,

coin rooms) or solid blue (daytime cloud bonus area, underwater) back-

grounds with no constituent background scenery.

 Using either the Game Genie peripheral (chapter 6) or an emulator

that supports cheats, it is possible to view uninterrupted patterns of back-

ground scenery. The “ Moon Gravity ” Game Genie code, for example,

allows Mario to vault above the top of the screen, easily clearing level-

ending flagpoles. While such a stunt is possible without cheat devices, it

is difficult to execute. And those who succeed are often disappointed to

find that there is no hidden world or warp zone, merely infinitely scrolling

terrain. Even the Game Genie manuals warns, “ If you ’ re playing to com-

plete the game rather than just explore it, don ’ t jump over the flagpoles —

 or else you ’ ll get ‘ stuck ’ and have to reset. ” 24

 Getting stuck is not a glitch or error — it is simply the engine perform-

ing its job as intended. The background scenery rendering is automatic

in the sense that it does not rely on a predetermined level length. The

engine works like a loom, unspooling the selected forty-eight metatile

pattern until a flagpole object triggers the level ’ s conclusion. When the

player skips the flagpole (figure 4.2), the background scenery repeats as

intended, exposing the engine ’ s underlying process and pattern. Also

note that each meta-metatile component of background scenery is “ verti-

cally exclusive ” — i.e., each hill, bush, cloud, fence, or tree never overlaps

another ’ s vertical plane.

 Foreground scenery is rarer, comprising only three repeated tile

columns: the dark blue water that floods 2 – 2, 7 – 2, and a portion of 8 – 4;

the lower water/lava columns used in castle pits or below bridges (e.g.,

3 – 1); and the high brick walls that appear only in 8 – 3. Foreground scen-

ery ’ s appearance is largely determined by the area object list header, as

we will see below.

 The final set decoration component, terrain, describes long stretches

of horizontal tiles. The most common use of terrain is for Mario ’ s runway,

but it also describes stretches of tiles along the ceiling and, in some cases,

mid-screen runs as well. (While the term terrain may seem inappropriate

to use for ceiling tiles, remember that Mario is often able to run “ out of

bounds. ”) Terrain rendering comes in sixteen combinations of top,

middle, and bottom thickness, depending on the level ’ s needs, ranging

from no terrain to a screen-filling solid. Terrain unspools at the specified

height until a special “ hole object ” overwrites it or an “ area change object ”

alters its thickness or position.

[130]

 Though the three parts of the set decoration are all tile members of

the single name table plane, the game engine assigns each layer a different

rendering priority, much like the PPU handles sprites in the OAM queue:

terrain on top, foreground scenery below it, and background scenery

further back. Again, there are no hidden foreground tiles lurking behind

the terrain — those tiles with highest priority are simply the ones that the

PPU ultimately renders. The routine that handles the set decoration starts

with the background scenery first, then checks to make sure no fore-

ground scenery needs to be rendered, and finally checks if there is any

terrain to render. So, for instance, if there are no high walls or ground to

be drawn, a rounded green hill can emerge. A quick visual check of level

8 – 3 confirms this process: the high wall obscures the lower clouds, trees,

and fences, which in turn are occluded by Mario ’ s two metatile-high

runway of cracked stone.

 Perceptive players may notice that the terrain is the only portion of

the set decoration that Mario and his enemies can collide with. The clouds,

hills, trees, and walls are mere ornament, part of an endless tapestry in

front of which objects play. In other words, the terrain is the background ’ s

background. Though this pseudo-layering is hard to conceptualize in a

flat 2D plane, contemporary game designers have provided a glimpse

of how Kinoko Kingdom might look when tilted into perspective. Morgan

O ’ Brien ’ s PC game Super Mario Bros. 2.5-D (2006), for instance, adds

depth to SMB ’ s familiar scenery and characters. Keyboard commands

shift the camera ’ s perspective on the Mushroom Kingdom as if it were

pressed into the shallow glass frame of an ant farm. Though its back-

ground priorities are different than SMB ’ s actual engine, Super Mario Bros.

2.5-D adopts the same layered perspective, allowing certain elements

to advance and recede in depth. Traversable elements like blocks, pipes,

and terrain are given volume (z-axis depth) so Mario can climb and run

across them. Sprites, clouds, and bushes, however, remain paper thin. 25

 Oriented Objects

 If the set decoration comprises SMB ’ s “ background background, ” what

constitutes its “ foreground background ” ? Two remaining layers: area

objects and enemy objects. These layers constitute the “ real ” substance

of the Mushroom Kingdom: the stompable Buzzy Beetles, the unpredict-

able jumping springs, and the bumpable, bashable bricks. And equally

important, they constitute what players would call the level design, the

intentional arrangement of objects meant to teach, guide, and challenge

the player ’ s skills. In short, the blue skies and spotted hills may provide

4 Platforming [131]

1 – 1 with a cheerful backdrop, but it is the specific sequence of blocks, pits,

Koopas, and pipes that have made the level iconic.

 Several hundred bytes of SMB ’ s PRG-ROM are dedicated to area

object data, which encodes each specific level sequence into compact byte

blocks. World 1 – 1, for example, is encoded as follows:

 ;level 1 – 1
 L_GroundArea6:
 .db $50, $21
 .db $07, $81, $47, $24, $57, $00, $63, $01, $77, $01
 .db $c9, $71, $68, $f2, $e7, $73, $97, $fb, $06, $83
 .db $5c, $01, $d7, $22, $e7, $00, $03, $a7, $6c, $02
 .db $b3, $22, $e3, $01, $e7, $07, $47, $a0, $57, $06
 .db $a7, $01, $d3, $00, $d7, $01, $07, $81, $67, $20
 .db $93, $22, $03, $a3, $1c, $61, $17, $21, $6f, $33
 .db $c7, $63, $d8, $62, $e9, $61, $fa, $60, $4f, $b3
 .db $87, $63, $9c, $01, $b7, $63, $c8, $62, $d9, $61
 .db $ea, $60, $39, $f1, $87, $21, $a7, $01, $b7, $20
 .db $39, $f1, $5f, $38, $6d, $c1, $af, $26
 .db $fd 26

 This 101-byte string describes the level ’ s sequential placement of

objects, from the first coin block to the final castle facade. The byte

sequence must adhere to a strict format so the engine can funnel objects

to their appropriate rendering routines. In general, the area object data

describes the meta-metatiles used to draw rows of bricks, vertical pipes,

and staircases. However, as we will see below, it can also handle a few

single-metatile objects, as well as a few special “ objects ” that serve more

as level attributes than physical obstacles.

 Each of SMB ’ s non-repeating levels, underground coin rooms, warp

zones, transition screens, and bonus areas share the same area object

format. 27 Data ranges in size from the 9-byte interstitial screen used to

shuttle Mario from overworld to underground/underwater levels, to the

massive 163-byte block that defines subterranean World 1 – 2, which has

one of the densest arrangements of breakable blocks. Its closest com-

petitor is the 161-byte World 4 – 2, also set underground. Unsurprisingly,

considering their byte expenditure, these are the only two subterranean

levels in the game.

 The basic structure of area object data is simple: the first two bytes

encode the header, the final byte (always $fd) is a string terminator that

signals the end of the data, and all the bytes in-between are handled as

pairs — the first byte encodes the object ’ s screen coordinates and the

second byte selects the metatile and its attributes. The complexity of

the format lies in its extreme economy. Nearly every byte in the block

encodes multiple flags, values, and controls within its bits.

[132]

 The header defines the level ’ s initial conditions. Two bits of the first

byte, for instance, set the timer for 400, 300, or 200 ticks. Another two

bits set Mario ’ s and Luigi ’ s initial vertical position. On most levels, they

begin on the ground, but in levels following the interstitial animation

that shows them entering a pipe, they drop from the top of the screen.

Miyamoto thought it was important that the characters ’ spatial transitions

made logical sense — inasmuch as plumbers traveling through human-

sized pipes can be logical:

 I thought it was strange how Mario was already standing there

underground when that level begins. Why is Mario, who just passed

in front of a castle, standing underground? I couldn’t fit in a sequence

showing him falling underground, so I decided to have him just

plop down from the top of the screen, and — surprisingly — that was just

fine. 28

 The second byte controls values related to the set decoration, including

the terrain height combinations, background and background scenery

colors (e.g., nighttime with green hills), and what doppelganger calls

the “ area style, ” which can affect both the terrain tile type or its

palette.

 The meat of the data lies in the chain of byte pairs sandwiched between

the header and the terminating byte. Again, the first byte of each pair

denotes the object ’ s position. Each half of the byte, commonly called a

 nybble , 29 is assigned to the screen ’ s x- and y- coordinates. However, these

positions are not the pixel-based coordinates the PPU uses to increment

the scroll register or position sprites onscreen. Instead, SMB ’ s engine

assigns a special grid of metatile rows and columns based on name table-

sized “ pages. ” Each page is divided into sixteen metatile-wide (i.e.,

16-pixel) columns, numbered $0 to $F, and twelve metatile-wide rows,

numbered $0 to $B (figure 4.3).

 Note that the columns span the entire width of the page, but the rows

do not encompass its total height. As we will see later, the top two rows of

metatiles are reserved for the non-scrolling segment of the screen used

to display status information. While Mario and a few other sprites may

occupy this screen region, area objects are never permitted above the

dividing line. Similarly, the bottom row $B marks the threshold between

the object area and terrain. Any coordinate bytes beyond row $B have a

special function that do not require a vertical coordinate.

 To illustrate how the engine ’ s decoding process works, let ’ s take a

look at the first seven byte pairs (after the header) from World 1 – 1:

4 Platforming [133]

 BYTE PAIR COL,ROW OBJ BINARY DESCRIPTION
 $07, $81 0,7 10000001 {P} [sm.] ? block (coin)
 $47, $24 4,7 00100100 [lg.] row of bricks (length 4)
 $57, $00 5,7 00000000 [sm.] ? block (power-up)
 $63, $01 6,3 00000001 [sm.] ? block (coin)
 $77, $01 7,7 00000001 [sm.] ? block (coin)
 $C9, $71 C,9 01110001 [lg.] vertical pipe (height 2)
 $68, $f2 6,8 11110010 {P} [lg.] vert. pipe (height 3)

 I have expanded the hex block into a tabular format to better clarify

the data encoding. The first column lists the original byte pair. Column

two divides the upper and lower nybbles into comma-delimited coordi-

nates; column first, then row. The third column expands the second byte

into its binary value, which is necessary to parse the data compressed

within. The final column lists a short description of the area object,

notated in a custom shorthand.

 The first byte pair above describes an object at metatile column $0,

row $7. Using the annotated grid in figure 4.3 , we can match the object

 4.3 An annotated “ page ” of World 1 – 1 ’ s area object data. Striped areas indicate objects

drawn “ atop ” other objects. (Emulator: Macifom 0.16)

[134]

data with its corresponding onscreen object. We see that the first question

block lands precisely where we expect. Of course, without the reference

image, we would not know which object occupies that position. To find the

object type, we must look at the second byte, which, at this point, is an

inscrutable series of binary digits. To disclose their contents, we break

down each byte according to the following scheme: 30

 PsssMMMM
 ||||||||
 ||||++++- ‘ Modifier ’ bits contingent upon value of ‘ selection ’ bits.
 |||| Designates ‘ small ’ obj. type or ‘ large ’ obj. attributes
 |||| (i.e., obj. height/width or whether a pipe is usable).
 ||||
 |+++----- 0: If d4-d6 set to 0, d3-d0 select ‘ small ’ objects
 | with no height or width (e.g., ? blocks).
 | 1 – 7: Use value to select ‘ large object ’ type.
 |
 +-------- ‘ Page select ’ flag

 To readers unaccustomed to this type of notation, I have grouped related

bits by letter labels that designate their function. Each digit place is num-

bered from 0 to 7 in reverse order, meaning that digit 7 (d7) is on the far

left and digit 0 (d0) is on the far right.

 Notice in figure 4.3 that while the first object ’ s coordinate position is

column $0, row $7, Mario is not currently on World 1 – 1 ’ s opening screen.

When the level begins, Mario is positioned near the left edge with an

entire screen ’ s worth of empty terrain to the right. Yet there is no area

object data until the first ? block. This is due to SMB ’ s aforementioned set

decoration process, which unspools the background unimpeded until it is

issued a command to alter its course. Notice that d7 of the first area byte

is binary 1. This position is a flag that indicates a “ page select. ” Anytime

d7 is set, a new page is “ turned ” (in the object description, I denote this

with {P}). Since our first object has its page select flag set, the engine

knows to auto-generate an entire name table ’ s worth of set decoration

before the first object is rendered.

 This clever bit of engine organization allowed SMB ’ s programmers to

store object coordinates in a single byte, making them page-relative

rather than area-relative. In other words, if the engine saw the entirety

of level 1 – 1 as a single chunk, its column coordinates would extend far

beyond the sixteen metatiles of a single screen. The horizontal coordinate

would then exceed the capacity of a single nybble and require an

additional byte to encode. Multiply that single byte addition by every

y-coordinate of every object in the area data and SMB ’ s PRG-ROM size

would quickly balloon beyond NROM ’ s limit, resulting in cuts to the

4 Platforming [135]

number and diversity of levels. Dividing each level into pages compressed

object data considerably.

 The remaining byte tell the engine which object to render. The “ selec-

tion ” bits (d4-d6) act as controls: if all three digits are zero, the engine

selects a “ small ” object based on the value stored in the “ modifier ” bits

(d0-d3); if any digit is non-zero, the three bits store the selection value

of a “ large ” object and the “ modifier ” bits store that object ’ s attributes.

Small objects are those that require no height or width value — they always

have a fixed size. This includes all types of ? blocks (power-up, coins,

hidden coin blocks), bricks (power-up, vine, star, coins, 1-up), hidden

1-up blocks, underwater exit pipes, empty blocks, and the jumping board.

Large objects are those that may vary in height or width, including vertical

pipes (usable or not), rows or columns of bricks, rows or columns of solid

blocks, rows of coins, and what doppelganger calls the AreaStyleObject

(i.e., grass platform ledges, mushroom cap ledges, and the Bullet Bill

cannon).

 Our object ’ s second byte reads %10000001. Following the page select

bit (d7), the three selection bits (d4 – 6) read %000, signaling a small

object. Reading right to left, the modifier nybble %0001 selects object 1.

In SMB , objects are grouped by type in lookup tables located directly after

the area rendering subroutine. 31 The value stored in the modifier digits

acts as an offset within each individual lookup table to choose the appro-

priate object. The small objects table is listed below:

 ;small objects (rows $00-$0b or 00 – 11, d6-d4 all clear)
 .dw QuestionBlock ;power-up
 .dw QuestionBlock ;coin
 .dw QuestionBlock ;hidden, coin
 .dw Hidden1UpBlock ;hidden, 1-up
 .dw BrickWithItem ;brick, power-up
 .dw BrickWithItem ;brick, vine
 .dw BrickWithItem ;brick, star
 .dw BrickWithCoins ;brick, coins
 .dw BrickWithItem ;brick, 1-up
 .dw WaterPipe
 .dw EmptyBlock
 .dw Jumpspring

 Starting our count from zero, we see that object 1 in the lookup table

is the ? block containing a coin, exactly as we see on screen. Properly

unpacked, two bytes of data tell us which object will be rendered, what size

that object will be, where it will be positioned on the current page, and on

which page it is located — remarkably economical for sixteen bits.

 Let ’ s look at the next byte pair in the area object list. The first byte,

$47, indicates that the object is located at column $4, row $7. The second

[136]

byte, $24, is equivalent to binary value %00100100. D7 is not set, so the

object will render on the current page. This time, however, the selection

bits have the value %010, indicating both the type of object (large) and its

offset in the large object lookup table (2). Consulting the source, we see

that large object 2 is RowOfBricks. And since the object type is large, the

modifier bits will designate the Row ’ s attributes. Attributes vary accord-

ing to the item type. The modifier bits for the RowOfBricks object sensibly

designate the width of the row. If it were the ColumnOfBricks, those bits

would designate its height; likewise for the VerticalPipe. (However, Ver-

ticalPipe has one additional attribute — if d3 is set, it is usable, meaning

that Mario can enter the pipe to descend to a bonus coin room.) The modi-

fier digits for the current RowOfBricks have the value %0100, or 4.

Remembering to count from zero, we know that the row will be five bricks

wide. And comparing the data from the byte pair to figure 4.3 , we see that

there is a brick row starting at column $4, row $7 spanning right five

metatiles to end at column $8.

 The remaining byte pairs expand similarly. The next five object

bytes expand to binary values %00000000, %00000001, %00000001,

%01110001, and %11110010. The first four objects have d7 values of 0, so

they too will remain on the current page. The first three have 0s in their

selection bits, so they will be small objects. According to the modifier bits,

the first of these will be object 0 (? block with power-up) and the second

two will be, once again, object 1 (? block with coin). However, notice the

placement: the first and third ? block are both on row $7, positioned at

column $5 and $7 respectively — directly on top of the previous five-brick

row. Since there are no background layers, the engine simply renders the

most recent object in the queue. In other words, if our area data list

included three objects with coordinates $2, $6, listed in the following

order — empty block, coin block, star block — only the star block would be

rendered. Once again, this is an efficient rendering technique. Drawing

the five-block row with two interspersed item blocks only takes six bytes

with the current layering method. Drawing five individual blocks one after

another would require ten bytes.

 Following the three small ? blocks, there is an object with its selection

bits set to %111. In the source lookup table, that value corresponds to the

large object VerticalPipe. Since the pipe is vertical, its modifier bits

describe its height and whether it is usable. The value %0001 corresponds

to a height of two metatiles (including the pipe ’ s lip), while the 0 in d3

denotes a non-usable pipe.

 Notice that, despite accounting for all six area objects in figure 4.3 ,

there is a still a final byte pair remaining. However, its expanded binary

4 Platforming [137]

value %11110010 shows the page select set in d7, so the resulting object (a

3-metatile high vertical pipe) should render on the following page. Sure

enough, if one plays beyond the screen pictured, the next object Mario

encounters will be a slightly taller vertical pipe.

 Spring in the Air

 Working through a few level objects helps us appreciate both the sophis-

tication and efficiency of SMB ’ s data compression. The paging metaphor

breaks each level into manageable units that relativize the metatile

coordinate system, while the individual bits of the object byte form an

interlocked system of controls and modifiers that can choose from a large

selection of construction elements, each with its own distinct attributes.

However, there is one last area object type left to explore.

 As noted above, when an object ’ s row value exceeds $B, it is classified

as a special object. Further into level 1 – 1, for instance, we find the byte

pair $9c, $01. The first byte indicates that the object ’ s page position is

column $9, row $C. Row $C is not a screen coordinate, but a group of

special objects (with corresponding lookup table) that includes pits, pits

with water, rope pulleys, high and low ? block rows, and bridges. Expand-

ing the second byte to %00000001 indicates that the object will be a

two-metatile wide pit. While a hole might seem like a banal special object,

it actually performs two unique functions: it signals the terrain tiles to

stop rendering for a specified length, and it permits player and enemy

objects to plummet offscreen.

 SMB ’ s trademark staircases are special objects selected with row $F.

Like pits, they require a starting column and a run length. Once those

initial conditions are set, a subroutine renders the staircase starting at

one metatile high and incrementing one step up until the specified width

is reached. The staircase leading to the flagpole in World 1 – 1, for example,

has a modifier nybble value of %1000, indicating that it has a length of

nine metatiles (as always, count from 0). However, the staircase subrou-

tine only renders objects left to right. The pair of “ pyramid ” staircases

seen near the end of 1 – 1 are drawn with special staircase objects for their

ascenders and individual solid block columns for their descenders.

 Other special objects trigger engine behaviors rather than graphical

elements. In row $D, for instance, there are two object types that dop-

pelganger labels AreaFrenzy and ScrollLock. The former handles levels

such as 2 – 3, wherein enemy Cheep-Cheeps spawn continuously beneath

Mario as he runs across suspended bridges, or level 5 – 3, wherein Bullet

Bills fire at Mario from unseen cannons beyond the screen ’ s right edge.

[138]

The ScrollLock is more self-explanatory. Certain game areas, such as warp

zone area, momentarily wrest scrolling control from the player, locking

screen movement to a fixed rate.

 A final special object is notable due to SMB ’ s close affinity to The

Legend of Zelda . The “ loop command ” occurs only in castle levels like

World 4 – 4, wherein Mario ’ s path splits into an upper and lower level. If

the player chooses the lower path, the same sequence of screens will loop

indefinitely. The upper path, however, breaks the loop and permits Mario

to move forward to a three-tiered path, which contains another looping

sequence. In 7 – 4, the spatial maze is more complex. The double- and

triple-tiered paths require multiple branches (e.g., upper, bottom,

middle, upper) to pass successfully. 32 In code, the loop function involves

checking Mario ’ s y-coordinate position and footing (he must be on solid

ground) against a prescribed area coordinate. If either condition fails, the

current page is reset and the appropriate area data is re-rendered. Notably,

 SMB ’ s spatial loops are the only circumstances that allow Mario to return

to portions of the level that have already scrolled offscreen — though,

appropriately, he may only do so by continuing to the right.

 At this point in our analysis, the engine has populated the set decora-

tion and area objects, but the level is still devoid of Mario ’ s enemies.

Fortunately, enemy object data closely models the area object format. The

complete byte block for level 1 – 1 reads as follows:

 ;level 1 – 1
 E_GroundArea6:
 .db $1e, $c2, $00, $6b, $06, $8b, $86, $63, $b7, $0f, $05
 .db $03, $06, $23, $06, $4b, $b7, $bb, $00, $5b, $b7
 .db $fb, $37, $3b, $b7, $0f, $0b, $1b, $37
 .db $ff

 Enemy object data occupies far less space than area objects since

levels are more populated with bricks, blocks, and staircases than with

Koopas and Goombas. While enemy data blocks lack any opening header

bytes (which would be redundant), they do still require a terminating

byte, $FF, to signal the data ’ s conclusion.

 The remaining bytes use the same position/object pairs as the area

data, with a few notable variations: First, enemy objects have valid page

row values up to and including $0D. The remaining unused rows — $0E and

$0F — are once again reserved for special objects. (Objects in row $0E are

the sole exception to the byte pair rule; their function requires a third

byte, explained below.) Second, enemy object types are not sorted by size.

Digits d0-d5 in the object byte reference a single lookup list, so decoding

objects based on selection bits is not necessary. Third, enemy object

4 Platforming [139]

positions vary from area object positions. For the latter, for example,

a position of $3, $6 denotes that the metatile ’ s position will be in the

16x16-pixel area described by the intersection of the specified row and

column planes. For enemy objects, the row denotes the horizontal posi-

tion upon which the object stands.

 To illustrate these differences, we will once again excerpt the opening

portion of the byte block and expand it into tabular form:

 BYTES COL,ROW OBJ BINARY DESCRIPTION
 $1E, $C2 1,E n/a Area change (address offset: $C2)
 $00 n/a 00000000 Area change ‘ check ’ /page #
 $6B, $06 6,B 00000110 Goomba
 $8B, $86 8,B 10000110 {P} Goomba
 $63, $B7 6,3 10110111 {P} Goomba pair
 $0F, $05 0,F 00000101 Page control

 The first byte triplet is a special case. Doppelganger labels enemy

objects in row $0E as “ area change objects, ” which function when Mario

enters a pipe, climbs a vine, or falls into a pit in a bonus cloud section.

Consequently, the second byte is an address offset used to designate which

area Mario will end up in when such an event occurs. The lower nybble

(d0-d3) of the third byte tells the engine which page of the designated

area Mario should begin on when he arrives in the new area. The upper

nybble (d4-d7) of the third byte, however, is used as a check for the area

change object. If Mario ’ s current world does not match the world stored

in the third byte, the area object change will not take effect. In the data

above, the current world must be 0, so World 1 – 1 passes muster. When

Mario enters the one usable pipe in the level, he descends to the under-

ground coin room. In general, the world check permits the reuse of enemy

object data in multiple levels, ensuring that the pipes and vines of a given

level operate properly.

 The next three byte pairs are more conventional. The first byte

denotes page coordinates, while the second byte denotes the enemy type

along with two additional condition flags. Digit d7 of byte two continues

to signal the page advance flag. D6, however, is the “ secondary hard mode ”

flag. If a player successfully completes SMB and chooses to begin again

without resetting, enemy quantities and types are changed to make sub-

sequent plays more difficult. If the hard mode flag is not set, the enemy

object is not rendered. The remaining six bits (d0-d5) are used to

select the enemy type. In the table above, the first three objects are a

single Goomba (%000110), another single Goomba, and a Goomba pair

(%110111), each on separate pages.

 Note the position bytes for these three objects. The first two Goombas

are positioned vertically on top of row $0B, which coincides with the top

[140]

of the terrain. In other words, the engine spawns them on the ground, like

Mario. But other objects have more peculiar origins. When Mario encoun-

ters the first Goomba pair, they are pacing back and forth between two

adjacent pipes. Based on their position, we might reasonably infer that

they began on the ground like the previous two. But according to their

coordinates in the table above, they spawn a few metatiles from the top of

the screen. That is, they originate in mid-air and drop into position

between the two pipes, a process that is never seen by the player. The only

way to check this behavior, besides parsing the object data, is to replace

the enemy object with a type that is unaffected by gravity. In figure 4.4 , a

simple hex edit replaces the double Goomba object with an immobile

jumping board, so we can freeze the object midair, revealing its point of

origin.

 As we saw in our discussions of R.O.B. and the Zapper in chapter 3,

the ways that hardware “ perceives ” the game onscreen is often incongru-

ent with or even counterintuitive to player perception. The same applies

to software — not only in relation to the player, but also to the hardware

itself. The player, for instance, sees a single screen of graphics at a time.

Beyond artistic tricks that simulate depth in tile-based graphics, the

 4.4 With the aid of a hex editor, World 1 – 1 ’ s double Goomba object byte is replaced with

a jumping board in order to reveal its peculiar mid-air origin. (Emulator: Macifom 0.16)

4 Platforming [141]

overall image is two-dimensional and flat. We already know that internally

the Famicom differentiates between two types of tiles — background and

sprite — that follow different positioning, palette, and priority rules. For

the PPU, sensibly, the name table describes a single flat plane of back-

ground tiles. The Super Mario Bros. engine, however, differentiates further,

assigning software priorities to background tiles that do not exist in hard-

ware. In other words, the PPU can only ever see a flat name table, while

the engine can split that name table into multiple layers. Player, engine,

and processor all view the Kinoko Kingdom from radically different

vantages.

 Vertical Mirror

 Players returning to Super Mario Bros. nearly three decades after its debut

may quickly notice that the game scrolls exclusively along a single vector.

Short of dying (or the special loop command), once a column of name

table has passed beyond the left screen edge, Mario can never return to

that space.

 Subsequent games in the Super Mario series permitted movement in

either direction. 33 The NES version of Super Mario Bros. 2 included vertical

and horizontal areas with bi-directional scrolling, albeit limited to one

direction at a time. Super Mario Bros. 3 upped the scrolling ante: Mario

(and Luigi) could run, jump, swim, and fly along any axis. The added

diagonal trajectory supported a new gameplay mechanic — the raccoon

suit — that allowed Mario to fly for short periods of time once he had gained

sufficient speed on a stretch of unimpeded runway. However, both suc-

cessors benefited from the TSROM/MMC3 mapper, an internal hardware

addition that expanded the cartridge ROM considerably (chapter 6). In

the case of Super Mario Bros. 3 , the mapper upgrade multiplied the PRG

capacity eightfold, the CHR capacity sixteenfold, and added 8KB of RAM.

 SMB ’ s play style demands a modest memory overhead to maintain

onscreen and offscreen objects. Since Mario can break blocks, bump out

their contents, and collect coins, those objects ’ status must be stored until

Mario scrolls past them. Likewise, to maintain the illusion of a world that

extends beyond the current screen, moving enemies or ricocheting shells

should pass into and out of frame believably. But such actions must take

place within feasible boundaries. If Mario could bash a hundred brick

metatiles scattered throughout a level then backtrack to those screens, the

engine would have to manage a hefty ledger of objects in RAM to ensure

that broken blocks stayed broken (as in Super Mario Bros. 3). Likewise, a

skittering shell cannot be tracked as it glides across an entire level. In

[142]

short, NROM cannot sacrifice the memory necessary to track objects for

their entire lifespan.

 To compensate, the SMB engine maintains a narrow “ sliding window ”

wherein all objects are permitted to “ exist. ” Once an object passes beyond

that window, whether through their own volition or as a result of the

screen scrolling past them, the engine “ forgets ” them. They are summar-

ily dropped from memory and no longer exist as active objects. The sliding

window contains two full screens of decoded metatiles (32x13) that shift

right as the screen scrolls. As the player moves, the camera is positioned

in the direct center of the window, leaving an eight-metatile “ buffer ” on

either side of the gameplay screen.

 The buffers provision a plausible range of motion for enemies that

travel offscreen. If a kicked Koopa shell or a shambling Goomba move out

of frame but then collide with a pipe or enemy within the buffer, they will

react accordingly. If the enemy wanders beyond the buffer, it disappears

permanently.

 SMB ’ s U.S. instruction manual makes special note of the peculiarities

of the sliding window:

 Because the screen moves from left to right, there are enemies off the

edge of the screen that can ’ t be seen. You can ’ t kill enemies you can ’ t

see by sending a [shell] off the screen after them. Why not? Maybe

they jump over the enemy when Mario isn ’ t looking! Strangely enough,

however, if a kicked [shell] bumps into a [pipe] off the screen, it

comes ricocheting back at Mario. If you hear the sound of a ricochet,

jump right away so you ’ ll be ready when it comes flying back onto the

screen. 34

 Grasping the engine ’ s frame of perception makes it clear that it is not

simply that the player cannot see enemies — they do not yet exist. And

as silly as it sounds for unseen enemies to jump shells, we have seen

from the enemy object data examples that objects sometimes spawn in

unexpected locations, often above a hurtling shell. Similarly, there are

instances when Mario can kick and follow a shell, which clears enemies

in his path. If the shell moves beyond the screen ’ s right edge but stays

within the sliding window, enemies can sometimes spawn between Mario

and the ricocheting shell, meaning that the enemy object data has not

rendered until after the shell has passed the object ’ s coordinates.

 Literal edge cases such as these illustrate the engine ’ s weird perim-

eters. Along the window ’ s right border, the engine is busy preparing

objects prior to their screen entrance. They do not pop into existence fully

4 Platforming [143]

formed, but must be assembled according to the rendering rules outlined

in the previous section. As you will recall from chapter 1, the Famicom ’ s

scrolling capabilities take advantage of the name tables ’ mirrored layout.

Since SMB is soldered for vertical mirroring, its name tables may be

arranged in the 2x2 arrangement seen in figure 4.5 .

 Though name tables are listed sequentially in the PPU ’ s memory map,

arranging them in a 2x2 matrix makes visual sense of the mirroring

setting. The upper two name tables are duplicated along the x-axis, while

the lower two name tables mirror their contents exactly. Vertical mirror-

ing is suited for horizontal scrolling because the engine can track along

two contiguous name tables solely by updating the scroll register ’ s

x-coordinate.

 The challenge for games that scroll beyond two screens is wrapping

seamlessly from one name table to the next. In SMB, the sliding window ’ s

 4.5 The customary 2x2 arrangement of name tables exhibiting vertical mirroring.

(Emulator: FCEUX 2.1.5)

[144]

eight-metatile buffer provides adequate space ahead of the current player

screen to decode the set decoration, area objects, and enemy objects,

render them onscreen, and have them ready just prior to the player ’ s

arrival. Each time Mario advances two metatiles onscreen, a two-metatile

wide column of world is drawn at the right edge of the sliding window,

while another column of equal width is erased from its left edge. The

rendering engine acts like a more reliable version of the animator ’ s hand

in the famous Daffy Duck short, “ Duck Amuck, ” vigilantly tracking Mario ’ s

advance along the screen, drawing in scenery before he arrives lest the

whole scrolling facade be revealed.

 Mirroring is also used in its conventional sense to reduce the pattern

tiles necessary to draw objects. In doppleganger ’ s disassembly, for

instance, the following table lists the sprite indices that comprise

power-up metatiles:

 PowerUpGfxTable:
 .db $76, $77, $78, $79 ;regular mushroom
 .db $d6, $d6, $d9, $d9 ;fire flower
 .db $8d, $8d, $e4, $e4 ;star
 .db $76, $77, $78, $79 ;1-up mushroom

 Each power-up metatile is composed of four 8x8 sprites drawn in the

following order: upper left, upper right, bottom left, bottom right. Each

byte value above references a tile index from the sprite pattern table. The

regular mushroom, for example, is stored in four sequential bytes between

$76 and $79 (all easily locatable in FCEUX ’ s PPU Viewer).

 An economical use of palette swaps and sprite mirroring reduces

the number of constituent pattern table tiles by half. Notice that both

mushrooms use the same sprites (with different colors) while the fire

flower ’ s and star ’ s left and right halves are simply mirror images across

the metatiles ’ y-axes. Coins, Podoboos, Piranha Plants, Bloopers, Spiny

eggs, empty power-up blocks, drawbridge axes, stomped Goombas, fire-

works, empty shells, jumping boards, the Mushroom Retainer, and even

portions of Mario ’ s body are composed of mirrored tiles. Top to bottom,

Kinoko Kingdom is flush with symmetry.

 The design benefit from using mirrored metatiles was that it freed

pattern memory for additional objects. As Nakago and Tezuka recount, the

designers strove to save space whenever possible:

 Nakago: Even with mushrooms and flowers, we ’ d be looking to limit

the bytes we used, so we ’ d draw half of the object then flip it around

to display it.

 Iwata: That ’ s why these objects are all symmetrical.

4 Platforming [145]

 Nakago: That ’ s true of the stars too. They ’ re symmetrical. There was

the advantage that you could get an object that was double the size

using only half the bytes.

 Iwata: So all of these things were ways of limiting the number of bytes

you were using.

 Tezuka: That ’ s right. We came up with all kinds of objects, all the time

trying to limit the bytes we were using. 35

 As the designers acknowledge, the platform ’ s affordances were structur-

ing the world and its objects with an underlying symmetry, from the

macro — large repeated patterns of metatiles that shaped the rhythm of

hills, fences, and clouds — to the micro — flowers and stars constructed

from mirrored halves.

 Exergue

 In the previous chapter, we discussed a special tile in Object Attribute

Memory called sprite 0. Famicom programmers commonly used sprite 0

to time special raster effects, like splitting the screen at a designated

scanline to provide the player with a static status bar that would not per-

petually scroll offscreen.

 Despite its position of honor in OAM, sprite 0 is rarely conspicuous.

When the PPU renders objects, sprites with a lower position in OAM have

higher screen priority. When objects overlap, the PPU must use a number

of rules to decide which object ’ s pixels will be drawn and thus appear “ on

top. ” If all sixty-four sprites were stacked onscreen in an 8x8 pixel pile,

sprite 0 would always appear to be above the rest. However, sprite 0 does

not have to sit atop background tiles in order to fire properly. Like any

other sprite, sprite 0s priority bit can be set to be either in front of (0) or

behind (1) background tiles. Most programmers wished to hide sprite 0,

so they limited its size to one or a few pixels and tucked it discreetly

behind background tiles.

 SMB uses sprite 0 to demarcate the upper four tile rows of non-scroll-

ing status information seen at the top of the screen (e.g., in figure 4.4).

Reading left to right, we see the current player (Mario or Luigi) and score;

the current stock of coins (0 – 99); the current world and level (e.g., 3 – 1);

and the remaining time. SMB ’ s sprite 0 has a novel shape compared to

most games; it mimics the bottom sliver of the coin tile that records

Mario ’ s current stash. Onscreen, it is placed directly behind the status

bar coin whose shape it imitates (figure 3.4). SMB ’ s sprite 0 placement

coupled with the game engine ’ s porous upper screen boundary reveals an

[146]

interesting quirk of the PPU ’ s rendering process. Sprite 0 has two poten-

tially contradictory priority attributes: its OAM position means it appears

above all other sprites, while its OAM priority bit places it behind back-

ground tiles. So what happens when a sprite with the inverse attributes —

 lower OAM priority, but higher background priority — passes in front of

the coin that hides sprite 0?

 In most cases, the overlap never happens. Few sprites in SMB are

permitted to breach the invisible border marked by sprite 0 — even those

that are airborne, like cloud-riding Lakitu. Mario is the obvious excep-

tion. He can scale tall brick structures and jump beyond the top of the

screen, clipping his head out of view. In certain levels, Mario could cross

the screen ’ s upper threshold, allowing the player free reign to run in front

of the status bar. Mario ’ s ability to break through this diegetic wall, obfus-

cating data meant for the player ’ s eyes, added to the game ’ s mystique.

Players felt as if they were violating the rules by running along the upper

border, despite this being a necessary technique to discover SMB ’ s hidden

warp zones.

 Mario ’ s spatial transgressions provide a simple method to reveal

sprite 0 ’ s hiding place without the need to disable background tiles in an

emulator. In World 1 – 2, it is possible to position Mario above the upper

brick border and nudge his leg into position over the coin icon, causing

the PPU to render an odd “ triple overlay ” effect. 36 While the majority of

the coin background tile is positioned properly behind Mario ’ s sprite, the

lower portion of the coin rests in front of his boot. But if you look closely,

you can see that the coin sliver is painted orange, the color of the back-

ground tile, even though the visible tile is sprite 0, which should be

painted blue (figure 4.6).

 The layer confusion between boot, coin, and sprite 0 demonstrates

several competing priorities at play: sprite 0 has priority over all other

sprites, but its individual sprite priority attribute places it behind any

background tile; Mario ’ s constituent sprites have priority above back-

ground tiles, but below sprite 0. When the PPU evaluates the scanline

with overlapping tiles, it must “ decide ” which pixels to display on top.

We would expect Mario to trump all other tiles, since he has priority

over the background and the background has priority over sprite 0. But

sprite 0 ’ s OAM position creates a strange compromise: the shape of

sprite 0 sits atop Mario ’ s leg, but the pixels are painted like the back-

ground tile. So sprite 0 is paradoxically both above Mario ’ s sprite and

behind the background tile. To the trained eye, that slight crescent of

pixels marks the invisible line beyond which Mario ’ s world is permitted

to scroll.

4 Platforming [147]

 Status Bar

 Though many games used sprite 0 splits to sequester scrolling from non-

scrolling regions, it was not always necessary. Depending on the quantity

of information necessary to convey, it was often simpler to use stationary

sprites to compose status icons. But as always, the PPU ’ s sprite limits

applied — sixty-four total onscreen simultaneously and eight on a single

horizontal scanline — setting hard limits on the shape and density of infor-

mation displayed.

 Contra ’ s horizontal status bar, for example, is minimal compared to

 SMB ’ s. Contra uses the upper region of the screen solely to track player one

and player two ’ s current life count, marked with blue and red ribbon

sprites, each drawn with a single 8x16-pixel tile. If both players manage

to net extra lives during play (or input the Konami code), the onscreen

display will max out at four ribbons each, i.e., the horizontal sprite

maximum. During the game ’ s attract loop (or if one player loses all of their

lives during 2-player play), the status bar reads “ GAME OVER, ” the first

word stacked above the second in order to observe the eight-sprite limit.

 Contra ’ s restrained status bar is possible because the programmers

included an independent interstitial screen displaying the players ’

total lives count, score, and current stage name, eliminating the need to

keep such information visible onscreen. Nonetheless, Contra ’ s raised

platforms, vertically scrolling level (“ Waterfall ”), and main protagonists ’

superhuman jumping talents all pose problems for the status bar. Enemy,

player, and projectile sprites frequently pass through the ribbons ’ hori-

zontal plane, creating noticeable flicker.

 Contra ’ s gameplay, especially with two simultaneous players, gener-

ates vast numbers of sprites — primarily bullets — onscreen, all vying for

 4.6 The PPU ’ s tile priority rules reveal sprite 0 ’ s location without disabling background

tile visibility. (Emulator: FCEUX 2.1.5)

[148]

rendering priority. Accordingly, Konami ’ s programmers designed the

game engine to constantly cycle the OAM positions of all onscreen sprites.

If one watches the sprite slots in the Nintendulator emulator during

gameplay, the sprites appear to cascade in waves across OAM in a hypnotic

rhythm, adding and subtracting sprites from the flow as they move into

and out of frame. In other words, the programmers conceded a constant

flow of sprite flicker in exchange for an overwhelming amount of onscreen

action. And no single sprite element is given special treatment — player

sprites disappear as frequently as Spreader shrapnel. The end result is an

impressive screen density, despite the incessant flicker.

 Mega Man shares Contra ’ s sprite-based status bar, but chooses an

inverse orientation. Depending on the player ’ s game progress, up to three

status elements will be onscreen simultaneously: Mega Man ’ s life bar,

equipped weapon energy, and score. 37 Since the life and weapon energy

bar are several sprites long, they are displayed vertically. At seven tiles

high, this arrangement prevents the horizontal flicker problem present

in Contra , but permanently limits the horizontal sprite density of nearly

one quarter of the screen ’ s vertical resolution. When the energy bar

appears beside the life bar, sprite density is even further constrained. The

tile row that displays the player ’ s score, positioned directly above the life

bar, suffers far worse. The score uses seven tile-sized digits, so any sprite

object with a width greater than two tiles that passes through its plane

triggers flicker.

 Mega Man ’ s engine uses an OAM cycling scheme similar to Contra ’ s.

When sprites are active onscreen, their OAM positions are continuously

swapped. However, unlike Contra ’ s cascade effect, Mega Man ’ s sprites are

shifted around OAM in logical groups. For instance, during a section of

the Fireman stage where columns of fire rise from the floor, the sprites

are arranged in OAM in the following order (assuming Mega Man is sta-

tionary and the game is paused): sprite 0 (positioned offscreen); seven

score display tiles; seven life bar tiles; seven weapon energy tiles; ten

Mega Man tiles; sixteen tiles used to draw fire column one; and sixteen

tiles used to draw fire column two. When OAM is cycled in the next frame,

the arrangement changes to the following: sprite 0; fire column two; fire

column one; Mega Man; score display; life bar; and weapon energy. In

other words, the sprites are cycled as metatiles and shuffled according

to a scheme that assures no screen element will disappear for multiple

consecutive frames. In this configuration, the score display metatile

always has priority above the life and energy bars, but the arrangement

does not matter in-game — their fixed positions ensure that their respec-

tive horizontal planes never intersect.

4 Platforming [149]

 The OAM cycling routine creates odd circumstances where sprites

will disappear even when the scanline limit has not been exceeded. If, for

example, Mega Man fires three bullets while the fire columns are raised,

portions of the right column will disappear. This is clearly not a scanline

overflow but an overflow of available sprites, i.e., the fire columns are

given lowest priority when the onscreen sprite count exceeds sixty-four.

Consequently, the game engine moves the three trailing sprites of column

two ’ s metatile out of the OAM queue on odd frames to make room for Mega

Man ’ s Power Buster bullets, which for obvious hit detection purposes

must always remain onscreen.

 Like Contra , Mega Man ’ s mixture of vertical and horizontal level design

creates numerous occasions where sprite limitations are violated. In

 figure 4.7 , we can see a number of sprite priority trade-offs that take place

during one gameplay sequence. At far left, Mega Man extends his arm to

fire three bullets while another enemy bullet intersects the same plane.

To compensate, tiles from both the life bar and Mega Man ’ s head disap-

pear. In the middle frame, a tile of Mega Man ’ s torso erases as it passes

the score tiles. And finally, at far right, Mega Man once again sacrifices

his body to the score sprites. However, if we advanced another frame of

game time, the priorities would swap in each screen capture, reviving

some tiles while erasing others.

 Mega Man ’ s sprite-based status bars work because other necessary

status cues (e.g., number of lives, available weapons) are either tucked

away in a sub-screen or communicated diegetically. For instance, Mega

Man ’ s current equipped weapon does not require a status bar prompt —

 instead, his suit palette swaps to a new color to indicate the change. If

additional status elements were moved into the normal gameplay screen,

there would be barely any sprites left over to display enemies or items.

 It is a testament to the games ’ quality that Contra and Mega Man

became so popular in spite of their obvious technical concessions. In both

games, there are few screens that do not suffer from significant flicker.

An overabundance of onscreen objects, often subject to individual CPU-

intensive collision checks, frequently overwhelms both game engines and

causes noticeable slowdown. 38 Yet both games are still widely hailed as two

of the NES ’ s finest software showcases.

 Though both Contra and Mega Man benefited from more advanced

mappers than SMB (chapter 6), the former ’ s choice of sprite-based tool-

bars were not affordances of better cartridge hardware. Both the sprite

0/background tile and sprite-based approach had advantages and draw-

backs. For SMB , employing sprite 0 meant sacrificing a large portion of

the upper playfield to static status information that, in some cases, could

 4.7 Multiple screenshots from Mega Man ’ s Cut Man stage demonstrate OAM cycling

priorities at work, alternately deleting portions of Mega Man ’ s body, the life counter,

and enemy fire. (Emulator: Macifom 0.16)

4 Platforming [151]

be covered by the player ’ s sprite. But the use of background tiles elimi-

nated any potential sprite flicker. For Contra and Mega Man , the gains

in screen real estate required a sacrifice of sprite fidelity — a certain

threshold of flicker was allowable as long as it did not significantly inhibit

gameplay. It also meant adapting the game engines to account for constant

shuffling of sprite OAM. Decisions like the size, orientation, and infor-

mation density of status elements at first appear to be dictated more by

the videogame designer ’ s whims, but at the platform level, they are deci-

sions hewn closely to hardware and software constraints, even woven into

the structure and design of the game engine itself.

 Camera Lakitu

 In videogame parlance, “ camera control ” is associated with 3D polygonal

gaming. Extruding the flat, tile-based worlds of 2D videogames along the

z-axis created new design problems. Representing a player avatar within

a space that adheres to perspectival rules demands consideration of

both how that avatar is positioned and from what vantage point that

avatar is seen. If, for instance, the camera is positioned low to the ground,

angled up, and tight on the avatar, it will crowd the majority of the screen,

obscuring terrain, obstacles, and enemies. This setup might work for NPC

conversations in an RPG, but function poorly in a flight simulator. If the

camera is elevated to a position directly above the avatar ’ s head, the player

now has a bird ’ s eye view of their surroundings — ideal for gameplay that

demands a wide scope of the playfield (e.g., sports or real-time strategy)

but poor for precise platforming or an intricate fighting game.

 As videogame designers grappled with this problem during the first

generation of 3D consoles and PCs, they experimented with a variety

of solutions. In 3D platformers like Super Mario 64 , camera control was

both automated and player-controlled. 39 In most cases, Mario ’ s spatial

proximity to terrain or other objects dictated the camera position. Sliding

down an icy path, for instance, would trigger a high angled view, while

dialogue segments would swing the camera behind Mario ’ s shoulder so

the player could see with whom he was conversing. In egregious cases

of camera misbehavior, the player ’ s perspective might be trapped behind

a block of in-game architecture, completely obscuring their view of

Mario.

 Super Mario 64 ’ s designers gave the player limited camera control

via the Nintendo 64 controller ’ s four C buttons. At the time, the 3D

camera and its sometimes unpredictable behavior were so novel they

had to be explained by a diegetic device. In-game, the Lakitu Bros., the

[152]

Spinies-chucking Koopas who menace Mario from the clouds in Super

Mario Bros., track Mario ’ s movements with cameras slung from fishing

poles. The camera is thus anthropomorphized and mobilized, creating at

least a plausible explanation for why it might sometimes have “ a mind of

its own. ” This device is introduced early in the game when one of the

Lakitu Bros. descends from the sky and tells the player about their jour-

nalistic enterprise: “ Mario has just arrived on the scene, and we ’ ll be

filming the action live as he enters the castle and pursues the missing

Power Stars. ” We never see more than one brother talking with Mario,

presumably because the other has to film the conversation.

 Three dimensions added new challenges to camera positioning, but

this was not a novel phenomenon, even in the 2D era. Viewpoint is a

concern for any video game, from Pong to Gears of War , and often estab-

lishes not only the player ’ s position in the game world, but the genre as

well (e.g., first-person shooters). Camera position was less complex in

single-screen games common to the arcade era, since game designers

rarely had to shift perspective from screen to screen or grant the player

camera control. However, the introduction of 2D scrolling made camera

position more complex, since new data was streaming into the player ’ s

view at variable rates. The camera had to be close enough for the player to

recognize and interact with objects onscreen, but distant enough to permit

the player to react to new objects as they entered the frame. Scrolling

direction played a crucial part in this decision. If the player moved left to

right, it made sense to allow a larger buffer on the right side than the left,

so the player might better anticipate and react. Likewise for vertical

scrolling space shooters: the player ’ s spaceship was placed along the

bottom of the screen so there was ample room for enemies to stream in

from above. Multi-axis scrolling increased the complexity further. If the

player could move in any of four cardinal directions, where should

the player ’ s avatar be placed on the screen and how distant should the

camera be from that position?

 Although SMB scrolls along a single, non-reversible vector, its engine

handles camera movement in subtle ways. At the opening of each outdoors

level, Mario stands 40 pixels to the right of the screen ’ s left boundary. 40

The position is not arbitrary — the designers are cueing the player to run

forward toward the stretch of unobstructed runway set against an inviting

backdrop of open blue skies. 41 Mario ’ s metatile likewise faces right to

further signal the player ’ s prescribed path.

 Once the player moves, the scrolling almost immediately kicks in

and Mario ’ s position appears to lock near center screen. If the player

maintains a steady running pace, the world moves in lockstep, only halting

4 Platforming [153]

when the player chooses to slow their progress — perhaps to vault a

platform, bump a block, or squat into a pipe. The camera is fluid and

responsive, always permitting the player ample time to adjust to enemies

or obstacles as they appear. But Mario ’ s locked position slightly left of

center gently suggests that the player should continue moving right.

 To achieve the camera ’ s flexible pace, the game engine employs

two distinct scrolling thresholds (figure 4.8). The first boundary (A) is

80 pixels (5 metatiles) from the left edge of the screen. As soon as the

leftmost pixel of Mario ’ s metatile passes that invisible line, scrolling

commences. The second boundary (B) is 112 pixels (7 metatiles) from the

left edge of the screen. The 32-pixel region between boundary A and B

serves as a “ momentum field ” (y) wherein Mario accelerates toward his

maximum sprinting velocity and gradually “ locks ” into his rightmost

position.

 If the player walks forward tentatively, Mario will remain in this

field until the player either stops to reverse direction or accelerates to

running (holding right) or sprinting (holding right + B) speed. Boundary

 4.8 The two scrolling thresholds designated in Super Mario Bros. ’ s game engine.

Boundary A occurs at player x-position $50 (80 pixels), while boundary B occurs at

player x-position $70 (112 pixels). Region y is the engine ’ s “ momentum field. ”

(Emulator: OpenEmu 1.0.2)

[154]

B functions as a soft limit: if Mario accelerates to a high enough speed,

his x-coordinates can sometimes drift several pixels right of the

boundary. 42

 This may seem like bog-standard scrolling behavior for a platformer,

but consider the implications of the complex interactions taking place

between player input, sprite positioning, and scroll movement. Between

x-coordinates 0 and 80, the player has direct control over Mario ’ s

metatile, as we would expect. When we press the D-pad and buttons, we

sensibly intuit that we are directly moving the character onscreen.

However, once Mario passes boundary A, we begin to control both Mario ’ s

movement and the scroll amount simultaneously. If Mario continues to

accelerate, his x-position updates slightly faster than the scroll, allowing

him to lock into position near boundary B. At this point, if we continue

to move Mario forward without halting his momentum, his x-coordinate

no longer updates.

 Our control has now been transferred almost fully to directing the

scroll — or the “ camera, ” if we wish to adopt the familiar metaphor. (The

sole exception is jumping, since pressing A still grants us control of

Mario ’ s y-coordinate.) Of course, stopping or turning left immediately

wrests Mario ’ s horizontal position back into our hands, but from the game

engine ’ s perspective, our input orchestrates a series of fluid hand-offs

between sprite and scroll control. This process is wholly opaque to us

and, frankly, counterintuitive to our common phenomenologies of inter-

activity. We think SMB plays well because we have total control over Mario ’ s

movements — his jumps, ducks, and frictional slides feel responsive and

fluid. But this is a perceptual illusion. Sometimes we do move the man,

but other times we move the world. And sometimes we move both.

 Mario x Crown

 Kinoko Kingdom is full of secrets — many intentional, many not. As early

as World 1 – 1, Super Mario Bros. ’ s designers left clues to a world literally

hidden beneath the surface. Pressing down on a particular pipe shuttled

Mario to a subterranean room filled with coins. And the short runway

prior to Mario ’ s first pit jump concealed a reward revealed only by a mis-

calculated jump — an invisible 1-up block. Once players stumbled across

those first precious secrets, the whole Kingdom took on a mysterious air.

What other surprises had the developers hidden away?

 Players picked apart Super Mario Bros. ’ s intricacies with fervor. In

Japan, Tokuma Shoten ’ s Super Mario Bros.: The Complete Strategy Guide was

a surprise bestseller, topping the non-manga book sales charts in 1985

4 Platforming [155]

and 1986. 43 Futami Shobo ’ s Super Mario Bros. Secret Tricks Collection held

the number 10 and 3 spots in the same two years. 44 Strategy guides pro-

vided players exhaustive maps of the game ’ s hidden power-ups, warp

zones, beanstalks, and bonus coin levels. They outlined scoring strategies,

shortcuts through stages, and tricks to stockpile lives. A Koopa descend-

ing the staircase at the end of 3 – 1, for example, could be stomped in such

a way that the player could hop endlessly on its shell as it ricocheted

against the wall, multiplying point values until it started generating extra

lives. But the trick had an underlying programmatic consequence — overly

greedy players who amassed too many lives found that their next death

resulted in a game over. 45 And the results of that action first tipped off

players to a world of secrets that might be beyond the purview of tips and

tricks books.

 The first indication that the “ greed penalty ” was unintended appears

during the black interstitial screen that displays the player ’ s current

world and their accumulated lives. Once Mario has more than nine lives,

the counter begins to display strange characters. In figure 4.9 , Mario has

$39 (58) lives, represented in-game by the “ crown ” graphic and a right

triangle.

 The crown hieroglyph is an intentional artifact used to indicate the

tens place. Mario team expected some players to amass more than nine

lives, but they did not build in any checks to prevent the graphical errors

triggered when the player exceeded nineteen. Like the Level indicator in

Famicom Donkey Kong (chapter 2), SMB ’ s lives display uses an offset to

fetch the appropriate tile for the ones position, based on the current

number of lives. 0 through 9 display in sequence, as expected; when the

player accrues ten lives, a crown marks the tens place and the 0 – 9 cycle

starts again. Once twenty lives are earned, an “ A ” curiously appears in the

ones position.

 In the background pattern table, 0 – 9 occupy the first ten tiles slots,

then A-Z, followed by a number of solid colored tiles, symbols, and then

the game ’ s remaining background elements. Once the numbers have

cycled from 1 to 9, then work through 0 – 9 a second time, the display

routine begins fetching tiles beyond the numbers. The triangle seen in

 figure 4.9 represents 58 lives ($39 is decimal 57, but $00 lives is 1

onscreen, so we add one to the actual value). The graphic is actually the

slope of a hillside which appears blue because it is using the numeral tile ’ s

attribute assignment.

 But why does death trigger a game over when the player accumulates

too many lives from the shell-hopping trick? The answer is identical to

the programming flaw that triggers the kill screen in Famicom Donkey

[156]

Kong (chapter 2). The memory location that stores Mario ’ s lives, located

in RAM at $075A, is a single byte long. Once that byte reaches values

exceeding $7F (or 127), the sign bit becomes 1. Without a proper check,

the game interprets values $80 (128) and higher as negative lives. When

that occurs, Mario is considered to be on his last life, so the next death

triggers game over. 46

 The 3 – 1 trick illustrates the careful balance struck between program-

mer intent and player expectation. The Mario team concluded that most

players would not exceed 127 lives and therefore it was not worth the bytes

to build in proper checks to create an upper bound for 1-up accumulation.

When players discovered the means to push the system ’ s boundaries, both

beneficial (lots of lives) and non-beneficial (potential death) results sur-

faced. Miyamoto and team knew about the 3 – 1 trick prior to the game ’ s

release, but they decided to leave it in because it was fun. And they likely

knew that it contained its own checks and balances, rewarding players who

 4.9 Accumulating more than nine lives in Super Mario Bros. causes unintended

CHR-ROM tiles to seep into the lives counter. (Emulator: Macifom 0.16)

4 Platforming [157]

wanted a reasonable amount of extra plays, but penalizing those who went

overboard.

 Minus World

 SMB also had glitches that the team never predicted. The so-called “ minus

world ” is the most famous of these. Reaching the minus world requires

skillful maneuvers that few players can reproduce, lending to its mytho-

logical allure. Near the end of world 1 – 2, where Mario enters the pipe to

return to the surface, it is possible to jump in such a way that Mario ’ s body

can glide through the brick boundary separating the pipe from the warp

zone area. Once Mario ejects into the warp zone — and if the player is

careful not to trigger the scroll lock — Mario can enter the first pipe before

the standard “ Welcome to Warp Zone! ” text appears onscreen. When the

interstitial screen appears, the current level is listed as “ World − 1. ”

 The level that follows is less mysterious than its name, since it is

merely a duplicate of World 7 – 2 that loops endlessly. Mario can proceed

left to right as normal, but once he reaches the exit pipe, he is cruelly

deposited at the level start with no recourse but to while his time and

lives away.

 Nintendo officially corroborated the existence of the minus world in

the third issue of Nintendo Power , describing it as “ an endless water world

from which no one has ever escaped. ” 47 The bare bones explanation gave

players little indication of exactly how Mario might glide through solid

brick (“ After many tries, Mario may be able to go through the wall ”), but

the photographic proof settled the question of whether it was possible.

The minus world fell in line with the numerous other secrets hidden

throughout the Mushroom Kingdom, fueling rumors that the designers

had tucked away secret levels for only the most skilled players to find. But

the minus world is not designed — there is no area object data set aside for

the looping water level (beyond that intended for 7 – 2), nor any other

bonus levels beyond the conventional thirty-two. There simply was not

enough leftover ROM space to tuck away extraneous secret levels. Instead,

the minus world is a result of the serendipitous coupling of flexible engine

design and collision detection shortcomings.

 As we have seen, beyond sprite 0 ’ s simple hit detection, the

Famicom has no hardware provisions for checking collisions between

tiles. Collision detection must be handled exclusively in software.

However, checking every point around a given metatile against all valid

collision points of all other onscreen objects is far too computationally

[158]

costly for the 6502 to handle in a single frame. Instead, programmers

created bounding boxes around objects to check and compare only a

handful of collision boundaries. In SMB , Mario has two points, one for

each foot, that check whether he collides with the floor. The drawback

to simple boundary boxes is that they are porous. If collision points on

two objects happen to pass by one another without a proper collision,

character objects can pass through otherwise “ solid objects ” like bricks

or pipes.

 SMB , like many other games of its era, includes an ejection routine to

compensate for holes in boundary checks. If, for instance, the horizontal

position of Mario ’ s right foot is determined to be inside a block while he

is moving right, the engine will eject Mario in the opposite direction,

forcibly pushing his metatile out of the wall. This works for most common

cases, but it is not a failsafe method. Part of the minus world trick relies

on Mario gaming the collision ejection routine by jumping in a crouched

position while facing left. If the player can then collide with the brick wall

at an exact metatile boundary, quickly pressing left causes Mario to eject

 right , forcing him through the wall tiles until he emerges from the bricks

on the other side. Doing so finds Mario in the warp zone earlier than

expected and fails to properly trigger the scroll lock.

 Mario ’ s faulty collision shortcut is only the first key to triggering the

minus world. When Mario arrives early, the engine has improperly loaded

the warp zone data for world 5 – 1 (which is normally found in 4 – 2).

However, that warp zone contains only one pipe. Since the warp zone in

1 – 2 has three pipes, the far left and right pipes are set to warp to the

nonexistent World 36 – 1. The reason why erroneous data is loaded in

the warp zone area is too complex to discuss here, but where the pipe

sends Mario is a result of the world number variable being set by an

arbitrary data byte. As doppelganger explains, the world level is improp-

erly set to $01:

 When the value 36/$24 is used as the world number, this code uses

the number $24 as the offset, and gets the number $33, which tells it

to look exactly $33 bytes past the start of where the area address

offsets, which happens to have the byte value $01. The problem is that

the look-up table it uses to find the addresses to its level and enemy

data is only 36, or $24 bytes long, and $33 bytes past the starting

byte is actually outside of the area offset lookup table, which puts it in

the enemy data address table. The value $01, which is equivalent

to world 2-2/7-2, is actually retrieved from data it ’ s not supposed to

access! 48

4 Platforming [159]

 In short, when Mario ducks down a pipe that rightfully should not be

there, the engine seeks the current level to load in a data area beyond its

intended lookup boundary.

 SMB ’ s use of metatile-encoding to store its level layouts combined

with 6502 assembly ’ s byte-based mnemonics means that level data can be

loaded from arbitrary locations in PRG-ROM. Consider the following

short code snippet:

 LDA #$00
 STA $0775

 As discussed in chapter 1, each line of assembly has two parts: the

instruction and a value/memory location. The code above loads the accu-

mulator with the value $00, then stores that value at memory location

$0775. However, the alphabetical characters mean nothing to the CPU.

Prior to execution, the above code must be assembled — i.e., translated —

 into a raw byte stream that the 2A03 can understand. Since each

three-letter mnemonic has a single byte equivalent, when the above code

snippet is assembled, it reads:

 A9 00
 8D 75 07

 Again, the text mnemonics are for the programmer ’ s benefit; they

make the code more legible. The CPU simply reads bytes. And whether

the CPU interprets a byte as instruction or data depends on the context.

In the snippet above, those bytes are meant to load a value and store it at

the specified address. However, if the program executed a subroutine that

jumped to the code above and read the five bytes as music data the assem-

bled bytes would not perform the same load and store instructions.

Instead, A9 to 07 would be treated as five byte values meant to be relayed

to the music engine.

 This agnosticism toward data and instructions is precisely why SMB ’ s

engine can “ generate ” level layouts beyond the thirty-two that the Mario

team designed. When the subroutine that fetches metatiles for a given

level is manipulated to point toward an arbitrary location in PRG-ROM,

either by accident or through player intervention, the engine can read

instruction bytes as area object data. When glitches occur, that flexibility

is also its curse.

 In the Famicom Disk System port of SMB , for example, entering a

minus world pipe does not lead to the same endless water level. The results

are far more bizarre. Mario begins above ground in a mushroom cap level

completely submerged in water. Floating Princess sprites and gray

Bowsers populate the landscape, which is colored in the green and pink

[160]

hues of an underwater stage. Stranger still, World − 1 ends with a modified

staircase and a flagpole rather than an endless loop. Players may actually

proceed further into the minus world, to − 2 and − 3. The conclusion of the

latter world leads Mario to an empty Bowser bridge and a congratulatory

message, though no Princess appears. The game then resets to the title

screen and permits level selection, as if the player had completed the

game.

 The discrepancy between minus worlds lies in the code layout. Data

on cartridge and disk are arranged according to different specifications.

PRG- and CHR-ROM on cartridges are stored in separate ICs while disks

store their data serially, along with the various headers and gaps the Disk

Player requires to read that data properly (chapter 5). As a result, the

offset fed to the warp pipe in 1 – 2 will land on a different byte, pointing to

an alternate byte block for the engine to interpret as area and enemy

object data. So players beware: when traversing the minus world, the

medium matters.

 Mario World

 Super Mario Bros. was Nintendo ’ s breakout console hit, spawning one of

the most popular and influential videogame franchises of all time and

spurring Nintendo ’ s acceptance in the U.S. videogame market — in fact,

saving that market from imminent collapse. Super Mario Bros. helped

make the company ’ s name synonymous with videogames. In the U.S.,

 “ playing Nintendo ” replaced “ playing Atari ” as the linguistic metonym for

playing any videogame, not just software exclusive to Nintendo ’ s console.

 Super Mario Bros. also entrenched the platformer as the NES genre par

excellence , spawning a chain of look- and play-alikes that continue even

today.

 So to return again to the chapter ’ s opening question, what made Super

Mario Bros. such a standout hit, adored both in Japan and abroad? For one,

Kinoko Kingdom was a vivid, surrealist world composed of a strange

m é lange of Eastern and Western influences. The striking blue skies alone

were a marked departure from the black void that served as the backdrop

for videogames of all genres. But Mario ’ s strange world had a predictable

internal logic, despite its surreal setting — pipes took you underground,

beanstalks led to clouds, and large castles were as imposing on the inside

as they appeared from the outside.

 Meanwhile, the means provided to the player to explore this world —

 Mario and Luigi — had a fantastic feel. They could walk and run, with

realistic acceleration that affected the distance and trajectory of their

4 Platforming [161]

jumps. Hard stops were supplanted by realistic skidding turns. The all-

or-nothing static arc of Mario ’ s jump in Donkey Kong and Mario Bros. was

replaced with flexible “ air control, ” the ability to coax the character ’ s

movements after pressing the jump button. Thus players could weave

Mario ’ s body through narrow passages, around blocks, and under ene-

mies — all in mid-air.

 These same skills were required to uncover the game ’ s secrets. The

myriad pipes and blocks were enticements to explore, symbolized

famously by the blocks stamped with gleaming question marks. Mario

shrank, grew, and gained fantastic powers like a modern-day fairy tale

character — albeit one sporting overalls and a mustache. Some pipes were

plugged, but others led to underground passages or level-skipping warp

zones.

 But Kinoko Kingdom ’ s arrangement was not arbitrary. Miyamoto ’ s

team worked hard to lead the player through their cartoon world, teaching

them skills via play, absent any in-game text or tutorial. SMB ’ s was a world

meant for extended sessions and repeated play — a true console game.

 In combination, these traits cohered into one of those most beloved

and influential videogames of all time. And each of these elements, in

turn, was sculpted by the Famicom platform. The level structure, the

blocks, the colors, the physics, the music — all conformed to the architec-

tures of the 2A03, the 2C02, the NROM, the Famicom controller, and the

CRT television. The platform founded the platformer.

 ス キ ナ ミ チ ヲ ユ ケ / TAKE ANY ROAD YOU WANT

 — The Hyrule Fantasy / The Legend of Zelda

 There is no better book, no better mirror, than the landscape itself.

 — Takeshi Yamagishi, “ Landscape and the Human Being ”

 A blank yellow cartridge hovers above a faceted metallic vista, its planar

surface stretching into an infinite gradient of purple and black. The car-

tridge rotates lengthwise and vanishes in a beam of radiance as a yellow

diskette takes it place, now held aloft by slender fingers. “ The gaming

world is about to change from cartridges to disk cards! ” ’ an announcer

exclaims. Disembodied hands reach into frame to demonstrate the

connections necessary to join the Famicom to its new shoebox-shaped

companion. “ Dramatically better games will be at your fingertips! ” the

announcer continues, as a green-clad elf plunges his sword into an enor-

mous unicorn dragon. 1

 So went the auspicious television debut of Nintendo ’ s 1986 disk drive

peripheral, the Family Computer Disk System (FDS), and The Hyrule

Fantasy | ゼ ル ダ の , better known in the West as The Legend of Zelda.

Promising “ three times the power ” of standard cartridges, Nintendo ’ s

disks were set to change the console ’ s future. PCs had benefited from the

expansive, inexpensive, and rewriteable storage medium for many years,

but for home consoles, disks were uncharted territory. The Disk System

 5 Quick Disk

[164]

would be Nintendo ’ s first attempt to extend the Famicom ’ s storage

potential and answer competitors who were introducing newer, faster

machines.

 Nintendo ’ s concurrent development of Super Mario Bros. and The

Legend of Zelda signaled an important bellwether in their hardware future.

With the former game, Nintendo had reached a paradoxical zenith —

 Mario ’ s adventures raised the bar for console platforming, but at the same

time packed NROM ’ s memory to capacity. Mario had reached his final

castle with nowhere left to run. Yet The Legend of Zelda promised a new

platform future bolstered by disk capacity and random-access memory,

augmenting the Famicom ’ s processing and graphical power to expand

game worlds and multiply the characters within. The FDS primed Nin-

tendo ’ s new elven hero for a quest unlike any console players had seen

before. But Nintendo ’ s commercial was only half right: the gaming world

was about to change thanks to disk cards, but the format shift was a brief

material detour on the way to an alternate hardware future.

 “ PLEASE SET DISK CARD ”

 Nintendo ’ s Family Computer Disk System shipped February 21, 1986 for

 ¥ 15,000 (roughly $80 in 1986), besting the launch price of its base unit.

The rectangular drive fit neatly underneath the Famicom and matched the

console ’ s distinctive palette (figure 5.1).

 The FDS body was maroon with a black face, white lettering, and a

small yellow eject button. It received power either from an included AC

adapter or, alternatively, six C batteries — in case the outlet was already full

from the Famicom ’ s and TV ’ s wall warts. The drive attached to the console

via a cabled RAM adapter that slotted into the Famicom ’ s card edge con-

nector like a game cartridge. True to its name, the adapter provided 32KB

of DRAM (Dynamic RAM, manufactured by Sharp) for PRG code, 8KB of

SRAM (Save RAM) for CHR data (mapped directly to the PPU ’ s address

space), and an application-specific integrated circuit (or ASIC) called the

2C33. 2 The custom IC stored the FDS system BIOS, 3 coordinated I/O with

the Famicom, and drove an additional audio channel (chapter 7). Disks

loaded in the front of the unit and a small red LED indicated when read/

writes were in progress.

 Diskettes were ideal for videogames. They were less expensive to

manufacture than cartridges, (re)writable, and had more storage space for

data and graphics. Following their standard practice of repurposing exist-

ing technology for new products, Nintendo partnered with Mitsumi to

manufacture modified versions of their proprietary Quick Disk format.

5 Quick Disk [165]

 5.1 A Famicom sitting atop the Family Computer Disk System peripheral. The black

RAM adapter is attached to the Famicom ’ s cartridge slot. (Source: Evan Amos,

Wikimedia Commons)

Mitsumi disks were smaller than standard 3.5 ” floppies: their inner mag-

netic disk measured 2.8 ” and they were housed in either 3 ” x3 ” or 3 ” x4 ”

plastic shells. Data densities varied according to OEM customer specifica-

tions, but Nintendo ’ s double-sided “ disk cards, ” as they rebranded them,

held approximately 64KB on either side. 4 Though Quick Disks were used

in some obscure 8-bit computers, stand-alone word processors, and a few

MIDI sequencers and synthesizers, Nintendo would be the widest adopter

of the format.

 Beyond cosmetic differences, Quick Disks ’ underlying physical struc-

ture and data access were functionally different from conventional disks. 5

Standard floppies used a random access technique to fetch and write data.

The surface of their flexible magnetic disks were traced with a series of

concentric tracks. Each track was further subdivided into individual,

fixed-length sectors (standard 3.5 ” disk sectors, for instance, were always

[166]

4KB). When a program requested data for writing or retrieval, the disk

drive ’ s spindle motor rotated the disk and a secondary stepper motor

moved the read/write head to the appropriate sector. Thanks to the disk ’ s

discrete segmented design, the read/write head could dip into the mag-

netic disk at any point along its surface, making data access fast and

efficient.

 Alternatively, a Quick Disk used sequential access to write and retrieve

data. Its magnetic surface was visually similar to a standard floppy, but the

series of tiny tracks circling the disk ’ s circumference traced a single spiral

leading to the disk ’ s center, like the grooves of a vinyl record. While the

disk spun, the read/write head moved like a phonograph stylus from

the outer to the inner edge of the disk. Once it reached the end, it had to

reset to the outer edge before it began another scan. Whether the requested

data was stored along the outer edge or near the center spindle, the head

had to follow the spiral track from start to finish each scan. As a result,

sequential access was much slower than random access — it took nearly

six seconds to scan a Famicom disk. Players accustomed to instant-on

cartridges were introduced to a novel console phenomenon: loading

screens. And the vinyl analogy extended further — since Quick Disks

were double-sided, players now found themselves flipping disks during

gameplay.

 Quick Disks, like all floppy disks, were more delicate than cartridges.

Cartridge shells protected the majority of the circuit board, exposing only

the “ card edge ” that connected to the console. Famicom and NES shells

alike were designed not to open for an obvious practical reason: when

one ’ s customers are primarily children, physical safeguards are necessary

to curb rough handling or accidental damage. Most Famicom carts were

secured with interior plastic clips that made them nearly impossible to

pry apart without fracturing the exterior shell. NES carts were primarily

fastened with three 3.8mm security screws that required a special bit

to loosen (chapter 3). Famicom disk cards also had a rigid plastic shell,

but the magnetic disk remained exposed via a narrow vertical window.

Embossed icons warned against touching the disk or placing it near

magnets, but there were no physical safeguards to prevent such mishan-

dling. Nintendo omitted the metal shutters common to 3.25 ” floppies in

favor of a more economical solution: retail disk games were stored in wax

paper sleeves, slotted into a hinged plastic case (like a miniature CD jewel

case or MiniDisc shell), then sticker-sealed, along with the game ’ s

manual, inside a flexible plastic box.

 Quick Disks were chosen for their ability both to save in-game data

and to write new games onto existing disks. Nintendo implemented a

5 Quick Disk [167]

forward-thinking sales and distribution model for what videogame mar-

keters now call DLC, or downloadable content. Customers could bring

disks to merchants that installed Nintendo kiosks and have store employ-

ees copy new software to their existing disks for less than the cost of a new

game. Blank disks cost about ¥ 2000 (~$12), a considerable discount from

the average ¥ 5000 (~$30) cartridge. Moreover, rewriting an existing disk

with a new game cost a mere ¥ 500 (~$3.25). 6

 The kiosk model also allowed Nintendo to administer early ver-

sions of “ online ” play. Special contests were held for selected titles

like Golf Japan Course and Grand Prix F1 Race . Disk System owners could

purchase special (shuttered) blue disk cards, 7 earn a high score at

home, then bring their disks back to the store. Retailers uploaded the

player ’ s score to a central database via Nintendo ’ s Disk Fax kiosk. At

the conclusion of the competition, top players were rewarded with

prizes, including stationery sets, VHS tapes, trophies, and special gold

 “ prize card ” disks. 8

 NINJENDO

 The flip side to easy disk copying was software piracy. Nintendo foresaw

the risk and purposefully chose the Quick Disk format with piracy preven-

tion in mind. Beyond their distinctive colored shells and smaller size,

disk cards were embossed with “ NINTENDO ” along both sides of their

graspable bottom edge. The recessed logo was not mere ornamentation;

like the slimmer disk profile and atypical file access, the feature was

meant to deter unauthorized disk duplication. The FDS drive had a screw-

mounted plate affixed to the inner lip of the disk bay that held the raised

counterpart of the disk lettering. Disk cards without the proper recessed

edge failed to physically clear the drive bay, preventing the game from

loading. In effect, this was the mechanical sibling of the CIC lockout chip

embedded in all Nintendo Entertainment System consoles and game paks

(chapter 3).

 Nintendo ’ s U.S. patent for the abandoned version of an NES Disk

System claimed that using non-proprietary disks would encourage illegal

reproduction of their software, flood the market with low-cost copies,

economically damage Nintendo and its suppliers, and confuse consumers

about which games were authentic. Nintendo devised a material solution

to a software problem, ensuring that “ the data recording device can be

authenticated by its structure or form. ” 9 This is similar to tactics used in

the early PC gaming industry, where special code wheels or text keys

hidden in printed manuals served as physical deterrents to software

[168]

piracy. Nintendo went a step further, carving their copyright protection

directly into the media.

 Predictably, their anti-piracy precautions failed to thwart software

theft. Workarounds emerged almost immediately following the periph-

eral ’ s launch. Unlicensed disk manufacturers simply mimicked the

recessed NINTENDO letters with slight spelling variations: NINFENDO,

NINJENDO, or the witty INTEND, with N and O replaced with empty

squares. 10 Similar letterforms and bare indentations cleared the drive ’ s

logo protuberance as easily as Nintendo ’ s sanctioned cavities. And since

the variations did not technically violate Nintendo ’ s corporate trademark,

they could be marketed openly. Hackers also devised a number of disk

modifications to enable cross-media copying. Clipping metal brackets to

the disk cards, for example, extended their profile so they would fit stan-

dard floppy drives.

 Nintendo retaliated with their own modifications. For those pirates

who had managed to turn the Disk System itself into a disk copier, Nin-

tendo released a FDS revision with an onboard Drive Controller Chip that

prevented the drive from rewriting a disk ’ s entire contents. Fan site

Famicom World also discovered a secondary circuit added to later Disk

System models that incorporated yet another layer of copy protection.

Though as they demonstrated on their site, disabling the protection

involved little technical knowledge beyond basic soldering skills. 11 On the

hardware front, Nintendo was fighting a losing battle.

 Nintendo also tried to mitigate piracy through software. Disk cards

included a number of built-in error checks, some stemming from the

peculiarities of their proprietary format. Unlike the uniform sectors of

standard disks, Quick Disks stored data in “ blocks ” of varying length. 12

Due to this dynamic structure, data blocks had to be labeled and formatted

in a specific way. Prior to each block, there were “ gaps ” of data padding

(i.e., zeros) to compensate for mechanical variance in the time it took for

the disk drive head to return to the outer edge of the disk and signal a

 “ ready ” state to the RAM adapter. Additionally, since the ready signal

relied on a mechanical switch within the disk mechanism, it often trig-

gered early, so the RAM adapter was programmed to ignore roughly the

first twenty-six thousand bits read from disk. Once the RAM adapter was

ready to accept valid data, it waited until the gap terminated with a single

byte flag ($80) to indicate the start of a new block. 13 The next data byte,

called the block ID, designated the format and length of data to follow. The

length specification byte was crucial, since there were no other means to

signal when the file ’ s data had ended. Following the actual file data, there

was a 2-byte cyclic redundancy check , or CRC. Finally, there had to be

5 Quick Disk [169]

another small data gap (approximately 975 bits wide) prior to the start of

any subsequent block. The repeated gap, start byte, block ID, data, CRC

pattern structured the entire disk.

 A block ID was expected to be one of four values: $01, $02, $03, or

$04. Blocks 01 and 02 were specially formatted headers required for the

disk to function properly after boot-up, so they had to appear at the start

of either disk side. Block 01 contained fifty-five bytes of metadata includ-

ing the total number of disks, the current side number, the game ’ s name

and version, and the disk ’ s manufacturing date. 14 Most critical were

the first fifteen bytes of the block indicating the block ID ($01) and an

ASCI-encoded string that read *NINTENDO-HVC*. 15 The text served as a

software copyright mechanism; if the BIOS could not find the string, the

disk aborted loading.

 Block 02 contained just two bytes: its own block number ($02) and

the total number of blocks on disk. Oddly, the number stored here did not

have to match the actual number of blocks present on disk; the BIOS

simply ignored any blocks beyond the number provided. Developers capi-

talized on this behavior to implement custom copyright mechanisms.

Konami included a checksum algorithm in ア ル マ ナ の (The Miracle of

Almana) to verify the contents of each file on disk. Editing a single byte

in any file, as illegal disk writers commonly did, would send the game into

an infinite reset loop.

 Other mechanisms embedded messages to potential pirates when a

checksum failed. These were generally good-natured, aiming to steer

pirates toward the proper path. Nintendo ’ s Doki Doki Panic , for instance,

stated, “ SORRY … PLEASE USE OFFICIAL DISK WRITER SHOP ” when

users attempted to illegally copy the game. Nasir Gebelli, programmer of

Square ’ s と び だ せ (3-D WorldRunner), inserted a personal plea to

dissuade illegal copiers:

 I WOULD LIKE TO THANK YOU FOR YOUR INTEREST IN MY GAME >

UNFORTUNATELY YOU WILL NOT BE ABLE TO PLAY THIS ILLEGAL

COPY. BUT THE GOOD NEWS IS THAT YOU CAN PURCHASE THIS

GAME FROM YOUR COMPUTER STORE SINCERELY, N A S I R 16

 The ubiquity of these in-game warnings showed that Nintendo and third-

party developers alike knew their games were being copied and were

working in earnest to stop software theft.

 But these code-based checks and balances were just as susceptible

to circumvention as the hardware itself. Hacker International, one of

the most prolific publishers for the Disk System, despite their lack of a

[170]

license, released several variations of their Disk Hacker utility, which

broke the software copyright protection, allowing users to copy games on

the FDS without the need for hardware modifications. 17 They also used

their own technology to produce games, like a hentai parody of popular

RPG Dragon Quest, called BODYCONQUEST I: Girls Exposed . 18 Players found

their quest rewarded them not with treasure, but with pixelated erotica.

 Adventure Mario

 Launch title The Hyrule Fantasy | ゼ ル ダ の (hereafter Zelda) was the

FDS ’ s showcase game, but it was not initially specced for the peripheral. 19

Due to the game ’ s expected technical requirements, the development

team began work on the VS. UniSystem, one of Nintendo ’ s two arcade

platforms based on the Famicom architecture. 20

 Nintendo ’ s arcade hits had raised them to worldwide prominence,

but their console ’ s breakout success reversed standard porting proce-

dures. Duck Hunt , Excitebike , Ice Climber , Clu Clu Land , and Super Mario

Bros. began as Famicom cartridges that were later ported to arcades, typi-

cally with tweaks to augment their difficulty, alter graphics, and add in

competitive play — the trademark of the “ VS. ” moniker. 21 The industry was

shifting, and Nintendo was pushing the Famicom as the lead console

without abandoning the lucrative arcade market. This was especially

important in Japan, where arcades remained a viable platform. In the

United States, however, the shift in focus from arcades to home play initi-

ated the former ’ s gradual decline toward obsolescence.

 UniSystem PPUs were largely identical to the Famicom PPU, mini-

mizing the turnaround time to port console games to arcades. Additional

registers handled arcade-specific functions: detecting quarter drops,

acknowledging credits for either player, flagging DIP switch toggles, and

so on. 22 The most significant divergence was color. Famicom and UniSys-

tem did not share the same palette entries, so games required color value

adjustments to display properly on the arcade PPU. Moreover, there were

multiple PPU variations used in UniSystem cabinets (with the model

number format RP2C0X), each with distinct palette data that served as a

novel form of visual copyright enforcement. Pirate ROMs would play, but

the in-game colors would be wildly inaccurate without the matching

picture processor. 23

 Early in production, Miyamoto ’ s team shifted Zelda ’ s development to

the Disk System. Again, Zelda was developed alongside Super Mario Bros.

and shared the same core team — Miyamoto, Tezuka, Nakago, and Kondo —

 along with credited programmers Yasunari Soejima and I. Marui. 24 Game

5 Quick Disk [171]

concepts, programming techniques, and graphical assets flowed between

the two games: the spinning “ firebars ” originally designed for Zelda later

moved to SMB ’ s castle levels; 25 both Ganon and Bowser shared the “ Great

Demon King ” title in the original Japanese manuals; both included spatial

mazes that required a designated movement pattern to unlock; both fea-

tured a “ second quest ” with revamped difficulty; both were inspired by

Japanese geography and folklore; both had distinct overworld and subter-

ranean levels; both used the same palette cycle (and color values) to

animate flashing items (e.g., coins, ? blocks, the Triforce seen on the title

screen); and so on. Early on, Mario was even slated to star in both titles,

as design documents reference Zelda ’ s early prototype as “ Adventure

Mario. ” 26

 As development progressed, the team realized that the plumber ’ s

platforming skill set was inappropriate for an adventure, so the “ Mario ”

portion of the title fell away. Mario ’ s trademark abilities were running and

jumping; Link, Zelda ’ s eventual protagonist, could do neither. He relied

on the staple items of fantasy adventuring: swords, shields, wands, maps,

and keys. And similar to the player characters of tabletop role-playing

games, Link gained better gear, amassed treasure, and discovered new

items as the player progressed. The simple small/big/fiery progression of

 SMB was replaced with a richer, more deliberate character upgrade path.

 Zelda is an adventure game centered on Link ’ s quest to gather eight

golden triangles (the Triforce) so he may rescue Princess Zelda from the

clutches of Ganon, a fearsome porcine beast who has brought blight upon

the land of Hyrule. The game world is split into two primary sections: the

 “ overworld ” — comprising Hyrule ’ s trees, mountains, and waterways — and

the dungeons hidden beneath. Dungeons test the player ’ s combat skills,

spatial navigation, and puzzle-solving abilities. Link must procure keys,

bomb walls, clear enemies, and uncover secret passages to progress to

each dungeon ’ s boss. Dungeon layouts and boss locations are obscured

until the player either enters a new room or discovers each level ’ s map

and compass. As Link completes dungeons, he collects Triforce frag-

ments, gains health reserves (“ heart containers ”), upgrades his weapons

and armor, and obtains items that help him defeat foes and unlock later

levels. The boomerang, for instance, can stun foes momentarily or track

across the screen to snag unreachable items. The candle can illuminate

darkened rooms, harm enemies, or burn down trees to uncover hidden

items or stairwells. Link also encounters helpful non-player characters

(NPCs) dispersed throughout Hyrule ’ s caves and dungeons: merchants

sell ammo replenishments, fairies restore health, and wizened mystics

offer cryptic clues.

[172]

 Zelda ’ s overarching gameplay theme is exploration and discovery, a

proper foil to Super Mario Bros. ’ s timer-constrained platforming. Hyrule ’ s

scope and depth demand a larger time commitment than touring Kinoko

Kingdom. Even the speediest run-through of the former takes more than

a half hour, while the latter takes less than a fifth of that time. Of course,

those are world record times — players new to Zelda in 1986 spent hours

plumbing its dungeons. And as with SMB , specialized guidebooks cropped

up to satisfy player demands to uncover its secrets. Hyrule was a world to

be scoured, not sprinted. Players could travel many routes to reach the

same goal, since only a few areas of the world were blocked from the

outset. Once Link obtained a few items, the entire game world opened up.

Dungeons could be played out of sequence or skipped altogether. The

most skillful players could even forgo the sword — the weapon Link receives

at the game ’ s outset — for the majority of the game.

 Miyamoto has cited two influential videogame precedents for Zelda ’ s

play style: Black Onyx and Ultima . 27 The former, released for the NEC

PC-8801 in 1984 (and later ported to the MSX and Famicom), was a land-

mark in Japanese gaming history. Black Onyx developer and American

expat Henk Rogers, a devotee of Lord of the Rings and Dungeons & Dragons ,

introduced party-based, fantasy dungeon crawling to Japanese audiences,

paving the way for Japanese RPG breakouts Final Fantasy and Dragon

Quest . 28 The Ultima series, also Western-developed, first reached Japan in

1985, 29 the same year Zelda ’ s development began. Like Black Onyx , Ultima

II revolved around first-person dungeon crawling, but also featured an

impressive tiled overworld map that linked the game ’ s underground lab-

yrinths — a clear precursor to Hyrule. Ultima ’ s innovative time-traveling

mechanic was also part of Zelda ’ s initial design. In a 2012 interview, Miya-

moto revealed that the player was meant to travel between Hyrule ’ s past

and future, and the hero would act as the “ link ” between them. Weirder

still, the Triforce pieces were meant to be microchips. 30 Though they ulti-

mately settled on the fantasy setting, Miyamoto and team would revisit the

time-linking concept in future Zelda titles.

 It ’ s a Secret to Everybody

 One of Zelda ’ s overt but unacknowledged influences was the Japanese

arcade game ド ル ア ー ガ の , or Tower of Druaga. Published by Namco in

1984, Druaga followed the hero Gilgamesh as he ascended sixty floors of

the titular locale to rescue the priestess Ki from the demon Druaga. Players

viewed the tower interiors from an overhead perspective, but the indi-

vidual character and enemy tiles appeared in profile. Each tower floor was

5 Quick Disk [173]

the width of three screens, which players could scroll to either side to

explore. Like a fantasy Pac-Man (with whom Druaga shared its arcade

hardware), Gil navigated around and through labyrinthine walls in search

of equipment, treasure, and a key to unlock the door to the next level.

 A large contributor to Druaga ’ s legacy was its opaque difficulty. Each

of the levels ’ hidden treasures were revealed according to stipulations that

ran the gamut from benign (kill a Blue Knight on level 3), to luck-based

(walk over a particular floor tile three times), to spatial (pass by each of

the screen ’ s four corners), to metagame (press the 1P Start button), and

even to the inexplicably arcane (press the joystick right seven times, left

once, and right another seven times). 31 The game provided no clues for

how a player might surface the treasures, despite the fact that missing

some items made it impossible to complete the game. Arcade players

had to decipher Druaga ’ s secrets through luck, perseverance, and com-

munity. Sharing individual breakthroughs was the only means to progress

collectively.

 The same cryptic spirit informed Zelda ’ s design, which had its own

share of hidden rooms, ability-boosting treasures, and puzzling spatial

mazes. 32 Link could pass through invisible walls, summon a teleporting

whirlwind with a magic flute, trigger doors by clearing a room ’ s enemies,

discover healing fairies in tucked-away lakes, and slide large blocks aside

to access hidden stairwells. Similarly, Zelda ’ s nine dungeon entrances

were tucked away in hard-to-find locations, with only vague clues pro-

vided to guide the player. Nearly every screen had a secret to uncover.

 Initially Zelda had no overworld. Like Druaga , it was exclusively a

 “ dungeon crawl, ” but included an interesting cooperative function catered

to the FDS ’ s new storage format. Miyamoto explained Zelda ’ s initial pro-

totype in Hyrule Historia :

 The first thing I thought about was a game that made use of the Disk

System ’ s function of rewriting data so that two players could each

create their own dungeons and make the other player solve them. We

actually created such a game, and when I played it, I felt it was very

fun playing in the dungeons themselves. So we put together a game

with a series of dungeons underneath mountains distributed around

Death Mountain for a single player to solve them. But we also wanted

it to feature a world above, so we added forests and lakes, and so

Hyrule Field took form gradually. 33

 Though Zelda is known as a “ top-down ” adventure game, players viewed

Hyrule Field from a hodgepodge of conflicting angles, with the viewpoint

[174]

skewed considerably to aid the player ’ s perspective. Link and much of the

landscape elements looked as if they were plucked from a side-scrolling

platformer, since they appeared in profile, while other enemies (e.g.,

Gleeok, Octorok, Patra) and terrain (e.g., bridges, lakes) adhered to an

overhead perspective. Dungeon interiors were stranger still, as the walls

sloped inward toward an apparent vanishing point, aiding the player ’ s

view of central doorways. Oddest of all were the gray basement levels used

to hide special items. Perhaps owing to their close affinity to SMB ’ s castle

levels, these rooms were viewed from a platformer-style side view.

 Hybrid perspectives notwithstanding, Zelda ’ s most interesting spatial

innovation was its screen-to-screen movement. Earlier adventure games,

including the groundbreaking VCS forebear Adventure (1979), allowed

player movement in any cardinal direction. However, most predecessors

used immediate spatial cuts between screens rather than multi-

directional scrolling. 34 Zelda split the difference: Link could not scroll

seamlessly from screen to screen as Mario did, but he could push forward

in any direction. When Link reached a screen edge, his travel temporarily

halted as the engine hoisted his body in place, scrolled the next screen

into view, then dropped him at the opposite edge. The net effect resem-

bled a smoothly panning slideshow.

 Though future adventure and role-playing games would implement

seamless multi-directional scrolling (chapter 6), Zelda ’ s slideshow tech-

nique struck a clever compromise between the single-screen movement

of earlier arcade and console games and the single-vector scrolling of

the emerging platformer genre. Furthermore, the slideshow pace suited

 Zelda ’ s adventuring premise. Link was not meant to speed quickly through

levels in pursuit of a time-restricted goal; he was meant to wander the

landscape and unearth its secrets.

 In light of their concurrent development, it is remarkable how stark

the gameplay differences between Zelda and Super Mario Bros. were. Con-

sider each game ’ s opening play screen: Mario stood near the left edge,

head in profile, facing the open runway before him. His posture and posi-

tion beckoned the player to run right. Link faced away from the player

near center screen presented with four unmarked paths: north, east, west,

and a mountainside punctured by a dark cave. His posture and position

beckoned the player to choose a path and explore.

 Their respective title screens provided similar cues. In Super Mario

Bros. , the title banner was integrated into World 1 – 1 ’ s landscape. After

pausing for a few seconds to await player input, demonstration play began

(in silence). As Mario moved, the title banner scrolled offscreen as if it

inhabited the same diegetic space as the Koopas and coin blocks. Mario

5 Quick Disk [175]

hopped a few pipes and stomped a few enemies to teach the player how to

platform. Unlike SMB , Zelda ’ s title had no traditional attract loop. Instead,

the game ’ s name was wreathed in garland floating above an idyllic water-

fall, set against Kondo ’ s famous opening theme. Left idle, the scene faded

as the game ’ s backstory scrolled into view. Zelda paid no allegiance to the

tropes of arcade play. There was no demonstration mode, no character

introduction, and no glimpse of the world to come.

 Over and Underworld

 Super Mario Bros. ’ s engine was built for athletic platforming. As we saw

in chapter 4, metatile elements like pipes, blocks, and pits could be

positioned and arranged in various lengths and widths atop a looping

backdrop of repeated scenery. The engine ’ s flexibility mirrored the

game ’ s design process. In a 2011 interview, Nakago explained how he had

to make painstaking daily tweaks to level object data based on the prior

night ’ s playtesting, 35 indicating that level design was an iterative process

of experimentation and refinement. Levels could be expanded and con-

tracted at will, obstacles rearranged, enemies multiplied, world orders

shuffled — all in service of creating a series of varied, enjoyable courses for

players to run.

 Such an engine was ideal for a side-scrolling platformer whose levels,

while visually and thematically consistent, did not have to cohere into a

holistic world. Zelda required a different approach, as the Hyrule over-

world had to make sense as a unified space. From screen to screen, the

paths of Hyrule ’ s rivers, mountains, forests, and shorelines connected

realistically to form a landscape larger than any single screen could

contain. Level design folded into world design, since individual screens

had to nest carefully within a larger structure; editing any single element

rippled outward to the larger whole. Miyamoto ’ s pre-production sketches

of Hyrule indicate that, unlike SMB ’ s levels, much of the overworld ’ s

structure was designed in advance of its translation into code. From pro-

totype to final form, Zelda ’ s design was a process of refinement rather

than iteration.

 Zelda ’ s engine design reflects these fundamental structural differ-

ences in design philosophy. Unlike SMB ’ s manipulable object data, Zelda ’ s

overworld and dungeons are comprised of roughly 140 “ pre-fab ” vertical

strips laid in sequences of either sixteen (overworld) or twelve (dungeon)

columns to create several dozen reusable screen layouts. Layouts are

divided into overworld and dungeon types, since each has its own strip

height — eleven and seven metatiles, respectively. 36 And since Zelda , unlike

[176]

 SMB , uses 8x16-pixel tiles, it only takes two sprite or background tiles

stacked side-by-side to form a 16x16-pixel metatile unit. But within each

strip, individual objects, such as trees or mountain metatiles, cannot be

moved or sized at will — the column is Zelda ’ s “ atomic unit ” of layout

design.

 Zelda ’ s graphics engine is a remarkably complex and compact system

that allowed the programmers to condense the top-level meta-structure

of Hyrule ’ s 128 overworld screens into a slim 2KB, a mere three percent

of the disk card ’ s single-side capacity. Each overworld screen is defined

by sixteen ID bytes, one for each of its columnar units. Four bits of the

column ID index a pointer table that may reference up to ten graphical

strips, while the remaining four bits designate which of those strips will

be selected from a separate “ byte stream ” of metatile data. 37 These bytes

are then parsed by the rendering engine, as they contain flags to indicate

the start of a column, the metatile to be drawn, and a flag indicating

whether that metatile will be doubled. 38 Instead of a scrolling tapestry

upon which objects are arranged, Zelda ’ s engine is a series of nested

Russian dolls containing tiles within metatiles within columns within

screens within a world.

 As a result of its underlying programmatic structures, Zelda ’ s over-

world and dungeon layouts exhibit the same thrifty symmetries seen in

 SMB . In figure 5.2 , a typical overworld screen is broken down into its

columnar elements. Identical strips are annotated with matching overlays

(e.g., the seven lightest strips all contain two trees at the bottom edge) to

highlight their repetition. Notice that, among the sixteen columns, only

six are unique. And within those columns, there are only five unique

background metatiles: empty terrain, a tree, the mountain interior, and

two opposing mountain edges. Yet the net visual effect is a complex maze

of trees bordered by an impenetrable southern forest, a narrow mountain

pass to the west, a wide exit to the east, and several narrow exit channels

to the north.

 Players who navigate Hyrule ’ s overworld can quickly grok its larger

structure thanks to the mini-map in the upper left side of the status bar.

A green rectangle notates Link ’ s position within a larger gray rectangle

that maps, in minimal form, Hyrule ’ s quadrilateral geometry. Internally,

the 128 rectangular screens that comprise the overworld are stored in two

contiguous 8x8-screen matrices, matching the programmatic map to its

representational map.

 What players likely miss is that Zelda ’ s underground lairs adhere to a

similar pattern. Internally the nine dungeons are arranged to fill four

additional 8x8-screen matrices — twice the area of Hyrule ’ s overworld —

5 Quick Disk [177]

with each matrix holding between one and three dungeons. Dungeons 2,

3, and 6, for example, fit into a single matrix, while the 57-screen final

dungeon occupies an entire matrix on its own. In Zelda ’ s instruction

manual, the dungeons have anthropomorphized names, such as Moon,

Eagle, or Lizard, but these are creative justifications to explain away

their jigsaw layouts, which interlock like a non-standard pentomino

puzzle. 39 The outstretched “ wing ” of the Eagle level, for instance, com-

prises the negative space that shapes the “ head ” and “ body ” of the

adjoining Lizard level. So unlike the overworld, the dungeons ’ pro-

grammatic structure shares no spatial relationship to their in-game

arrangement. While conjoined in code, they remain geographically

unmoored beneath Hyrule ’ s surface.

 Zelda famously includes a separate “ second quest ” with rearranged

dungeon layouts whose entrances are hidden in alternate overworld

locations. Despite their revised shapes, the second quest dungeons still

fit — albeit in different arrangements — within four linked matrices. In

addition to four new pentomino-esque shapes, the dungeons now form

each letter of “ ZELDA, ” a nod to both the game ’ s captive princess and

the shortcut method used to unlock the second quest. 40 According to

Nakago and Tezuka, the second quest resulted from over-exuberant design

 5.2 A truncated screenshot of The Legend of Zelda annotated to show the repetition of

vertical metatile strips. (Emulator: Macifom 0.16)

[178]

efficiency. Once Tezuka sketched the final interlocking design, he pre-

sented it to Nakago for translation into code:

 Tezuka-san said, “ I did it! ” and brought this to me. I created the data

exactly in line with it, but then Tezuka-san made a mistake and only

used half of the data. I said, “ Tezuka-san, there ’ s only half here.

Where did the other half go? ” and he was like, “ What?! Oops, I messed

up. ” But Miyamoto-san said it was fine just like that. So, using the

half of the memory that was left over, we decided to create the Second

Quest. 41

 This was a radical departure from the extreme economizing necessary

in Super Mario Bros. , whose “ second quest ” was a series of bit flags in

the existing area object data rather than a full-scale reorganization of the

game ’ s maps. Zelda ’ s second quest did not simply exchange a few enemy

types — it doubled the world.

 Random Access

 Thoughtful map compression certainly helped Miyamoto ’ s team craft

Hyrule into a much larger world than those seen in prior Famicom games,

but the engine ’ s construction did not directly arise from Quick Disks ’

newfound affordances. The medium more directly affected Hyrule ’ s

enemy population and a number of background processes that subtly

influenced Zelda ’ s play experience.

 To the Famicom, the RAM adapter looked like a standard cartridge.

Its 32KB/8KB program/character split matched the basic NROM profile.

But the RAM housed within meant that their respective contents were not

fixed. Unlike ROM, whose “ read-only ” contents were burnt to chips and

sealed forever, RAM allowed “ random access, ” permitting data to be read

from disk and written to RAM at any time. While the FDS could not cir-

cumvent the hard limit of the CPU ’ s and PPU ’ s respective addressing

spaces, it could move code and tiles into their “ view ” as needed. A pattern

table could only ever contain 256 tiles, but each tile could be written and

rewritten again and again.

 Zelda harnessed rewriteable memory to make the landscapes and

dungeons of Hyrule feel as if each contained its own indigenous species.

Its manual split enemy species by their location — these are “ the nasty

characters Link bumps into in the Overworld, ” it said, listing Tektites,

Leevers, Peahats, and several other creatures found exclusively above

ground. The underworld, in turn, had over twenty unique minions and

5 Quick Disk [179]

bosses, many of which were exclusive to a handful of dungeons. Overworld

and underworld felt distinct.

 But variety came at a cost. Compared to the near-instantaneous screen

transitions familiar on cartridge games, Link ’ s passage between areas felt

monumentally slow. Plunging into each dungeon ’ s entrance did not

trigger the same slideshow that carried Link screen to screen. Instead, two

black “ curtains ” closed from the edges of the screen as the engine cut to

darkness. Due to the disk drive ’ s serial access method, several seconds

elapsed as new tile and map data streamed from disk to RAM adapter.

Monitoring FCEUX ’ s PPU Viewer during the dungeon transition reveals

that nearly half the tiles of each pattern table update to accommodate the

new characters, topography, and interface elements (figure 5.3).

 5.3 FDS Zelda ’ s pattern table contents in the overworld (top) and in the first dungeon

(bottom). The majority of tiles from each table ’ s lower half are swapped during the

transition. (Emulator: FCEUX 2.1.5)

[180]

 What ’ s remarkable is that Zelda ’ s designers structured the game ’ s

patterns so that no loading was required within environments. Every tile

that comprised the overworld ’ s menagerie of terrains, NPCs, villains,

items, and text fit within 8KB of CHR memory. Link could comb the entire

overworld and never face a load screen, and the same was true for each

dungeon. Only major transitions — overworld to underworld, title screen

to opening screen — required the player to wait.

 To Zelda ’ s credit, disk loads were front-loaded and thoughtfully

paced. A brief blackout curtain bookending Link ’ s dungeon explorations

at least had a plausible sense of in-game realism (or at least theatrical

style). Nonetheless, the occasional loads did add up: ten seconds elapsed

from disk boot to title screen, another five from title screen to name

entry (accompanied by a disk eject/flip), another five from name entry

to overworld, and an additional five seconds for every dungeon dive and

overworld return. The FDS struck a devil ’ s bargain with players, trading

data for time.

 Indeed, future FDS games would prove far more wearisome to players ’

patience than Zelda ’ s occasional blackouts. Bothtec ’ s 1987 side-scrolling

adventure game レ リ ク ス (Relics: Dark Fortress) required a disk

flip and nearly fifteen seconds of loading between title screen and game-

play. But the initial wait was a mere portent of future delays. Each of

 Relics ’ s frequent screen transitions required a five-second load. Acciden-

tally falling off a ladder you had just climbed, a common occurrence due

to the game ’ s stodgy controls, necessitated a ten-second round trip as you

plummeted to the screen below then clambered your way back to where

you ’ d began. Stranger still, Relics ’ s gameplay often halted mid-scroll as

the player hit unseen, apparently arbitrary, loading thresholds.

 The primary culprits behind Relics ’ s frequent loading was its use

of large (and admittedly impressive) multi-sprite characters coupled

with poor map planning. Bothtec ’ s designers inexplicably used tile

swapping to animate nearly all of the player ’ s movements, introducing

a minuscule but noticeable lag between input and animation as the

adapter accessed disk data. Likewise, any time the player advanced to a

region with new adversaries, their patterns had to load into memory,

requiring a separate disk load to fetch the necessary tiles. Unlike

 Zelda , whose objects were carefully arranged to never exceed an area ’ s

CHR-ROM allotment, Relics dropped in elaborate, sprite-heavy charac-

ters at every turn. In combination, Relics ’ s disk dependencies formed

 Zelda ’ s design antipode, a game that encouraged players to deny adven-

ture, forgo exploration, and pray they never faced another dreaded

loading screen.

5 Quick Disk [181]

 Slideshow

 Another important benefit of disk cards was their flexible mirroring.

Besides Zelda , two of Nintendo ’ s early disk games — メ ト ロ イ ド (Metroid)

and パ ル テ ナ の (aka Kid Icarus) — allowed scrolling in four

directions. Metroid in particular is known for its long vertical shafts con-

nected by corridors that protagonist Samus Aran accesses via shootable

bubble doors. Metroid ’ s gameplay design is structured much like Zelda ’ s ,

although oriented more toward action and platforming than trawling dun-

geons. As Samus, players explored the hostile planet Zebes, collecting

weapon and suit upgrades to unlock new areas, traverse hidden corridors,

and combat bosses. The ability to backtrack and move along both hori-

zontal and vertical planes was crucial to Metroid ’ s “ open world ” structure,

but the game ’ s scrolling vectors were mutually exclusive. In short, Zebes ’

bubble doors masked an underlying mirroring flip.

 In NROM cartridges, a game ’ s mirroring setting was hardwired —

 physically soldered in place on the PCB. Developers had to choose their

mirroring arrangement in advance and design the game ’ s scrolling engine

accordingly. The FDS, in contrast, had a hardware register ($4025) that

could toggle between vertical and horizontal mirroring at any time. In

 Metroid , pushing Samus through a bubble door that served as the “ joint ”

between horizontal and vertical corridors triggered a mirroring toggle,

allowing name tables to “ arrange ” in a configuration more conducive

to that corridor ’ s scrolling vector. 42 Kid Icarus used the same technique

to swap between its sequestered horizontal and vertical areas. In both

cases, the Disk System ’ s hardware capabilities were subtly structuring

level design.

 Software-configurable mirroring proved equally meaningful to

 Zelda ’ s design. Multi-directional scrolling stitched Hyrule ’ s screens into

a unified overworld rather than a series of disconnected playfields. But

 Zelda ’ s overhead view and dungeon layouts demanded better continuity

than even Metroid ’ s corridors provided. Link needed access to all cardinal

directions at any juncture. What is surprising is how Zelda ’ s programmers

managed mirroring to make his passage appear seamless.

 As discussed in previous chapters, the PPU has access to four name

tables, two of which are mirrored duplicates. 43 In the FCEUX emulator,

the Name Table Viewer arranges name table data spatially to better visual-

ize the PPU ’ s internal mirroring settings, positioning each name table as

follows:

 [NT0][NT1]
 [NT2][NT3]

[182]

 When gameplay begins, Zelda uses the FDS ’ s default horizontal mirroring,

meaning that NT0/NT1 and NT2/NT3 contain mirrored data. In this con-

figuration, the engine is “ primed ” for vertical scrolling. The opening

screen begins in NT0 with Link positioned to head north, east, or west. If

we push Link north, we expect the engine to first fill NT2 with the upcom-

ing screen then advance the scroll register upward until its contents fully

occupy the gameplay window.

 The actual process is far stranger. Gameplay in Zelda almost always

takes place in NT0 due to a series of imperceptible swaps that occur at the

beginning and end of each screen transition. Traveling north from the

opening screen backfills NT2/3 with a copy of the contents of NT0/1. 44

Once complete, the scroll register immediately shifts fully to NT2/3, then

pushes upward into NT0/1, this time updating its data row-by-row with

the upcoming screen. In figure 5.4 , you can see four steps of this process,

from the opening screen to the resulting push upward, with the horizontal

line marking the scroll ’ s current position. Counterintuitively, the net

result of this name table dance is that Link both begins and ends his

passage in NT0.

 Horizontal movement is even more curious. If we direct Link east-

ward from the opening screen, NT2/3 once again begin to backfill, though

this time with the contents of the upcoming screen. Once complete, the

engine then toggles vertical mirroring to force an immediate “ rearrange-

ment ” of the contents of all four name tables. 45 Comparing frames two and

three in figure 5.5 , you can see that the mirroring switch appears to dis-

place each screen counterclockwise like a sliding block puzzle. The scroll

register then pushes right to pan the gameplay window over the contents

of NT1/3. As the scroll presses on, the eastern screen is also drawn behind

its boundary in the NT0/NT2 region. Once the transition is complete, the

program toggles back to horizontal mirroring and the scroll is reset to

NT0. For all the manic background shifting and sliding, Link once again

ends up where he started.

 The irony of Link ’ s travel from screen to screen is that the game

engine ’ s processes are antithetical to Zelda ’ s gameplay design. For a game

whose structure encourages exploration and freedom of movement, at the

platform level, Link ’ s mobility is surprisingly constrained. He pushes

against the borders of the world, only to be forcibly picked up and scooted

to the opposite side while backdrops shift and shuttle beneath his feet. In

this light, the spatial puzzle of the Lost Woods is the perfect visual meta-

phor for the engine ’ s scrolling routine: Link appears to travel, but only

ever arrives at the location whence he began.

 5.4 Four “ frames ” of Zelda ’ s name tables during vertical scrolling. (Emulator:

FCEUX 2.1.5)

 5.5 Four “ frames ” of Zelda ’ s name tables during horizontal scrolling. (Emulator:

FCEUX 2.1.5)

5 Quick Disk [185]

 Hold RESET

 Due to mounting piracy problems and the development of expanded car-

tridge hardware (chapter 6), Nintendo abandoned plans for exporting the

FDS outside Japan. Nintendo did not, however, wish to abandon the crop

of lucrative first-party software that they had developed for the platform,

so they began cross-porting several disk titles to NES game paks. Aside

from the FDS ’ s exclusive sound channel (channel 7), Nintendo ’ s engi-

neers devised replacements for the peripheral ’ s augmentations (and

consequently eliminated loading times). But supplanting one of the disk

format ’ s key features — save games — posed a challenging design problem.

 Many of Nintendo ’ s first-party disk games were designed around

multi-session play and relied upon the peripheral ’ s ability to store the

player ’ s progress so they could resume at a later time. In the FDS versions

of Metroid, Kid Icarus, and Zelda , for instance, players had a choice of

three file slots wherein they could save not only one game, but multiple

concurrent games. In households with several children or in instances

where someone might lend their disk to a friend, this lowered the risk of

losing one ’ s progress.

 Without a disk, how could programmers replicate these save files?

Some opted not to. Cartridge ports of both Metroid and Kid Icarus lost save

files in favor of password systems. 46 And these passwords were not only

lengthy — twenty-four characters — they also required manual selection

from sixty-four individual letters, numbers, and punctuation marks.

Thus retrieving one ’ s progress depended not only on accurately tran-

scribing the password, but also replicating it onscreen each time one

wanted to play. Konami ’ s port of Castlevania nixed saving altogether,

transforming a challenging but fair action-adventure disk into a merci-

lessly difficult game pak.

 Zelda did not suffer the same fate. Nintendo decided to maintain

the disk version ’ s triplicate file slots, even replicating their layout for the

cartridge port (figure 5.6). To do so, Nintendo added two new components

to the game pak: an 8KB SRAM chip stored any variables necessary to

reinstate a player ’ s progress, and an attached 3V CR2032 “ coin ” battery,

common in watches and calculators, provided the necessary voltage

to prevent SRAM ’ s volatile contents from dissipating. In Zelda ’ s U.S.

manual, Nintendo highlighted the data ’ s longevity, along with a special

proviso: “ The battery is used to retain the player ’ s data for five years.

However, depending on the conditions under which the Game Pak is kept

(such as exposure to high temperatures, etc.), the life of the battery may

be shortened. ” 47

[186]

 Typical of Nintendo ’ s hardware woes, the save system surfaced a new

problem: power cycling the console created small voltage spikes that

risked scrambling the contents of SRAM, eradicating any save data. The

initial run of Zelda game paks included a warning sticker affixed to the

cartridge back: “ The Game Pak contains batteries. It may be damaged

if: 1) Game Pak is removed or inserted with the power ON, or 2) the power

switch is turned rapidly ON and OFF. ” Nintendo aimed to do due dili-

gence, but there was no in-game warning, and the likelihood that children

read such notices carefully (or at all) prior to playing was slim. Further-

more, not all power cycling was due to player negligence. Over time, the

combined effects of the fragile ZIF connector, bent pins, a temperamental

CIC, and dirty cartridge contacts could trigger their own series of harmful

resets. As consoles aged, the likelihood of save corruption increased.

 Power spikes occurred because of a board-level voltage mismatch.

While a cartridge was in the console, SRAM was connected to both the 3V

coin battery and the console ’ s 5V power line. From the player ’ s perspec-

tive, powering the console down appeared instantaneous, when in reality

there was a gradual downward slope in voltage supply. 48 Once that voltage

slipped beyond a certain threshold, the CPU could no longer be expected

 5.6 The Legend of Zelda cartridge mimicked the save slot layout of the FDS version, but

used battery-backed SRAM to save game data. (Source: NES-001 capture)

5 Quick Disk [187]

to behave reliably — it could, for instance, attempt to write garbage data to

arbitrary locations in memory. For games without SRAM, this was not a

problem. Each time a game reset, either from a cold boot or a soft reset,

instructions in PRG-ROM initialized all relevant memory locations to a

known state. In most games, RAM was cleared, the PPU was allowed to

stabilize, decimal mode was disabled, and so on. When SRAM was present,

the battery picked up the slack once the console ’ s voltage dropped below

the safety threshold, ensuring that the memory had a consistent power

supply while the console ’ s power was off. However, the battery offered no

insurance against the CPU ’ s erratic behavior during power down. One

errant data write to SRAM could corrupt a save file irreparably.

 In response, Nintendo devised a stopgap: holding RESET while pow-

ering the console down would return the program to a known state and

maintain that state during the voltage drop-off. In Zelda cartridge revi-

sions, Nintendo included a supplementary warning on the cart label, in

red text, as well as new cautionary instructions inside the manual. 49 More

importantly, Nintendo added an in-game warning. When Link lost his

final heart, the player was asked to either CONTINUE, SAVE, or QUIT,

followed by a new text block that urged players to, “ HOLD IN RESET

BUTTON AS YOU TURN POWER OFF. ” Many perplexed NES players

thought this button sequence was required to save their data, but it was

simply a means to ensure its integrity.

 Following Zelda ’ s lead, future battery-backed titles incorporated

some variation of the “ Hold RESET ” text whenever the player was required

to save. Similarly, instruction manuals provided their own copious warn-

ings. In the emergent console role-playing game (RPG) genre, this created

a conflict between a game ’ s narrative aims and its obdurate materiality.

Story-centered games like Final Fantasy , Dragon Warrior , Ultima: Exodus ,

or The Bard ’ s Tale were attempting to shake off the vestiges of their arcade

roots. High scores, demonstration modes, and frequent player death were

giving way to more sophisticated narrative structures, influences from

cinema, and multi-session gameplay. But the irruption of the warning text

amid in-game dialog felt anachronistic, as when the innkeeper in Final

Fantasy said, “ Welcome … Stay, to save your data, ” then added, “ Don ’ t

forget, if you leave your game, Hold RESET while you turn POWER off!! ”

 Dragon Warrior attempted to weave the save warning into the game ’ s dieg-

esis: “ Let me teach to thee the Spell of Restoration! Thou shouldst write

this down and keep it. ” But if developers made the save reference too

esoteric, it ran the risk of being ignored. As a result, NPCs often slipped

in a brief line of non-diegetic commentary to directly address the player

rather than the player ’ s character.

[188]

 Nintendo did not rely solely on reeducating players ’ save habits. Later

MMC1 revisions had capacitance barriers to regulate the console ’ s voltage

flow and the ability to temporarily disable SRAM so its contents were

protected from voltage spikes. Though these measures greatly decreased

the chances of any erratic overwrites, the “ Hold RESET ” warning rein-

forced good player habits and, like other unintended errors, soon slipped

into the vernacular of NES folklore.

 Hakoniwa no Famicom

 Thanks to both his affable personality and his unprecedented string of

celebrated videogame hits, designer Shigeru Miyamoto became Ninten-

do ’ s public persona. Today, he still leads some segment of Nintendo ’ s

high-profile E3 trade show presentations, typically beaming through

a demonstration of the latest iteration of the franchises he helped

create. In 2004, he strode onstage to uproarious applause, brandishing

Link ’ s sword and shield as he introduced the Nintendo Wii ’ s first Zelda

installment, Twilight Princess . In an industry where most creators work in

anonymity, Miyamoto ’ s recognition among Western videogame fans is

remarkable.

 Like many vaunted designers, Miyamoto ’ s personal background is

now braided into the works he creates. For his part, Miyamoto tends not

to self-mythologize. Autobiographical accounts of his childhood and

education have been modest and consistent over the years. As many inter-

views recount, his extracurricular interests — music, manga, gardening,

pet ownership — directly inspire the videogames he oversees. As a child,

for instance, Miyamoto was fond of exploring the surrounding woods and

caves near his home in Sonobe, a small village northwest of Kyoto. 50

Sheff ’ s account in Game Over is still one of the most eloquent:

 Investigating hillsides and creek beds and small canyons, Miyamoto

once discovered the opening of a cave. He returned to it several times

before he worked up the courage to go in. Lugging a homemade

lantern, he went deep inside until he came to a small hole that led to

another cave. Breathing deeply, his heart pounding, he climbed

through. He never forgot the exhilaration he felt at this discovery. 51

 A patina of fairy tale storytelling certainly enriches such accounts, but it

is safe to assume that Miyamoto ’ s childhood sense of wonder, danger, and

discovery in his immediate natural environment served as an inspiration

for Link ’ s dungeon-diving adventures.

5 Quick Disk [189]

 While it seems like a symptomatically modern impulse to materialize

one ’ s childhood memories of hillsides, rivers, and forests according to

the discrete logic of binary data, we find familiar analogs in the practice

of gardening. Both the monumental sculpted vistas of Versailles and the

modest potted plant are denatured and domesticated to varying extents,

albeit according to drastic differences in budget and aesthetic taste.

 Throughout their careers, Miyamoto and Tezuka have repeatedly used

the same analogy in their own work, comparing Kinoko and Hyrule to

 “ miniature gardens ” wherein their virtual and human actors play. In

1998, Miyamoto told Nintendo Online Magazine that, “ Instead of thinking

of it as making a game, think of it as nurturing a miniature garden called

Hyrule. ” 52 Again, in a 2004 interview, he told CVG that, since Famicom

 Zelda , “ I have been making much of the ambience that players feel, as if

they had actually visited and explored a miniature garden called Hyrule

that can be placed in your desk drawer. ” 53 And in a 2002 interview, Miya-

moto said of Kinoko and Hyrule: “ Both games are the same in how you

play around in the environment. Both have areas similar to miniature

gardens, and in both games you search for solutions. ” 54

 Journalists and critics pass this off as an aesthetic metaphor, akin to

Brian Wilson ’ s famous remark that the Beach Boys ’ seminal album Pet

Sounds was like a “ pocket symphony, ” or as a literal description of the

greenery depicted in their games. Neither interpretation is invalid, but

they do miss a subtle cultural point rooted deeper than mere metaphor.

 “ Miniature garden ” is a translation of the Japanese kanji , or

 hakoniwa , which Miaymoto and Tezuka use as shorthand to describe the

condensed natural motifs seen in both games — trees, hillsides, caves,

lakes — as well as the players ’ ability to explore them. Typically, hakoniwa

are small boxes filled with sand and populated with stones, plants, and

scale architecture, often mirroring their surrounding landscapes. Minia-

ture gardens simultaneously abstract and concretize the natural landscape

into a handful of representative elements: a stone is a mountain, a small

plant is a tree, and so on. The hakoniwa tames and enfolds the exterior

world into an object ready for aesthetic contemplation.

 In The Compact Culture , Lee argues that refinement and reduction are

the hallmarks of Japanese aesthetic design, exhibited consistently across

all manner of production: poetry, folding fans, living spaces, food, and,

more recently, electronics. As a result, Japanese industry is not obsessed,

as Western culture is, with invention, but innovation: “ While Americans

may have dreamed of inventing the computer, ” he writes, “ Japanese

dreamed of shrinking it down and putting it in everyone ’ s home, ” 55 a

characterization consistent with Nintendo ’ s stated aims for the Family

[190]

Computer (chapter 1). The same impulse to condense a mountain into a

single stone drives the desire to pack tens of thousands of circuits into

a single IC.

 In gardening, Lee writes, the Japanese wield a metaphorical “ rope ”

that they use to draw in distant landscapes, a natural equivalent to the

manufacturing processes that miniaturize transistors into tighter and

tighter spaces. Gardening is the large-scale integration of meadows,

mountains, and forests:

 [T]he Japanese, using their unique imagination and their skill at

reducing what is found in nature, would pull with their metaphorical

rope mountains and sea into their tiny gardens. But before one can

pull the vastness of nature into the narrow confines of a garden, one

must first contract it, make it smaller. 56

 Nature collapsed into hakoniwa does not function as metonym; the min-

iature substitutes for nature, and betters it by harmonizing disorder into

refined aesthetic form.

 Miyamoto and Tezuka ’ s hakoniwa metaphor is particularly poignant

in light of Japan ’ s modern environmental practices. In his otherwise

glowing 1996 profile of Nintendo, Katayama notes with a tinge of nostalgic

remorse that Japanese children no longer have access to the natural play-

grounds familiar to Miyamoto in his childhood. But he later adds with

apparent optimism that the virtual worlds found in videogames may offer

a solution to Japan ’ s ecological problems:

 In the good old days, Japanese children had fields and meadows they

could run around in, but nowhere in our cities today will you find such

places. As a consequence of development, our children can no longer

roam freely. Nor is it just children who have been robbed of their play

spaces. Adults have lost them too … It is no longer a simple matter for

people to “ play ” with nature, and the more distant and farther removed

it becomes, the more need there is for new “ natural environments. ”

Game machines and their computer chips give immediate access to

unlimited “ meadows, ” a new “ nature. ” 57

 Through technology, Nintendo manages to capture the outdoors for a gen-

eration unable to do so in real life. But the subtext, optimistic or not, is a

palpable sense of loss.

 The cultural and ecological toll that Katayama references is likely

unfamiliar to Western audiences. Among the most persistent stereotypes

5 Quick Disk [191]

of the Japanese is that they have an inborn harmony with nature. But

Western sentiment also oscillates between two contradictory extremes: a

xenophobia, incubated after World War II, of a culture intent on economic

conquest through technological superiority; and a fascination with an

idyllic, conformist culture in perfect union with nature. The Japanese are

somehow simultaneously the bastions of bonsai trees, HDTV, bento boxes,

the Walkman, haiku, high-speed cellular networks, geishas, and the Nin-

tendo Wii.

 Alex Kerr, an American native who moved to Japan as a young child,

dispels the romanticized naturalist discourse surrounding Japanese

culture and surveys the costs of Japan ’ s relentless pursuit of moderniza-

tion since the 1950s. In Dogs and Demons , he draws out the traditional

roots of Japan ’ s relationship to nature and contrasts them with the reality

of modernization projects run rampant:

 But those who live or travel here see the reality: the native forest cover

has been clear-cut and replaced by industrial cedar, rivers are

dammed and the seashore lined with cement, hills have been leveled

to provide gravel fill for bays and harbors, mountains are honey-

combed with destructive and useless roads, and rural villages have

been submerged in a sea of industrial waste. 58

 Kerr offers a devastating indictment of Japan ’ s modern ecological prac-

tices, but one rooted in a love for his home and countryside, a landscape

he has seen worn away by the unbridled advance of ossified bureaucracy.

Public works projects like building monuments or shoring up riverbanks

with concrete exist solely to feed bureaucratic demands, regardless of

their environmental ramifications. Kerr writes, “ The emphasis on shared

responsibility and obedience leads to a situation in which nobody is in

charge, with the result that once it is set on a certain course, Japan will not

stop. ” 59 Modernization never ceases — it reproduces itself in perpetuity. 60

 The Japanese people ’ s relationship to nature is not myth. Harmony

with nature is part of their history, culture, and aesthetic purpose. But that

harmony has been mythologized to the point that the representation over-

rides reality. Kerr argues that this split has created a difficult cultural

tension, especially for artists:

 The gap between Japan ’ s traditional image of itself and the modern

reality has riven the nation ’ s present-day culture. Artists must make

a hard choice: try to re-create a vanished world of bamboo, thatched

houses, and temples (but in a cultural context in which sterility rules

[192]

and all these things have become irrelevant) or go with the times,

giving in to dead, flat industrial surfaces. Cut off from the latest trends

in Asia or the West, designers find it hard to conceive of natural mate-

rials used successfully in a modern way, or of modern designs that

blend happily into a natural context. This unresolved cultural conflict

is a secret subtext to art and architecture in Japan today. 61

 What better resolution of natural and modern impulses is there than the

Famicom ’ s virtual hakoniwa ? Nature tamed and tidied along a raster grid.

Rivers and caves etched in silicon. Undying forests uniform in their

perfection.

 Kerr is not alone in his criticism, nor are his observations new.

Writing in Science in 1974, Watanabe reiterated the conventional wisdom

surrounding American and Japanese conceptions of nature. While the

former ’ s view of nature is as “ an object of man ’ s investigation or exploita-

tion for human benefit, ” the latter ’ s is as “ an object not of his mastery,

but of his appreciation … even his best companion. ” 62 But Watanabe also

highlights a tension in Japanese values between historical self-identity

and the reality of modernization. The result, he argues, is that the Japa-

nese paradoxically “ merged with nature, forgetting themselves and even

forgetting the dreadful destruction constantly inflicted upon nature and

themselves. ” 63 He closes with a sober admonition: “ The urgent task before

the Japanese people is, therefore, that they fully realize man ’ s responsi-

bility for nature, unite this realization with their traditional closeness to

nature, and endeavor to overcome the current environmental crisis. ” 64 By

Kerr ’ s account, that realization never came. 65

 There is a troubling paradox underlying Miyamoto ’ s and Tezuka ’ s

desire to capture the wonder of exploration in caves, the pleasures of

gardening, or the meditation of a walk within the confines of a videogame.

On the surface, they are simply aiming to create an enchanting world for

their players, one that adheres to its own fantastic verisimilitude. Hyrule

and Kinoko Kingdom are meant to live and breathe while the player visits.

But there is also an endemic cultural malaise embedded beneath these

virtual worlds, one too often forgotten when we focus myopically on

the graphics onscreen or the deftly crafted console resting beside our

televisions.

 A platform study is as much about an object ’ s external relationships

to other bodies as it is about the internal relationships between mask

ROM and CPU registers. The Family Computer is a real material thing,

part of a complex network of social, ecological, and cultural actors, both

human and non-human. Though many appear to strive to be, a videogame

5 Quick Disk [193]

is never merely a benign object of entertainment. Games like The Legend

of Zelda have a massive influence on popular culture, inspiring new gen-

erations of children, artists, and designers alike, but their worlds often

reflect subtle, often hidden, values about the cultures from which they

arise. There is a bed of melancholy underlying Zelda ’ s garden in a drawer,

a virtual abundance meant to placate a real ecological loss.

 Platform studies ostensibly aims at the “ root ” of computational pro-

duction, the substrate of plastic and silicon that drives computation,

graphics, and sound. In fact, Montfort and Bogost reinforce the archeo-

logical metaphor in their “ five-level ” categorization of digital media

analysis. “ Platform ” rests below “ code, ” which rests beneath “ form/

function, ” and so on through “ interface ” and “ reception/operation. ” 66

The authors emphasize that all levels are enveloped by “ culture and

context, ” so that a platform “ is not an alien machine, but a cultural artifact

that is shaped by values and forces and which expresses views about the

world. ” But the layered structure implies a vertical configuration wherein

platforms provide the base, as well as the temporal precedence, for all

subsequent layers. In their schema, a computer ’ s architecture is neces-

sarily prior to its code or interface.

 But platform studies must also consider what comes prior to the plat-

form, what Mark Sample calls the “ pre-platform. ” He asks, “ What refuse —

 discarded, forgotten, overlooked, or dismissed people, places, things,

and events — precede the making of the platform and design of the code

and execution of the game? ” 67 In other words, it is worthwhile to step back

and evaluate the human and ecological “ platforms ” that fuel and feed the

development of our consoles and computers. Where is silicon sourced?

Who mines the rare earths? Who solders ICs to PCBs? How are obsolete

platforms disposed of? And do videogames ever mirror these concerns?

 Super Mario Bros. is as much about dismantling Mario ’ s landscape as it is

about running and jumping. Kinoko ’ s hills are paved with brickwork,

punctuated by man-sized drainage pipes that Miyamoto derived from the

 “ wasteground with pipes ” he saw on his office commute. 68 Zelda has a

similar subtext of ecological destruction — in search of dungeons and trea-

sures, Link bombs the mountainsides and burns away the few living trees

remaining in Hyrule. Of course, we can push these readings too far; after

all, the Famicom ’ s fantasy worlds are not designed to make logical sense

or adhere to the limitations of the real world. But consciously or not,

videogame worlds reflect our fantasies and fears, our desire for power and

our powerlessness. Perhaps Miyamoto and Tezuka built a garden that

reflected a world they knew. Or perhaps they built a garden they wished

their world could be.

[194]

 Disk Trouble

 Most players who grew up with the NES likely never knew about the Family

Computer Disk System or that landmark games like the Legend of Zelda

started on a disk card rather than a cartridge. Whether the Disk System

would have succeeded abroad is open to speculation. The PC industry was

certainly better established outside Japan, so disks might have made a

compelling argument for transitioning PC players over to the Nintendo

console — especially in Europe.

 Then again, if the dismal history of console peripherals has taught the

videogame industry any lessons, it is that the Disk System was more likely

to flop than not. Consumer acceptance notwithstanding, the FDS and its

disks were plagued by mechanical and design defects: its proprietary drive

belts were flimsy and prone to break; the shutterless disk cards were

exposed to dirt and damage; when errors occurred, the onscreen mes-

sages were difficult to interpret; strong magnets could erase game data;

and frequent loads kept players waiting.

 Yet despite its hardware troubles and the plague of piracy, the Disk

System was not a failure in Japan; by some accounts, the peripheral sold

nearly 4.5 million units. 69 Nintendo and third parties alike supported the

add-on with software for several years. Among the more than two hundred

titles released were the console debuts of The Legend of Zelda , Zelda II , Kid

Icarus , Ice Hockey , and Metroid , alongside enhanced ports of Famicom

titles like Vs. Excitebike and lesser-known Japanese exclusives like the

influential text adventure Famicom Tantei Club . In fact, the disk originals

are arguably the definitive versions of the games, thanks to their richer

soundtracks and robust save systems. 70

 Though Nintendo filed a successful U.S. patent for the FDS, they ulti-

mately abandoned plans for American release, opting to solve memory

limitations and copyright circumvention with upgraded cartridge hard-

ware. Moreover, Nintendo ’ s first taste of disk piracy likely soured them

on rewritable media for years to come. In later hardware generations,

when competitors Sony, Sega, and NEC had all moved on to CD-, then

DVD-based media, Nintendo clung to costly cartridges. Even the Game-

Cube, Nintendo ’ s first console to support optical media, used smaller

proprietary disks in lieu of DVDs, echoing their earlier predilection for

the Quick Disk.

 In the end, the Disk System ’ s impact was felt as much in its absence

as in its presence. If not for Nintendo ’ s losing battle against disk piracy,

the CIC lockout chip may have never been a part of every NES cartridge

and console. Without the pins added to game pak PCBs, their physical

5 Quick Disk [195]

form might have taken a different shape. Without the lock-and-key

mechanism of the CIC, far fewer consoles may have failed to boot games

when the connections degraded. And with a viable companion in tow,

the NES ’ s neglected expansion port might have expanded the horizons

for future peripherals, audio channels, or data connections. Had the FDS

made its way abroad, the NES might have been a wholly different

machine.

 To understand Bank Switching, picture a game program as one page

in a storybook. The first thing you ’ ll notice is that you can only write

so much on a single page. A one page story might be okay, but if you

want to expand the story, you ’ ll need to add more pages. It ’ s the same

with games.

 - “ Why Your Game Paks Never Forget, ” Nintendo Power, 1991

 Fight bosses so big they can ’ t fit on one screen.

 - Low G Man box text, 1990

 Since the late 1970s, when the first era of dedicated ball-and-paddle

games gave way to cartridge-based consoles, the consumer electron-

ics press has grouped videogames ’ historical timeline into discrete

generations. 1 Early on, generations were defined by their processor

architectures — 16-bit supplanted 8-bit, 32-bit supplanted 16-bit, and so

on — until raw horsepower no longer had the same technological cachet. At

that point, generations left their binary posturing behind in favor of less

quantitative distinctions, whether they were about media formats (e.g.,

DVD vs. CD), industrial design (e.g., “ slim ” models), add-on services

(e.g., embedded apps), or merely a nod to established tradition (e.g., the

 “ five-year cycle ”).

 The succession of “ next generation ” hardware traces back to the early

era of PCs, arcade machines, mainframe computers, and even military

innovations. But the generational metaphor has had a particularly forceful

 6 Expansions

[198]

influence on the trajectory of videogame history since its beginning. For

one, it helps construct competitive narratives between hardware peers,

a model perfected during the so-called “ console wars ” waged between

Nintendo and Sega in the early 1990s and played out in each subsequent

generation by two or more of the industry ’ s dominant manufacturers.

Beyond the fans who earnestly pledge allegiance to their favorite brand,

the usual winners are not consumers, but the corporations who reap

the economic benefits of increased public exposure and marketing

attention.

 The generational metaphor likewise reinforces a culture of obsoles-

cence that relies, as Slade argues in Made to Break , on technological,

psychological, and planned obsolescence to “ stimulate repetitive

consumption ” 2 — especially in advanced industrialized nations like the

United States, the United Kingdom, and Japan. When new consoles

launch, consumers are urged to pack up their outdated hardware so the

 “ next gen ” may assume its rightful place in the current gen. Publishers

follow suit by shifting development schedules to the new machines.

Absent software support, the “ last generation ” platforms wither and die.

 More perniciously, the generational metaphor does categorical

boundary work, not only crowning the winners and losers of a given gen-

eration, but nominating which platforms do or do not get to participate in

said generation. And without fail, the winner is always the console — never

a PC, handheld, or arcade platform — that secures the biggest market share.

As stable platforms with defined launch and discontinuation dates,

console lifespans are easy to align, their processors are easy to compare,

and their market impacts are easy to quantify. Secondary or periphery

platforms that fail to fit the mold are either footnoted in or excluded

from the generational timeline. Console revisions (Sega Genesis 3),

regional exclusives (Epoch Cassette Vision), niche platforms (Casio

Loopy), hybrids (Famicom Titler), clones (Yobo FC Twin), emulators

(MAME), add-ons (Sega CD), handhelds (WonderSwan), enhancements

(GameShark), toys (Tiger Electronic), and market failures (Philips CD-i)

struggle to find a home in canonical generations. 3 Likewise for PCs, whose

generic, upgradeable architectures and operating systems can span mul-

tiple generations, often leading the technological vanguard (e.g., “ gaming

PCs ”) and obstinately defending the rearguard (e.g., Windows XP ’ s con-

tinued corporate presence) simultaneously.

 Similarly ignored or abandoned in the generational timeline are the

regions that do not receive consoles within their initial launch window — or

fail to receive officially licensed consoles altogether. The NES ’ s debut in

Europe, for instance, trailed the U.S. by a year. Parts of Western Europe,

6 Expansions [199]

New Zealand, and Australia received the NES a year later still. South

America, Africa, Russia, and large swaths of Asia were passed over com-

pletely. Those nations instead relied on gray market imports or clones

that nonetheless sustained vibrant software ecosystems decades or more

past a console ’ s official debut. The generational metaphor is meant to

have a global scope, but only the entrenched players of late capitalism

perpetuate the bloodline.

 It is not that generations are useless, impractical, or inherently

flawed. Categories do help us make sense of technological history and, for

better or worse, the videogame industry has internalized the generational

metaphor into its operating logic, even, as is Sony ’ s style, numbering

consoles to clarify and reinforce the line of succession. However, we must

be mindful that aggregating the prized progeny of each generation is

merely one lens through which we may view videogame history. Indeed,

when we pay attention to the worldwide scope of platform adoption, the

ebb and flow of life cycles through cloning and emulation, the communi-

ties that sustain hardware hacking and software modifications, and the

vernacular histories of computing that resist simple linear definitions, we

find that generational metaphors collapse. 4

 Despite being the lynchpin of videogames ’ “ third generation, ” the

Famicom ’ s own hardware and software history resists simple generational

categorization. How does the FDS fit into the Famicom ’ s timeline, espe-

cially since it was never sold outside Japan and its birth and death took

place within its host console ’ s lifespan? How do we compare the simple,

arcade-inspired gameplay of Son Son (1986) or Baltron (1986) to sophis-

ticated, late-era Famicom games like Lagrange Point (1991) or Kirby ’ s

Adventure (1993)? These games neither look, sound, nor play the same

and, to the untrained eye, appear to belong to different eras. And how does

cartridge hardware that fundamentally alters the way a platform looks and

sounds shape that platform ’ s perimeters? At what technological event

horizon is a Famicom no longer a Famicom?

 In this chapter, we will look at a number of expansions the Fam-

icom experienced throughout its lifespan, especially as it responded to

encroaching competition. In some cases, this meant hardware expansion,

building on the lessons learned from the Disk System or defending against

the encroachment of third-party cheat devices. In other cases, this meant

expansions of genre or visual style catalyzed by influences from the bus-

tling personal computer industry. The most significant expansion would

emerge from the console role-playing game, a genre that would dominate

Japan ’ s gaming consciousness for more than a decade, and one that would

first find mainstream domestic success on the Family Computer.

[200]

 Pasokon to Famicom

 Prior to the Famicom ’ s debut, the Japanese console ecology was largely

populated by a slew of Pong and Breakout clones (including Nintendo ’ s

successful Color TV Game series), poorly-received (and poorly-localized)

Western imports like the Atari 2800, and a few “ Made in Japan ” machines

like the Bandai Super Vision 8000 (1979), the Epoch Cassette Vision

(1981), and Nichibutsu ’ s My Vision (1983). Though none of these

systems ignited the console market, there was still a thriving tradition

of home videogame play among Japanese personal computer (pasokon)

owners.

 PCs faced severe growing pains in Japan due to linguistic and tech-

nological barriers. Detailed Japanese ideograms were difficult to render

on low-resolution monitors and the language ’ s vast syllabaries proved

challenging to adapt to a standard keyboard interface. Nonetheless, a

domestic PC industry blossomed and thrived as displays and interfaces

improved, introducing millions of Japanese players to their first taste of

videogames outside the arcades. 5 NEC, who later introduced the Famicom

competitor PC-Engine/TurboGrafx-16 (1987), dominated the market

from the late 1970s through the 1990s, beginning with their PC-8000

(1979), PC-6000 (1981), PC-8800 (1981), and PC-9800 (1982) series.

Domestic competitors Fujitsu and Sharp followed with their own popular

offerings, like the former ’ s FM series (1981) and the latter ’ s X series

(1982), alongside comparable machine from Tomy, Toshiba, and the

MSX line.

 PC ports proved important to the Famicom ’ s success, as key develop-

ers like HAL Laboratory, Falcom, and Square — alongside popular software

titles like Metal Gear , Nobunaga no Yabou , and Ys — first cut their teeth

on pasokon platforms before their Family Computer debuts. 6 PCs

affordances were markedly different — Japanese platforms were generally

Z80-based (chapter 1), had more RAM and ROM to spare, and used disks,

cassettes, or hard drives to store media — and software trends followed

suit. Role-playing, strategy, and text adventures, all demanding greater

time commitments and memory resources than the average arcade fare,

fit comfortably in the domestic PC space.

 But the Famicom ’ s unprecedented success demanded attention from

PC developers. While NEC would sell nearly twenty million PCs across its

entire product line, spanning two decades, Nintendo matched that figure

in a shorter time with a single platform — then tripled sales abroad. The

sea change in the home videogame market was moving toward consoles,

and PC developers were guiding their software to follow the tide. As influ-

6 Expansions [201]

ences passed from pasokon to Famicom, the platform ’ s expressive hori-

zons expanded.

 One of the first titles to bridge the PC/Famicom divide hailed from

peculiar origins. Yasuhiro Fukushima was an ambitious entrepreneur who

had tried his hand at several different career paths in the late 1970s. His

first profitable venture was a publishing company catering to the real

estate industry, but an earlier stint as a Toshiba sales representative had

turned him onto the potential of the budding PC software industry. He

decided to merge both interests. In 1982, Fukushima rebranded his

publishing company Enix — a portmanteau of “ ENIAC, ” one of the first

computers ever developed, and “ phoenix, ” denoting the company ’ s

software-centric rebirth. 7

 Enix was a publisher in the truest sense. Fukushima initially had no

in-house programmers, designers, or engineers, so he devised a clever

gimmick to kickstart Enix ’ s software lineup. Enix ’ s “ First Game Hobby

Program Contest ” promised an impressive ¥ 1 million (~$5000) grand

prize to the best software submissions. 8 Thanks to their aggressive pub-

licizing to magazines, electronics shops, and hobbyist clubs, (as well as a

promise that the prize was, in fact, genuine), Enix corralled nearly three

hundred entries. 9

 The contest allowed Enix to debut with an impressive software catalog.

In February 1983, after some outsourced programming cleanup, Enix

published thirteen winning titles on every viable Japanese PC platform,

including the NEC PC-6001, PC-8801, Fujitsu FM-8, FM-7, and Sharp

X1. 10 The eclectic library of shooters, puzzle, card, sports, action, and adult

games was immediately successful, so Enix kept up their harried publish-

ing pace. Thanks to a second programming contest, they added thirteen

additional titles to their roster in October 1983. Within a year, Enix held

five positions in the top ten best-selling PC software category — including

the top three spots — and netted ¥ 300 million in profits. 11

 Among the first winners ’ pool were two standout designers. Preco-

cious programmer Koichi Nakamura, still in high school when he entered

the contest, submitted ド ア ド ア (Door Door), an arcade-inspired ladder

and platform game fusing elements of Pac-Man, BurgerTime, and Donkey

Kong . The game starred the egg-shaped, baseball cap-wearing Chun, who

evaded his pursuing aliens by leading them through — then closing them

behind — a series of sliding doors. A charming bit of broken English on the

introductory screen summed up Door Door ’ s objective: “ HOW MANY

ALIENS CAN YOU SHUT UP? ” Door Door sold well on PC and Chun became

the namesake for Nakamura ’ s development company, CHUNSoft, which

he founded in 1984.

[202]

 The other promising winner, Yuji Horii, worked as a computer games

journalist at weekly manga magazine Shonen Jump . While less accom-

plished as a programmer than Nakamura, Horii ’ s entry, ラ ブ マ ッ チ テ ニ ス

(Love Match Tennis), was a colorful, albeit rudimentary, tennis simu-

lation. 12 Horii ’ s real strengths were his writing abilities and industry

partnerships. While at Jump , for instance, he befriended artist Akira Tori-

yama, the creator of wildly popular manga serials Dr. Slump and Dragon

Ball , who would become a key future collaborator.

 Carpeting the PC field with software proved to be a successful busi-

ness strategy, but Fukushima had his sights set beyond the diaspora of

home computer platforms. After securing a publishing license from Nin-

tendo, Fukushima shifted his contract programmers ’ focus to porting

Enix ’ s catalog from PC to Famicom. By 1984, Nintendo had sold over

one million consoles, creating a far larger target market than any single

Japanese PC platform could offer. More importantly, the Famicom offered

comparable specs at an unbeatable price, retailing at one-sixth the cost of

its nearest PC competitor. Nakamura ’ s Door Door (1985) became Enix ’ s

first Famicom cartridge and proved immediately lucrative: while Door

Door sold 80,000 copies across multiple PC platforms, the port sold nearly

200,000 copies on the Famicom. 13

 More importantly, the porting initiative brought Nakamura and Horii

together for the first time, a matchup that would prove monumental for

both Enix ’ s continued growth and the future of Japanese videogames.

The duo first collaborated on a Famicom conversion of one of Horii ’ s most

innovative PC titles. 1985 ’ s ポ ー ト ピ ア , or The Portopia

Serial Murder Case , was not only the first showcase of Horii ’ s writing

talents, but also the first Famicom graphical adventure game. 14

 Port Utopia

 In the U.S., graphical adventures were part of a long tradition of

adventure games that originated on the mainframe computers that first

populated universities, businesses, and government facilities. Since

these machines had limited (if any) graphical capabilities, the earliest

adventure games described their worlds with words. Player interaction

in these “ text adventures ” involved inputting short command strings —

 usually in verb/noun pairs like “ GO NORTH ” or “ GET LAMP ” — to

explore, resolve encounters, and solve puzzles. As technology pro-

gressed, adventure games migrated from campus mainframes to per-

sonal computers and added graphical enhancements to help illustrate

6 Expansions [203]

the text descriptions. The popularization of the mouse as an input device

led to direct interaction with onscreen objects, spawning the point-and-

click adventure subgenre. 15

 Due to their roots in literal wordplay, text adventures were radically

different than most arcade and console games. With no limitations

based on graphical acuity, designers had greater leeway with world-

building, dialogue, and narrative. While a simple plot directive like

 “ Save the princess! ” could support any number of platformers, richer

fictions were necessary for videogames that relied more on the mind than

the eye.

 Portopia ’ s scenario was unlike any prior Famicom game. Players

assumed the role of Boss, a detective investigating the apparent suicide of

Kouzou Yamakawa, the president of “ loan shark company ” Yamakin Loans.

Players viewed the investigation from Boss ’ perspective, accompanied by

his assistant detective, Yasu. Players moved from location to location

questioning suspects and searching for clues. Each screen featured a

single vignette in the upper left corner depicting the current location:

the exterior of a house, a seaside vista, a crime scene, a downtown club,

etc. The text below provided supplementary descriptions, dialogue with

Yasu and other NPCs, and prompts for player actions.

 6.1 In Portopia , gameplay consists of the main window, dialogue text, and a list of

commands. The main window displays storybook-style illustrations of locations

around Kobe, Japan, the site of the PORTOPIA ’ 81 expo. (Source: PowerPak, NES-001

capture)

[204]

 In the PC original, players had to input commands via keyboard. To

better accommodate the Famicom controller, Horii and Nakamura sim-

plified player input to a few preset action words like “ Move ” or “ Arrest ”

that the player could select from an onscreen menu. 16 Though the vignettes

were devoid of animation, certain commands would trigger tool icons

to appear onscreen so the player could more directly interact, albeit in

a limited manner, with the scene. The magnifying glass, for instance,

helped the player inspect the scene, while the hammer could strike

objects — or suspects, if the player opted to play the bad cop. Beyond the

blinking cursor, the only moving elements on the screen were the text

descriptions, which were drawn onscreen character by character like a

police teletype.

 Portopia , like Enix, was a portmanteau of two English words: “ port ”

and “ utopia. ” Horii borrowed the neologism from Japan ’ s World ’ s Fair

exhibition site located on Kobe ’ s Port Island. 17 Portopia was part of a fif-

teen-year “ land reclamation project ” that involved shuttling three billion

cubic feet of soil from the Kobe mountains then enclosing it within a

concrete breakwater. 18 Upon completion, Port Island was the world ’ s

largest artificial island, hosting PORTOPIA ’ 81 for nearly seven months

between May and September 1981. The Japanese “ Cultural City on the Sea ”

was meant to symbolize Japan ’ s renewed effort to open their cultural

borders to an international audience. Millions of tourists visited Portopia,

but the locale ’ s reproduction in digital form is emblematic of Japan ’ s true

cultural expansion in the 1980s — videogames. 19

 Mirroring its namesake event, Horii set Portopia in Kobe. The player ’ s

investigations led Boss to many real-world landmarks, like the Port Island

dock in Kobe harbor (figure 6.1). This was atypical for a videogame at the

time — even an adventure game. Like RPGs, Western adventure games

drew heavily from the traditions of Dungeons & Dragons and fantasy litera-

ture. As their names indicate, iconic games like Colossal Caves and Hunt

the Wumpus revolved around exploring subterranean spaces and battling

fantastic monsters. Graphical limitations made it simpler to depict fantasy

and cartoon scenarios, but Portopia ’ s restrained scope and atypical drawing

technique made the realistic setting possible.

 Portopia used an NROM board like Super Mario Bros. , but its game-

play style was the antithesis of Nintendo ’ s platformer, featuring no

scrolling, physics, soundtrack, scoreboard, player avatars, or levels.

Horii intended the game to play like an interactive crime novel with the

player starring as the lead detective. Progression was based on the suc-

cessful navigation of the story, not the blocks, pipes, or turtles that

appeared onscreen. As such, most of the game ’ s sprites and background

6 Expansions [205]

tiles were enlisted to draw the game ’ s locations. To achieve a sufficient

level of graphical diversity between vignettes while still adhering to the

bounds of 8K of CHR-ROM, Nakamura stocked Portopia ’ s pattern tables

with simple geometric primitives: curves, squares, triangles, lines, etc.

(figure 6.2).

 All Famicom games used stretches of repeated tiles to build larger

structures, but these tiles tended to represent “ single-use ” elements from

the game world. The brick tile in Super Mario Bros. was used hundreds of

times, but whether blue or brown, it was only ever a brick. In Portopia , a

simple bisected rectangle could serve multiple purposes — the edge of a

door, the side of a house, a horizon line — depending on its color and ori-

entation. Even the game ’ s human cast was assembled from various

arrangements of modular body parts. Portopia ’ s simple geometric land-

scapes and bright colors conveyed a pleasing picture book aesthetic that

fit its pulp narrative style.

 6.2 Portopia ’ s unconventional “ primitives-based ” pattern tiles. (Emulator:

FCEUX 2.1.5)

[206]

 Text Mode

 Nakamura ’ s unconventional approach to graphics programming stemmed

from Portopia ’ s platform history. PCs in the early 1980s typically offered

two exclusive display modes: text or graphics. In text mode, only a limited

set of character glyphs — letters, numbers, and a few symbols — could be

displayed onscreen. These were stored in memory as individual character

tiles. Characters were the display ’ s fundamental atomic unit; the pro-

grammer had no access to individual pixels. Therefore, resolutions were

measured in the number of characters that could fit the height and width

of the screen. The NEC PC-6001 (1981), for instance, had a single 32x16

text mode, enough room to display 512 characters edge to edge.

 While characters were well suited to word processing or file naviga-

tion, building games from fixed text elements limited their graphical

diversity. 20 Graphics modes, in contrast, gave programmers pixel-level

control but sacrificed computational resources. More graphical control

demanded more memory, dependent upon the graphics mode ’ s granular-

ity and color depth. Again, the PC-6001 included several graphics modes

that decreased the available color palette as resolution increased. The

highest, 256x192, was exclusively monochrome; the lowest, 64x48, per-

mitted up to nine colors per display “ pixel. ” Game developers struck a

constant compromise between graphical fidelity and palette diversity.

 Due to the increased memory consumption, rendering in graphics

mode was also more processor-intensive. The NEC PC versions of

 Portopia used the majority of the screen to display the current location

vignette. Screen elements were outlined line-by-line, then color-filled

row-by-row. Complex locations depicting multiple buildings receding

into the horizon, like the opening street scene, took thirty seconds or

more to render on the PC-6601 (1985), which ran in a 4-color 320x200

graphics mode. Despite being four years older, the PC-6001 could render

the same scene in half the time, since it ran in the lower resolution

(128x192) 2-color mode. In either case, players spent much of their play

time waiting for the scenery to render. 21

 Portopia ’ s primitives-based pattern tables worked as a smart com-

promise between the graphics modes of early PCs and the Famicom ’ s

tile-based architecture. But the compromise only worked because of the

game ’ s slow-paced genre — with limited animated elements, the distinc-

tions between sprites and background tiles were not as ironclad. Only a

few tiles were dedicated to moving objects, so Nakamura was free to use

the remainder of CHR-ROM to store Japanese glyphs and background

primitives.

6 Expansions [207]

 Due to the Famicom ’ s dedicated PPU, Nakamura ’ s port gained imme-

diate improvements over its PC predecessors. Vignettes rendered

immediately, so players could focus on advancing the storyline instead

of watching the processor laboriously draw each scene. Removing the

platform-enforced time inflation made the game shorter, so Horii and

Nakamura added new content: another character, several locations, and

a somewhat anachronistic homage to Wizardry in the form of an under-

ground, first-person “ dungeon. ” In the dungeon, the main window

displayed a simple geometric maze that the player could navigate using the

D-pad instead of menu commands, making it the only section of the game

where the player gained direct control over Boss ’ movements. But instead

of running through a dungeon in search of treasure, the detectives hunted

for evidence. It was a contemporary Japanese update to the fantasy

dungeon crawl.

 Portopia was such a departure from standard console fare that it

required supplementary assistance to ease players into its gameplay

style. The manual included a dramatized story summary, introductions

to the major characters, a detailed breakdown of text commands and

items, and a generalized strategy for how to begin Boss ’ s investigation.

There was also an extensive “ Portopia Q & A ” section that read like a FAQ

from a modern strategy guide. The first entry addressed the lack of a save

function:

 Q: I ’ ve played for more than two hours, but I was unable to solve the

mystery. I ’ ve decided to come back to the game tomorrow, so I

turned off the power switch on my Famicom. The next day, can I

play from where I left off?

 A: When you turn off the power, the memory that keeps track of how

far along in the story you have progressed is erased. 22

 Losing progress was customary for action or arcade games, especially on

consoles, but restarting a plot-driven game was likely jarring to players

accustomed to PC adventures. To curb complaints, the Q & A reassured

players that subsequent restarts would progress much faster since they

already knew what to do. Nonetheless, the manual encouraged note-

taking, providing a categorized “ Investigation Notes ” section directly

following the Q & A.

 Nonetheless, the manual ’ s concluding “ Notice to Owners ” included

Enix ’ s last ditch effort to assuage any fears that the game might be “ broken ”

if the player was unable to progress:

[208]

 ROM cartridges are not defective unless the game display appears

obviously garbled. If you cannot solve the mystery, you are not leading

the investigation correctly. At times during your investigation, an

item that you have taken may not appear in your items list, may not

be available for examination, or may not be available to show to

people. This is because it is not necessary to solve the game and thus

was programmed in this manner. This is not a defect in the ROM

cartridge or in the program … The mystery is solvable; please do not

give up, and good luck! 23

 Apparently players adapted to the learning curve, as Portopia sold 700,000

copies. It also proved to be massively influential to the Japanese adventure

genre. Portopia clones proliferated on the Famicom, much like the plat-

former boom that began after Nintendo ’ s debut of Super Mario Bros.

Over time, the graphical adventures inspired by Horii ’ s groundbreaking

game narrowed into a genre that would soon flourish in Japan: the visual

novel.

 Despite its success in Japan, Portopia was never ported to the NES. For

one, its content was mature for a videogame: the plot centered around

a series of murders, the investigation took players to adult locales like a

strip club and hostess bar, and several vignettes depicted crime scenes,

like the silhouette of a man who had hanged himself from a tree. Such

scenes would have never met Nintendo ’ s strict content approval outside

of Japan without a substantial overhaul. Furthermore, the game ’ s scenario

was steeped in Japanese culture. Few U.S. children would have recognized

landmarks in Kobe, much less the reference to the PORTOPIA ’ 81 Expo.

Certain clues were triggered by dialing familiar Japanese phone numbers,

which followed a different format than U.S. numbers. Even within Japan,

the Famicom version received a few noticeable content alterations. The

PC-6601 port opened with the sound of gunfire and three “ bullet holes ” —

 actually asterisks — puncturing the screen, followed by a wailing police

siren. For the Famicom conversion, the siren remained, but the gunshots

were removed. Finally, one of the PC vignettes depicting the chalk outline

of the murder victim had a noticeable bloodstain near the victim ’ s head.

The Famicom port kept the chalk outline but omitted the blood. 24

 The other presiding factor limiting translation was technological.

According to the documentation to DvD ’ s Portopia fan translation, only

two of the NROM binary ’ s 40,960 bytes were unused. In other words,

Enix faced the same capacity barrier as the Super Mario Bros. team, but due

to different circumstances: SMB was packed with objects while Portopia

was packed with text. Translating Horii ’ s script to English would have

6 Expansions [209]

required compromising textual edits — or expanded memory, as DvD

explains in their translation notes: “ Because English text uses roughly

twice as many characters to say the same thing in Japanese, and the origi-

nal game used MTE compression on the Japanese text, we needed to

expand the size of the ROM file to fit in the text. ” 25 Though non-trivial

from a programming standpoint, ROM expansion for play in an emulator

costs nothing, since no physical ROM must be manufactured. In 1985,

however, expanding NROM was not yet possible. Considering its PC heri-

tage, Portopia was an ideal candidate for the Disk System, but at the time

the peripheral was still unknown outside of Nintendo R & D. Had Enix

embraced the Disk System early on, the peripheral ’ s fate might have

taken a different course.

 Weighing the cultural, economic, and technological factors, a Portopia

translation was likely not worth the risk, effort, or expense. A handful of

adventure videogames found their way to the NES — notably Shadowgate ,

Deja Vu , and Uninvited — but they were spurious outsiders, not beacons of

a burgeoning console adventure trend. In America, adventure games were

a PC genre — and one quickly fading in popularity. In Japan, Portopia trig-

gered a videogame phenomenon, but one that was localized. Ironically,

Nakamura and Horii ’ s follow-up homage to the PC role-playing game

would follow the same trajectory.

 New Maps

 As both Super Mario Bros. and Portopia demonstrated — though through

vastly different means — NROM could only stretch so far. And as Zelda

demonstrated on the Disk System, cramming more background and sprite

tiles into a game could make an immediate visual impact. Hyrule felt

appreciably bigger than Kinoko Kingdom or Kobe ’ s Port Island, but its

magnitude came at the price of a kludgy peripheral and a proprietary

medium. There had to be a better way, some means to axe the plastic and

cabling and sneak hardware in unseen.

 The solution arrived via cartridges. Within four months of the Disk

System ’ s launch, Capcom released (Makaimura) , known in the

U.S. as Ghosts ’ n Goblins . 26 Today, most players remember the arcade port

for its Satanic themes and equally devilish difficulty, but the cartridge

interior concealed its own sinister portent of the Disk System ’ s

future. Besides its black shell, Makaimura looked identical to any other

Famicom cart, but inside, the circuit board was etched with two unfamiliar

labels — “ HVC-UNROM-01 ” and “ CHR RAM ” — and had an extended PCB

shoulder that held two new integrated circuits. These inauspicious logic

[210]

components were not only significant enough to warrant a new board

name, they also marked a new era for the Famicom and its games.

 UNROM was one of the first discrete logic boards released for the

Famicom. 27 Discrete logic chips contained one or more logic gates that

performed the Boolean functions necessary for a memory management

technique known as bank switching . Bank switching allowed the 2A03 to

 “ see ” more data by shuffling identically-sized banks in and out of its

address space. UNROM divided the 32KB CPU address space into two

segments: one 16KB bank remained fixed, while the second segment

could swap between seven additional 16KB banks. In sum, Makaimura

could access an impressive 128KB of PRG-ROM.

 Due to their cartographic enhancement capabilities, the components

that administered bank switching (and other advanced logic) were com-

monly called “ mappers. ” But why were banks necessary? Why not include

a single 128KB chip instead of segmenting memory into discrete areas?

For one, NROM ’ s ROM thresholds were not arbitrary, but governed by

physical, computational, and economic considerations. Nintendo ’ s stan-

dard mask ROM had twenty-eight pins, of which fifteen were dedicated

address lines (numbered A0 through A14) that relayed communications

between CPU and cartridge. 28 Each line was assigned to one bit of the

largest possible address the CPU could access, totaling 2 15 addressable

memory locations in cartridge ROM — or 32KB. Adding a single address

line would have doubled capacity to 64KB, but it also would have required

a new IC design, which in turn would have raised the overall cost per

cartridge. Uemura and team calculated their costs to cater to Donkey Kong,

not a future era of memory-hungry games.

 UNROM ’ s second immediate benefit was its CHR-RAM. 29 While

functionally identical to the FDS RAM adapter ’ s 8KB of pattern RAM,

mapper-based CHR-RAM could swap tiles at a much faster rate than the

Quick Disk ’ s serial loading logjam could provide. We can witness this

benefit firsthand in Makaimura ’ s character animations. The player avatar

Sir Arthur had two gameplay states: at full strength, he wore a suit of

armor; after a single enemy strike, he was reduced to his underwear. In

the sprite pattern table, the armored and disrobed tiles shared identical

positions, though not simultaneously. When Arthur collided with an

enemy, a small segment of tiles in CHR-RAM updated with underwear

sprites, allowing two distinct animation cycles to occupy the same pattern

table indices, overwriting one another as needed. The switchover was fast

and seamless.

 UNROM worked out great for Capcom and Makaimura , but why did

Nintendo bother building mappers when they had already “ solved ” the

6 Expansions [211]

ROM cap with Quick Disks? They did so partly to keep pace with industry

trends. Third-party developers like Jaleco and Konami were already

experimenting with their own discrete logic boards so they could better

port their advanced arcade and PC titles to the Famicom. 30 Nintendo

stepped in soon after, providing their own “ official ” solutions via UNROM

and CNROM, but the discrete logic components they used were low-cost,

off-the-shelf parts sourced from the world ’ s major hardware vendors,

some of whom were competitors. Makaimura ’ s multiple board revisions

alone contained chips from NEC, Sharp, Toshiba, Panasonic, Texas

Instruments, and GoldStar. 31

 Yamauchi, never one to miss a competitive advantage, assigned

R & D3 — headed by Genyo Takeda — to develop Nintendo ’ s own mapper

technology, 32 even while Yokoi ’ s R & D1 worked on the Disk System and its

suite of first-party titles. By doing so, Nintendo could maintain strict

licensing control over their products, even at the chip level. And while it

might have seemed counterproductive for Nintendo to have supported

two independent divisions working on competing formats, 33 Yamauchi felt

that internal competition would keep the teams focused and motivated.

 The fruit of R & D3 ’ s labor was a chip that Nintendo could call their

own. True to form, in 1987 Nintendo filed a U.S. patent for R & D3 ’ s “ multi-

memory controller, ” or MMC, which provided capabilities similar to

discrete logic circuits but in a consolidated — and proprietary — package. 34

Nintendo ’ s in-house mappers would become the predominant mapper

technology for Famicom carts and the only mappers available to world-

wide developers, since the latter had to defer manufacturing control to

their parent licensor. In the end, this proved detrimental to the NES ’ s

hardware variety, since many of the Famicom ’ s third-party mappers

would provide some of the most interesting console upgrades, especially

for audio (chapter 7).

 Whether discrete logic or MMC, the number and size of a mapper ’ s

banks — especially PRG-ROM — had meaningful consequences to a game ’ s

design. For bank switching to work, either one bank had to remain fixed

so function-critical code was always accessible, or that function-critical

code had to be duplicated across multiple banks at identical addresses. 35

All-at-once bank switching required careful code planning to ensure that

data was in the right place at the right time. If, for instance, the engine

was busy reading sound data for music playback and that data ’ s bank

swapped, the engine might read in arbitrary data as music and produce

unexpected sounds. In more critical cases — like a bank switch that trig-

gered during a subroutine call that resulted in the program counter

returning to an unexpected address — the game might crash.

[212]

 CHR-ROM banking posed no risk of program failure, but it did afford

interesting visual effects, especially if mappers allowed partial pattern

table banking. Some, like Nintendo ’ s MMC3 and Sunsoft ’ s FME-7, could

bank as little as 1KB (64 tiles) at a time, making bank-switched animation

feasible. 36 Games with granular banking soon enlivened their back-

grounds with swaying flora, blinking signs, churning water, and spinning

machinery. Super Mario Bros. 3 (MMC3) banked 2KB segments of CHR-

ROM, reserving half of its background pattern table for animation duties,

like the dancing greenery on the World 1 overworld map, airship propel-

lers, rotating coins, and the question marks sliding across block faces.

Sunsoft ’ s Batman: Return of the Joker (FME-7) used smaller 1KB banks to

fake parallax scrolling effects like the rolling storm clouds crowning the

sky in stage 1 – 1. Mappers like CNROM, in contrast, could only bank the

entire 8KB of CHR-ROM at once, so tile substitutions were primarily

reserved for major character or area changes.

 A residual effect of bank switching and CHR-RAM was a general loos-

ening of byte accounting. NROM developers suddenly faced with multiple

times the program and character memory were more prone to leave

behind, unintentionally or not, vestigial code and graphics that did not

make it into the final game. 37 Remnants of unused test levels, in-game

text, character animations, items, enemies, debug menus, developer

credits, stage music, and Easter eggs were scattered throughout Famicom

games that suddenly had space to waste. 38 Mappers rapidly expanded the

visual (and archival) complexity of Famicom games. There were quantifi-

ably more characters, animations, and special effects onscreen. Bouncing

fauna and rotating fans made backgrounds appear livelier. Complex par-

allax movement, now possible with artful tile management, kept the

Famicom apace with platforms with more advanced graphical processors.

Mappers also extended the Famicom ’ s in-game maps, providing the

memory to build out worlds far larger than Hyrule ’ s overworld and under-

world combined.

 Role-Playing

 As the brief “ dungeon ” portion of the Portopia console port made clear,

the Enix team were fans of Western role-playing games. As PC enthusi-

asts, both Horii and Nakamura had had first-hand play experience with

 Ultima and Wizardry . 39 They wanted to replicate the experience on con-

soles, but their small-scale graphical adventure had already pushed the

NROM to capacity.

6 Expansions [213]

 Nintendo ’ s discrete logic mappers arrived just in time, and Enix was

one of the first third-party developers to capitalize on their benefits.

CNROM was not a huge step up from NROM — PRG-ROM still maxed at

32KB — but the 32KB of bankable CHR-ROM was a fourfold boost in pattern

table memory that significantly expanded (both in number and size) the

available cast of in-game creatures, a hardware benefit that would prove

crucial to their new game ’ s manga-inspired graphical style.

 But tile counts had not been Enix ’ s sole concern prior to embarking

on their next project. They also worried that role-playing games might be

too complex for first-time players who were accustomed to console and

arcade fare. Portopia proved that a text- and narrative-heavy game was

both economically and technologically feasible on the Famicom, but the

team would need a new approach to fuse the storytelling of adventure

games to the strategy and scope of the Western RPG.

 Ultima and Wizardry were landmarks of the computer role-playing

genre, but they drew influences from the gameplay traditions of “ pen and

paper ” (or “ tabletop ”) RPGs like Dungeons & Dragons and their war game

predecessors. Computers were ideal for handling the computational

minutiae driving character creation, combat resolution, experience track-

ing, and the other calculations players typically did by hand. But tabletop

RPGs were not simply statistical exercises; role-playing was equally

grounded in open-ended storytelling and player choice, gameplay aspects

that were (and continue to be) much more difficult to simulate with

computers.

 Dungeons & Dragons was also a social gaming experience shared by a

multi-member adventuring party, so players ’ roles were divided accord-

ing to broad fantasy archetypes — magic-users, fighters, thieves, clerics —

 to provide a better division of labor for role-playing. While the Dungeon

Master (DM) controlled the panoply of non-player characters (NPCs) and

monsters, each player typically controlled a single adventurer. In the

absence of online or LAN play, early PC RPGs mimicked the tabletop

model as best they could, condensing role-playing ’ s social elements into

calculated interactions between player and computer — the former con-

trolled one or more adventurers while the latter took over the DM ’ s

duties. 40

 Enix ’ s new role-playing project, ド ラ ゴ ン ク エ ス ト (Dragon Quest)

honed character creation to its essence. 41 The first and only customization

necessary prior to play was your character ’ s name. D & D ’ s six standard

ability scores — strength, dexterity, intelligence, wisdom, constitution,

and charisma — compressed to two: strength and agility. Leveling followed

[214]

a simple linear track based on experience points gained from defeating

monsters in battle. The adventuring party was pared to one “ classless ”

hero who could handle both melee and magical attacks. Accordingly,

combat was simplified to a single melee command and a modest spell

system. Your hero could battle only one monster at a time, narrated textu-

ally through a series of turns that relied on simple strategy rather than

reflex. Enix wagered that minimizing customization options would both

respect the console ’ s affordances and make the game accessible to RPG

novices, especially children.

 Character naming was a recent addition to Famicom games. Miya-

moto thought it was important to give players the option to name their

character in The Legend of Zelda to better emphasize the relationship

between the player and their onscreen avatar. 42 “ Link ” was a placeholder

name meant to denote that tie, but the player ’ s input had no real signifi-

cance beyond the label of their save file. In Dragon Quest , your name

became part of the story — NPCs and battle narration alike hailed you by

your chosen name. Enix even considered character naming significant

enough to use as a marketing angle: “ The main character is you yourself.

When you start the game and enter your name, the King and the towns-

people will call you by that name. ” 43 Naming made your role-playing

experience unique.

 Narrative novelties aside, names had a programmatic function,

serving as input data for your character ’ s statistical progression. Naka-

mura programmed an algorithm to parse the name ’ s first four characters

and use them to select one of sixteen initial character “ builds. ” 44 The vari-

ance in strength, agility, HP (hit points), and MP (magic power) were not

especially wide, but the difference between a strength of 3 or 6 could make

a big difference in player survival during the game ’ s early encounters.

More importantly, each of the sixteen starting builds funneled to one of

four “ growth tracks, ” determining how your stats would advance for the

remainder of the game. Some tracks simply skewed characters more

toward strength vs. magic or vice-versa, while others were deliberately

stunted. Certain unlucky player names generated characters that were

quantitatively worse than others. In a real procedural sense, your name

guided your destiny.

 Walkabout

 After name selection, Dragon Quest ’ s play began in the audience of King

Lars, who presided over the throne room of Radatome (ラ ダ ト ー ム)

Castle. 45 Lars spoke a brief monologue, informing you that you were a

6 Expansions [215]

descendent of the Hero Loto, who was once given a Ball of Light that could

seal away monsters. However, the evil Dragon King (り ゅ う お う) had stolen

the Ball and subsequently unleashed the repressed hordes upon the land

of Alefgard. The King beseeched you to defeat the Dragon King and return

the ancient relic to his protection.

 Once you cleared the throne room and ventured outside the castle,

the perspective shifted abruptly. Inside Radatome, the architecture and

NPCs were scaled roughly according to “ real-world ” proportions. The

castle interior had multiple floors and rooms wherein the residents went

about their business. Though condensed and viewed from a cutaway per-

spective, the walls were meant to convincingly represent the castle ’ s scale.

Outside, your viewpoint changed to a tiled overworld view that the U.S.

instruction manual called “ walkabout mode. ” Though your character

remained the same size, locations and terrain were compressed to min-

iature pictorial indices. Radatome, once a vast castle, was now merely a

16x16-pixel icon. 46

 Most contemporary videogame players have assimilated the visual

language of varying spatial perspectives, but in the 1980s, and especially

for younger audiences, such counterintuitive shifts required additional

instruction. Nintendo of America spent several months priming Ameri-

can children for the introduction of the Dragon Quest localization in the

pages of Nintendo Power. A twelve-page spread in the July/August 1989

issue included screen captures of the player ’ s character outside the town

with the following captions: “ Towns appear small from outside their pro-

tective walls, but this is an illusion … Actually, the towns are large. ” 47 In

the same way that early cinema-goers had to learn that cuts could traverse

space and time, early game players had to learn that their character did

not grow to colossal size outside the city ’ s walls.

 Once acclimated to the walkabout illusion, you likely spied the

Demon ’ s Isle, an inaccessible landmass bordered by ocean, swamps, and

craggy mountains located due south of Radatome. As you would eventually

learn, the Isle housed the site of the game ’ s final confrontation, the Castle

of the Dragon King. Showcasing the game ’ s ultimate objective early on was

an inspired use of aspirational design and a direct counterpoint to Zelda ’ s

exploratory model. In Dragon Quest, there was no ambiguity about the end

goal — the player simply had to learn how to reach it.

 As Horii explained in a recent interview, players unfamiliar with

RPGs needed clear signposts to guide them:

 Other role-playing games back then had the players go wherever they

pleased, but with Dragon Quest we dared to make scenarios starting

[216]

out the character with various linear objectives. Once the players had

achieved a series of clear-cut objectives, gradually building up the

character ’ s strength, they could eventually venture out on their own

with more freedom. 48

 “ Gradually building up ” is an accurate phrase. Progressing in Dragon

Quest required a lot of time spent in battle. Grinding, as the process is

more commonly known, involves the prolonged repetition of enemy

encounters (usually in a limited portion of the game world) in order to

accumulate experience, treasure, and equipment. Though its name is not

complimentary, players are split about its value. Those who appreciate

grinding tend to acknowledge its basis in fantasy verisimilitude. New

adventurers do not begin as all-powerful heroes; they have to dedicate

hours to slaying monsters before they are ready to face more powerful

foes. Experience points, while clearly an abstraction, are an attempt to

quantify the qualitative process of practice, knowledge, and training.

Detractors, on the other hand, characterize grinding as wasted hours

spent at work when they should be at play.

 One of grinding ’ s underlying problems is its partial translation of a

system adopted from tabletop role-playing. In Dungeons & Dragons , at

least ideally, leveling flows naturally from storytelling. Ostensibly the

party should be killing monsters for an overarching purpose that advances

the narrative. If they happen to stumble into an encounter that is beyond

their level, the (benevolent) DM adjusts the difficulty on the fly. Video-

game grinding extracts the procedural aspect of leveling — its raw statisti-

cal component — from its narrative structure. Especially in early RPGs,

leveling takes place in a suspended temporal state where the plot, no

matter how urgent or dire, is put on hold until the player fulfills their

leveling quotas. In a tabletop campaign, delaying one ’ s quest may seal the

world ’ s fate; in Dragon Quest , the delay is necessary to adequately prepare

for the Dragon King.

 Indeed, grinding was mandatory in Dragon Quest . Though Lars gave

you gold to start your adventure, it was not enough to purchase adequate

equipment, even among the game ’ s early selections. Instead, you had to

choose weapons, armor, and supplies strategically, weighing cost against

power and defense. However, Horii and Nakamura structured the game

so players would not grow frustrated early on. Advancing to the second

level only required seven experience points. Granting that you followed

the King ’ s advice and bought supplies, even the most incompetent players

could struggle through the handful of monsters necessary to reach level

6 Expansions [217]

two. The designers hoped that early advancement would spur the player

onward.

 Command?

 Adventurous players soon found that they could not stray far from Rada-

tome. Exploring the overworld map was risky. Threats did not roam openly

as they did in adventure games. Any step could trigger a random encoun-

ter, as wandering monsters remained cloaked by statistical probability.

And even the weakest enemies could deplete your hero ’ s health after a few

turns. Until he leveled up, you kept him on a short leash.

 Dragon Quest ’ s random encounters derived from Wizardry , whose own

system traced back once again to tabletop role-playing games. Early edi-

tions of Dungeons & Dragons in particular encouraged the random genera-

tion of monsters, treasure, and even dungeon layouts. Dice rolling was a

key role-playing mechanic, emphasizing the dangerous nature of the

party ’ s environs; when exploring a hostile dungeon, one could be attacked

at any moment.

 To temper fortune ’ s fates, encounters in Dungeons & Dragons were

scaled according to the party ’ s level and location. The 1983 Dungeon

Masters Rulebook explained how dungeons could be “ any number of

levels deep ” and that, “ in general, the deeper you explore in a dungeon,

the more dangerous it becomes. ” 49 Wandering monsters gave dungeons

an organic, lived-in feel that helped sell the campaign ’ s realism. Handing

the role of DM over to the CPU meant that wandering monsters no

longer spawned from physical dice rolls. The RPG internalized algorith-

mically the ubiquitous danger of the overworld. Threat avoidance was

no longer a matter of reflex, but subject to a hidden calculus governed

by code.

 Dragon Quest likewise used algorithmic processes to both deliver

encounters at an acceptable frequency and ensure that players were not

unfairly overwhelmed. To both ends, the developers divided Alefgard ’ s

world map into an 8x8 grid with each cell assigned one of fourteen differ-

ent enemy zones scaled in difficulty according to the types of enemies

within. 50 Each zone could contain between two and five enemy types. Zone

0, for instance, encompassed Radatome ’ s immediate vicinity. Here, the

player could only encounter the blue or red Slimes, the weakest enemies

in the game. In contrast, in zone 12, which surrounds the Dragon King ’ s

castle, the player could encounter some of the game ’ s toughest foes, like

Demon Knights and Starwyverns.

[218]

 The overworld zones gated wandering monsters according to their

toughness, sculpting a programmatic architecture beneath Alefgard ’ s

hills, plains, and deserts. Zones spiraled out from Radatome in increasing

difficulty, and the designers developed clever signposts to direct players

along optimal paths. The U.S. instruction manual warned players to

 “ Beware of bridges! When you cross a bridge you ’ ll arrive at an area where

stronger monsters live. ” 51 This was sage advice — the developers placed

bridges near zone borderlines, so players crossing them experienced a

meaningful computational difference in enemy strength when they

reached the other side. Other geographical cues, like mountain ranges or

narrow rivers, were designed to funnel the player through smooth grada-

tions of encounter types so they did not unexpectedly wander into regions

beyond their abilities.

 Players could encounter creatures at every step. While the types of

enemies encountered were dictated by the player ’ s current zone, the

chance of an encounter was based on the current terrain type, no matter

which zone the player was in. Plains tiles were the least populated; players

faced roughly a 1:24 chance of a random encounter. 52 Hill and desert tiles,

however, had a 1:8 chance of an encounter — the highest in the game. The

only exception to the rule was zone 0. So as not to overwhelm beginner

players, there was an additional probability check that made it less likely

to trigger an encounter there. In other words, the math reinforced the

narrative — you were statistically safer within Radatome ’ s immediate

radius.

 Once an encounter triggered, battle information occupied four sub-

windows layered atop the overworld map. The central window depicted

your current enemy in a small framed landscape reminiscent of Portopia ’ s

vignettes. And like the former game, you confronted your enemies in

first-person view, as the enemy window conveniently obscured your

hero ’ s walkabout sprite. The leftmost window displayed your name and

level (レ ベ ル), along with a list of English abbreviations for your current

stats: HP, MP, G(old), and E(xperience). The top command (コ マ ン ド)

window listed four possible actions — Fight (た た か う), Spell (じ ゅ も ん),

Escape (に げ る), and Tool (ど う ぐ) — again echoing Portopia ’ s menu-driven

interaction. As the battle proceeded, the bottom window provided play-

by-play text for all player and enemy actions.

 The first two lines displayed during most players ’ first random

encounter have since become famous among role-playing fans:

 ス ラ イ ム が あ ら わ れ た !

 コ マ ン ド ? 53

6 Expansions [219]

 In English, the text reads, “ Slime appeared! Command? ” True to the text,

the creature in the center window resembled a small blue dollop of gelatin

with wide saucer eyes and a red grin, the first hint of Dragon Quest ’ s manga

influences (figure 6.3). 54

 Like most RPGs influenced by Dungeons & Dragons , battles proceeded

in turns. The player struck, enemy damage resolved, the enemy retaliated,

player damage resolved, the player cast a spell, spell effects resolved, and

so on until the encounter completed, as a result of either death or fleeing.

Since your hero was never visible during battle and the enemies never

moved, action took place through descriptive text, a minimal presentation

style clearly indebted to early graphical adventures.

 Dragon Quest is often criticized in the West for its tedious menu-

driven gameplay. Since your hero sprite could only face forward, engaging

in conversation not only required selecting a talk command, but also a

 6.3 Based on Dragon Quest ’ s probability algorithm for random encounters, the Slime

is statistically the most likely first combat encounter. (Source: Powerpak NES-001

capture)

[220]

cardinal speaking direction. Changing castle or dungeon levels similarly

required positioning your hero above a stairway tile, pressing A to select

the menu, then choosing STAIRS from the available options. Searching

for items and picking up treasure were equally labor-intensive. In subse-

quent RPGs like Final Fantasy, one could simply walk over stairs to use

them or press A to speak to an NPC, reserving menus for shopping,

combat, or status updates.

 While antiquated compared to subsequent RPGs, Dragon Quest ’ s

menu system was a clear successor to the text parsers of PC adventure

and role-playing games. For Horii and Nakamura, eliminating the

need for a keyboard in favor of a simple list was a convenience. In

 Wizardry , one had to memorize spells from the instruction book and

type them each time they were cast. 55 In Dragon Quest , you selected

spells from a list. In this sense, Dragon Quest was a stopgap between the

PC and console RPG traditions — it streamlined the selection process

of the former without fully embracing the “ direct ” interaction afforded

by the latter.

 Not that Dragon Quest did not offer its own genre refinements. When

you inevitably stumbled into a battle you were not yet prepared for, death

was far more forgiving than in prior PC RPGs. Defeat cost you half your

gold and a scolding from Lars, but you kept your experience and equip-

ment. At worst you had to trudge across the map to resume your quest

minus some cash in pocket. Wizardry , in comparison, was far crueler.

Dead party members had to be carried through the maze until they were

either revived by magic or transported to the temple for resurrection.

Total party death meant rolling a new adventurer group to return to the

maze and hunt for the fallen dead. Hours of progress could be lost, often

thanks to antagonistic game design. 56

 Dragon Quest ’ s most antagonistic moment came in its final encounter.

When you finally reached the Dragon King, he offered you a choice. In

exchange for your allegiance, he promised you “ half of the world. ” The

nobler choice, as expected, infuriated the Dragon King, triggering a final

battle. The partnership was a ruse, of course — if you accepted his offer,

the Dragon King revealed that your half of the world was the “ World

of Darkness. ” He then recited a Spell of Restoration (i.e., password) —

 echoing King Lars ’ s incantation identically — that returned you to the

beginning of the game with no gold, experience, or equipment. Making

the selfish choice yielded a fitting punishment — you had to begin the game

anew.

6 Expansions [221]

 Mirror ’ s Edge

 Walkabout mode surfaced new technical challenges for the Famicom ’ s

scrolling hardware. In prior chapters, we discussed games that either

scrolled exclusively along a single vector (Super Mario Bros.), limited

scrolling to one axis at a time (Kid Icarus , Metroid), or implemented con-

trolled multi-directional scrolling with careful name table and mirroring

updates (The Legend of Zelda). A few outliers faked multi-directional

scrolling using clever level design. Devil World , for instance, was soldered

for horizontal mirroring but duplicated its symmetrical playfield across

name tables (minus the upper/lower status bars). The game ’ s truncated

viewport and natural screen wrapping made the playfield appear as if it

scrolled infinitely in any direction.

 Dragon Quest , in contrast, implements true multi-directional

scrolling. 57 Your hero may walk freely in any cardinal direction, and the

overworld map neither wraps along edges nor limits transitions to an

auto-scrolling slideshow. The only borders are geographical.

 Dragon Quest ’ s CNROM board has hardwired vertical mirroring, so

scrolling along the horizontal plane works similar to a platformer. Colum-

nar updates occur just beyond the screen ’ s perimeter as the player

advances east or west. At any point in walkabout mode, there is a full name

table ’ s worth of map space buffering your character ’ s position. Figure 6.4

is a snapshot of FCEUX ’ s name table viewer during an encounter. The

largest shaded rectangle outlines the player ’ s viewport.

 The lighter column on the right, overlaid with crosshatching, is

outside the player ’ s view, but is pre-buffered in case they push further

east. Beyond that narrow band lie the metatile columns furthest west from

the player ’ s current location, since the name tables are currently wrapped

across name table borders. In other words, if the player heads west after

the battle concludes, there is nearly a full name table ’ s worth of rendered

map ready to receive them. If they head east, there is only a single metatile

column.

 The black line bisecting the upper and lower halves designates the

mirroring boundary. Notice that if the player heads north or south, there

are no tile buffers awaiting their arrival — the mirroring structure pre-

cludes any advance preparations because data beyond either edge wraps

to the opposite side. Thus if Dragon Quest had no means to scroll vertically,

venturing beyond the southern hills would find the player walking across

the bottom border and emerging at the top of the screen in the plains

bordering the northern edge.

[222]

 Clearly, looping in this manner would spoil Alefgard ’ s cartographic

realism, so tile rows must be moved into place one-by-one as the player

advances north or south. Though there is adequate time during VBLANK

to update a tile row, a more troublesome architectural problem arises.

Like Kinoko Kingdom, Alefgard and its constituent towns, castles, and

dungeons can not squeeze into 32KB of ROM without efficient data

packing, so Dragon Quest stores its map data in compressed metatiles

measuring 16x16 pixels square, a size that perfectly aligns with attribute

table borders. However, the PPU ’ s mirroring structure combined with

four-way scrolling does not provide an adequate buffer to hide attribute

updates as new columns or rows are moved into place. For east – west

 6.4 An annotated screen capture of Dragon Warrior ’ s name table arrangement during

combat. (Emulator: FCEUX 2.1.5)

6 Expansions [223]

movement, this isn ’ t an issue, since color mismatches can be hidden

beyond the border in the name table buffer. For north – south movement,

there is no place for the errors to hide.

 In Dragon Quest , attribute mismatches happen in plain sight along the

upper and lower screen edges. While pushing south beyond Radatome,

you can clearly see an 8-pixel high strip of lake tiles that appear orange

and green instead of blue and white; conjoining mountainsides are

frocked in identical hues. In both instances, the proper row updates have

loaded, but the screen has not yet scrolled far enough for the tiles ’ accom-

panying attribute data to update. The mountains and sea are orange and

green because they are currently assigned to the forest/plains palette,

residual information from the screen ’ s topmost metatile row. Scrolling

 “ against the mirror ” does not provide an adequate buffer zone to hide the

attribute borders.

 Attribute errors provide a shorthand visual clue to a game ’ s mirror-

ing setting, since the errors will match the mirror ’ s edge. Contra , for

example, predominantly scrolls horizontally, but on its vertical waterfall

level, we see attribute clashes along the upper edge. As expected,

its UNROM board uses vertical mirroring. Super Mario Bros. 3 , oddly

enough, uses horizontal mirroring despite Mario ’ s two screens of

limited flying height, 58 so attribute errors appear along the left and right

borders of the screen. Likewise for Zelda II and Teenage Mutant Ninja

Turtles , whose four-way scrolling overworlds were both set to horizontal

mirroring.

 Most developers, Nintendo included, either allowed attribute errors

to show or relied on CRT overscan to “ naturally ” hide unsightly borders.

Others developers were more proactive. Alfred Chicken , published by

Mindscape in 1994, used two hardware techniques to mask attribute

errors. First, the black border visible on the rightmost edge of the screen

was actually a column of 8x16-pixel black sprites that covered the attribute

seam. (To ensure that sprite overflows would never cause the border to

flicker, the sprite column occupied the first fifteen slots of OAM.) Second,

the leftmost black border used the hardware clipping mask, the same

technique that prevented sprites from wrapping unrealistically around

screen borders in single-screen arcade games (chapter 1). In combina-

tion, the sprite stack and clipping mask allowed Alfred Chicken ’ s screens

to scroll in four directions, clash-free. 59

 Dragon Quest likewise used the clipping mask — the leftmost narrow

column overlay in figure 6.4 — but to different ends. As you walked right,

sprites (e.g., NPCs) had to scroll convincingly off the left hand of the

screen rather than disappearing in halves. While Dragon Quest ’ s gameplay

[224]

style was a far cry from Mario Bros. , the clipping mask served the same

function in both games. And as an added benefit, the mask widened the

lefthand buffer area for metatile updates.

 Whether developer oversight or necessary evil, attribute seams

were visual evidence of a console expanding beyond its initial design

parameters. Few arcade or console videogames of the early 1980s

scrolled in four directions. The Famicom ’ s mirrored name table design

indicates that Uemura ’ s team planned ahead for scrolling along a single

vertical or horizontal plane, but not both in combination. To compensate,

developers had to invent software solutions to solve a rigid hardware

constraint.

 Save by Haiku

 Dragon Quest had a number of advantages in the Japanese market that prior

RPGs could not match. First, thanks to Horii ’ s publishing connections,

Enix secured the popular manga artist Akira Toriyama to illustrate the

in-game enemies and supplementary artwork. 60 Toriyama ’ s massively

popular Dr. Slump and Dragon Ball serials appeared in Shonen Jump , one

of Japan ’ s most widely circulated manga publications. Though Toriyama ’ s

style was difficult to convey in Dragon Quest ’ s condensed overworld, the

first-person battle screens provided the perfect frame to showcase larger

character portraits.

 Toriyama ’ s style better catered to Japanese tastes, especially manga

fans, than the Western fantasy traditions drawn from Dungeons & Dragons

and Lord of the Rings . The colorful characters were also a far cry from the

wireframe stick figures of Wizardry and Ultima . They had a mischievous

comic quality uncommon in RPGs — D & D ’ s gelatinous cube was far less

menacing, and much more relatable, as the wide-eyed, grinning slime.

Tellingly, in lieu of screenshots, Toriyama ’ s artwork dominated Dragon

Quest ’ s box cover and print advertising. Enix promoted the game based on

the strength of its illustrative design alone.

 Dragon Quest ’ s second rather serendipitous personnel score was

Koichi Sugiyama, an established composer for film and television (and a

videogame enthusiast) who caught the publisher ’ s attention with a mail-in

customer questionnaire for Enix ’ s 1985 PC-88 shogi title の

 (Kazuo Morita Shogi) . As Sugiyama recounts, “ Whoever received the

note recognized my name and gave me a phone call asking if I could

compose some music for them. I said yes, and that was how I began making

game music. ” 61

6 Expansions [225]

 Though unassuming on the 2A03, Dragon Quest ’ s eight themes had a

strong compositional backbone informed by Sugiyama ’ s Western classical

music influence. Videogames had had a tradition of using classical themes

in their soundtracks (since they were public domain and thus cheaper

than hiring someone to write songs), 62 but composing new “ classical ”

work was less common. Though orchestral grandeur was tough to convey

with the Famicom ’ s three tonal channels, Sugiyama ’ s rousing title screen

overture and the regal yet melancholy theme used as a backdrop to King

Lars ’ opening monologue were certainly closer to Bach or Vivaldi than

Kondo or Tanaka. 63

 Another key element driving Dragon Quest ’ s cultural character was its

script. Horii was a writer by trade and he invested Dragon Quest with a

Japanese idiom steeped in the hip irreverence of the manga he admired.

The tone was a perfect match for Toriyama ’ s artwork and a novelty for

a sword and sorcery game. While Dragon Quest ’ s “ lone hero rescuing a

princess and slaying a menacing evil ” plot was bog standard fantasy fare,

the game ’ s style lived and breathed through its NPCs, whose dialogue was

frequently irreverent, weird, or tongue-in-cheek. The back of Dragon

Quest ’ s box touted over 100 NPCs to encounter, and Horii made sure they

were truly characters, not just information retainers strung along the path

to each quest objective.

 One of Dragon Quest ’ s most infamous conversations hailed from a

woman in the town of Rimuldar:

 * お い で ぼ う や

 ぱ ふ ぱ ふ し て ほ し い な ら

 50 ゴ ー ル ド よ

 Literally translated, she offers to sell the player a “ puff-puff ” for 50 gold.

The service was not as scandalous as its translation implies — essentially

the player was paying her to jiggle her breasts. 64 A vendor in Melkido

proposed a more reputable, if no less puzzling, request to exchange

her “ Portopia for your Dragon Quest . ” Horii likewise peppered the game

with self-referential shoutouts, like listing Nakamura ’ s first name, Koichi

(こ う い ち), as the player name for back-of-the-box screenshots and

including his own name in a special password.

 Since Dragon Quest CNROM profile lacked battery-backed SRAM, it

had no means to save data. To ease the pain of a multi-line password

system, Horii implemented a literal poetic device. Save strings were

twenty characters long, but subdivided into four lines of five, seven, five,

[226]

and three characters apiece — a haiku-like structure that was “ familiar to

all Japanese and easier to type. ” 65 For example, a password that advanced

the player to Level 10, along with a healthy stock of gold, equipment, and

items read as follows:

 ふ る い け や か わ ず と び こ む

 み ず の お と ば し や

 The password was a hiragana rendition of one of the most famous haiku

in Japanese history, penned by 17th-century poet Matsuo Basho. The

verse is notoriously difficult to translate to English, but a fair transcrip-

tion reads something like: “ An old pond / frog leaping / water sound. ”

Other passwords were less literary but equally straightforward to remem-

ber, including in-jokes, references to the game ’ s characters, callouts to

the developers ’ friends, and a list of Japanese cities. 66

 Character Sets

 Readers familiar with Japanese will likely notice that Dragon Quest ’ s script

is written entirely in hiragana and katakana. While, as we will see below,

there is a strong technical reason to do so, the syllabary-based script

also made Dragon Quest more accessible to younger players. Japanese

schoolchildren (and non-Japanese students) learn hiragana first, prior to

mastering the kanji. Its syllables comprise the entirety of the Japanese

language, so any complex character can be broken down into its constitu-

ent phonetic elements. As a result, Japanese can be written entirely in

hiragana if necessary, a trait that both Japanese primary school texts and

 Dragon Quest share.

 The katakana syllabary mirrors hiragana ’ s phonetic elements but

is generally used for non-Japanese loan words — like “ computer ”

(コ ン ピ ュ ー タ ー) and “ coffee ” (コ ー ヒ ー) — or special textual emphasis

akin to italics in English. This second use is especially prevalent in manga,

where writers use katakana extensively for sound effects and onomato-

poeia. In English, we have plenty of whooshes , blams , and zaps to embellish

comic book actions, but manga has a vast nuanced language devoted to the

textual/auditory description of moods, bodily functions, motions, sensa-

tions, and natural phenomena. 67

 Horii drew on this rich reserve to add idiomatic flavor to the game ’ s

magic spells. Dungeons & Dragons , itself inspired by pulp fantasy litera-

ture, canonized a fantasy vocabulary that PC RPGs commonly borrowed.

Regardless of the game, magic-users and clerics could cast variations of

6 Expansions [227]

Light, Cure, Shield, Magic Missile, and the like. Horii copied the spell

effects, but invented his own half-nonsense, half-onomatopoeic lan-

guage to describe them. 68 When players cast ギ ラ (gira), ホ イ ミ (hoimi), or

 ラ リ ホ ー (rarih ō), they were not choosing from familiar Japanese words

but from names meant to evoke the action or effect of the spell. In English,

an equivalent might be a sleep spell called “ ZZZZZZ ” or a wind spell called

 “ whoooosh. ” Japanese players versed in manga glommed immediately to

Horii ’ s linguistic style. Importing the tropes of a familiar medium helped

break down any barriers that might keep players from understanding

 Dragon Quest ’ s unfamiliar genre.

 Rendering Japanese posed a formidable problem in both the growth

of Japan ’ s domestic PC market and in the translation of software across

regions. Though many Japanese videogames included English text in part

because of its cool exotic appeal, 69 there were also meaningful platform

constraints that hindered Japanese ’ s appearance onscreen. The Famicom,

for one, had far too little CHR-ROM space, regardless of mapper, to store

even a fraction of the kanji character set. Even narrowing the field to the

roughly two to three thousand characters in common use was implausible.

Instead, most developers opted to use the hiragana syllabary, often inter-

spersed with a few select kanji or katakana. This decreased memory

expenditure considerably, since the full hiragana syllabary includes only

forty-six characters. Even accounting for hiragana ’ s particles and diacrit-

ics, the memory tradeoff was far more palatable.

 Moreover, while the English alphabet contains only twenty-six letters,

the Japanese syllabary is mostly built from compound phonic elements,

so words tend to be more compact than in English. Take Dragon Quest ’ s

primary antagonist as a simple example: whether one chooses “ Dragon

King ” or “ Dragonlord, ” the English translations are several characters

longer than the original five-character hiragana り ゅ う お う . Indeed, no

monster name in Dragon Quest is longer than seven characters (e.g.,

 し に が み の き し), while many of the English translations are ten or more

(e.g., Armored Knight). Propagate such modest savings throughout the

entirety of the game ’ s text and one begins to amass significant memory

savings.

 Dragon Quest slimmed its tile syllabary further by separating common

characters from their diacritics. へ , べ , and ぺ , for instance, all share the

same base radical, though their pronunciations vary (he, be, and pe ,

respectively). Instead of storing a character for each of the three syllables,

separate characters were created for the radical (へ), the dakuten marker

(゙), and handakuten marker (゚). Doing so eliminated around thirty

redundant tiles in CHR-ROM. 70

[228]

 This separation also explains why diacritics appear to float above the

text they modify. As you can see in figure 6.5 , dialogue is spaced with

empty name table rows between each line. When diacritics are necessary,

they are placed in the empty row above the relevant letter. English, of

course, does not require diacritics, so text in the localized port is spaced

much tighter, eliminating individual line spacing in favor of sentence

spacing. Here, the compromise between linguistic and platform limita-

tions generated two distinct graphical results.

 For Japanese text, the upfront loss in CHR-ROM paid off later in

PRG-ROM savings; whether the technical tradeoff was worthwhile

depended on the game. Super Mario Bros. ’ s few lines of text made more

sense to display in English, since including a full hiragana character

set would have meant sacrificing a number of architectural background

elements with no real benefit to gameplay (and certainly less universal

appeal). In Dragon Quest , the opposite was true, as Horii explained:

 “ Because Dragon Quest , when it first came out, graphically it was more

symbols, the attractiveness of the game had more to do with the wording

and the dialogue. ” 71 Dialogue, not graphical detail, was the game ’ s center-

piece, so the added text tiles were worth the memory cost.

 In their design focus, Nintendo ’ s and Enix ’ s directors make for

interesting foils. Miyamoto has always taken the path of mechanical

purity, pruning his miniature gardens of elements not directly related

to play. In a conversation between him and Horii, Miyamoto stated

his aims plainly: “ The stories of Mario and Zelda titles have always been

supplemental to the actual gameplay. Action games only have stories

attached to make the experience more interesting. ” 72 To wit: How did

 6.5 An enlarged screenshot from an emulator VRAM Viewer shows the name table

distribution of hiragana characters in Dragon Quest ’ s dialogue box. Note that diacritics

occupy their own tiles in separate rows above the primary characters. (Emulator:

NO$NES v1.0)

6 Expansions [229]

Mario ’ s movements feel? How well was the world constructed for his

abilities? What tools best fit Link ’ s adventure? Were the dungeons fun to

find and explore? Horii, in contrast, billed himself as an author, aiming

to bring a deeper literary touch to his games. He wanted to translate

the depth of PC role-playing games to the console without sacrificing

plot, character, or world. Throughout their decades of design, Miyamoto

has always been the mischievous toymaker and Horii the playful

wordsmith.

 Spell of Restoration

 Dragon Quest ’ s combination of accessibility, literary flourish, manga-

inspired artwork, classically informed composition, and native Japanese

character struck a nerve with the Famicom audience. It was not a runaway

success like Super Mario Bros. , but it sold one million copies within the

first six months of its May 1986 release, eventually selling 1.5 million. 73

For Nintendo, it was enough to invest in the game ’ s potential success

abroad. But a videogame so imbued with Japanese idiom and whose genre

relied so heavily on text would prove far more challenging to localize than

 Super Mario Bros. or The Legend of Zelda.

 The first complication was the name. DragonQuest was already trade-

marked to a tabletop RPG owned, ironically, by Dungeons & Dragons

publisher TSR, 74 so Enix amended the title to Dragon Warrior . The second

more substantial overhaul was the language. It was already a steep tech-

nological challenge to fit a revised alphabet and script in ROM, but Horii ’ s

idiosyncratic literary style was equally difficult to adapt to English. The

localization team instead chose to adhere to Dragon Quest ’ s Western fantasy

roots, adopting elevated Elizabethan English, replete with thees and

thous. Though the localization was particularly well executed, especially

compared to its contemporaries, the script, pared of Horii ’ s quirks, lost

all of its playful character and felt anachronistic in light of Toriyama ’ s

lively character designs.

 Nonetheless, Enix put considerable effort into the technical transla-

tion. All character sprites were expanded to allow them to move in any

direction. Beyond the aesthetic improvement of no longer “ crab-walking ”

across Alefgard, the change eliminated the need to specify speaking

direction in the command window. Enix also added corner tiles for

the shoreline, so water curved more naturally around terrain edges.

Finally, Dragon Warrior ’ s mapper upgrade from CNROM to MMC1 allowed

the developers to scrap the poetic password system, trading Basho for

batteries.

[230]

 While Toriyama ’ s art was a strong selling point in Japan, his name

carried little cultural cache in the States. Consequently, all of the game ’ s

packaging, manuals, and marketing materials were updated with western-

ized fantasy artwork from Katsuya Terada. While exceptionally crafted,

Terada ’ s work did not exude the same charm as Toriyama ’ s creations. Both

boxes depicted the same scene — a warrior facing a dragon with a castle

framed in the distance — but the NES version received a more dramatic,

painterly cover, with the hero ’ s face obscured, in favor of the sharp lines

and squat figures of the original.

 Initially, Nintendo tried to position Dragon Warrior as a spiritual suc-

cessor to The Legend of Zelda . In the Winter 1987 issue of Nintendo Fun Club

News , the newsletter precursor to Nintendo Power , a sneak peek of Dragon

Warrior promised that it was “ as challenging as The Legend of Zelda ! ” and,

 “ If you liked the interactive video challenge of The Legend of Zelda , you ’ ll

love Dragon Warrior . ” 75 Although the newsletter circulated over a year after

the game ’ s Famicom debut, the screenshots clearly depicted Dragon Quest

pre-localization: sprites were unchanged, characters only faced forward,

and the shoreline tiles remained hard-edged. Furthermore, all proper

names of characters and locations still referred to the Japanese originals.

Apparently even the cartridge hardware was not yet settled, since the

feature mentioned visiting the King to retrieve the “ Mantra of Resurrec-

tion, ” i.e., a password.

 Closer to the game ’ s August 1989 release, Nintendo initiated a

months-long marketing push in Nintendo Power. Dragon Warrior , billed as

 “ Nintendo ’ s own long-awaited role-playing adventure, ” first appeared in

the Previews section of the May/June 1989 issue. Clearly foretelling the

game ’ s fate stateside, its Power Meter scores — Nintendo Power ’ s editorial

review metric — ranked lower than the other four games previewed in the

same issue, namely Mega Man 2 , Faxanadu , Uncle Fester ’ s Quest , and Clash

at Demonhead . The following issue had a lengthy Dragon Warrior feature

but gave the coveted cover spot to Capcom ’ s Mega Man 2 . Nonetheless, for

months after the game ’ s release, Nintendo Power devoted dozens of pages

to the game in hopes of generating a hit. 76

 Since Nintendo employees had full control over the magazine ’ s

content, a game ’ s editorial coverage was an important barometer for how

a game was regarded internally. And though Nintendo Power ’ s articles

often verged on advertorial, editors Gail Tilden and Howard Phillips

tried to steer players clear of low quality games. As Tilden remarked in

a 2012 interview, “ we still had a concern that people would buy games

that they didn ’ t enjoy, and if a family made too many poor purchasing

decisions, purchasing products that weren ’ t terrific, then they would

6 Expansions [231]

walk away from being involved with the NES. ” 77 In light of Nintendo ’ s

push to make Dragon Warrior a hit, its placement behind lead stories on

 Mega Man 2 and Faxanadu did not speak well of Nintendo Power ’ s editorial

opinion. 78

 Thy Hit Decreased

 Apparently undaunted by internal peer review, Nintendo optimistically

manufactured a massive stock of Dragon Warrior game paks. But their

eagerness to circumvent retail supply problems overshot consumer

demand. The gap in release between its Japanese and American debuts

made Dragon Warrior appear retrograde in comparison to other RPGs. And

it was. Famicom players were already enjoying several Dragon Quest

sequels, games that expanded the formula of the original by adding multi-

member parties, battles against multiple enemies, non-linear narratives,

and customizable character classes. An early preview in EGM reflected the

game ’ s Western reception: “ Nintendo ’ s highly touted Dragon Warrior

(Dragon Quest) isn ’ t that special at all. Go play Ultima from FCI and

you ’ ll practically get the same game! ” 79 Dragon Quest ’ s linear grind seemed

out of fashion, ironically even in comparison to the games that had influ-

enced it.

 Dragon Warrior did not simply suffer from a lack of inspiration — partly

it failed because a console RPG market did not yet exist. But Arakawa was

confident Nintendo could create one. Nintendo Power spent months

priming its readers with gameplay previews, backstory, screen shots,

and promises that Dragon Warrior would redefine console games for every

possible demographic:

 The introduction of Dragon Warrior represents more than just

the release of a new game. It marks the beginning of a new and

different direction for NES games. A few other RPGs have preceded

this release, but none comes close to being part of as monumental

a game series as Dragon Warrior. In Japan, this is the game that

launched three sequels, and is unmatched in popularity. By devot-

ing a larger percentage of Game Pak memory to game depth, game

play has evolved into a much more complex and rewarding adven-

ture. In addition, mere finger-speed and sweat are no match for

the challenges which lie in wait for every player. Now more than

ever before, an era of deductive reasoning is challenging us all

to excel — young and old, male and female. Your NES is coming of

age. 80

[232]

 But Dragon Warrior did not prove to be the landmark title Arakawa and

Nintendo desired. No measure of lofty rhetoric could overshadow the fact

that by 1989, the game was outdated and outmatched compared to its

peers. Though they shared the same mapper profile, Mega Man II out-

classed the aging RPG in graphics, gameplay, and sound. Sophisticated

platformers — not Japanese RPGs — marked the NES ’ s coming of age. But it

wasn ’ t that RPGs were anathema to American tastes. Square ’ s competing

RPG Final Fantasy proved that a Japanese RPG could be successful, espe-

cially with Nintendo Power backing its cause. Dragon Warrior had simply lost

its unique spirit through time and translation.

 Less than a decade after the late-to-market Radar Scope cabinets sat

unsold in a warehouse, Nintendo once again faced an oversupply of a

dated game Americans simply did not want. And once again, they spun

their failure into a success. In a clever marketing move, Nintendo offered

 Dragon Warrior for free to new and renewed subscribers of the fledgling

 Nintendo Power . They brought Enix ’ s RPG to market by force, flooding

American homes with free copies of the game. By Nintendo ’ s account, the

stunt brought in nearly half a million new subscribers and introduced

 Dragon Warrior to its hard-won American audience. 81

 Big Boss

 While the Dragon Quest team expanded the scope of role-playing and

storytelling in console games, other developers used the new capabilities

of discrete logic and ASIC mappers to create visual special effects that

were previously impossible on the Famicom.

 Boss fights are a staple of videogame design. As their honorary title

indicates, bosses are higher-ranking enemy combatants that challenge

the player ’ s accumulated skills, typically blocking access to later stages

until defeated. Though prototypical forms existed in the arcade era — the

concluding round of Amstar Electronics ’ Phoenix (1980), for instance,

pitted the player ’ s starship against an enormous mothership, and

Williams Electronics ’ Sinistar (1982) featured a fearsome, skull-faced

spaceship that used a special digital audio chip to verbally taunt the

player — the cyclic nature of arcade gameplay typically did not map well to

the sense of progression and finality gained from boss fights. Even in

 Donkey Kong , Jumpman never directly battled the ape, opting instead

to decouple the girders beneath his feet; once complete, the level loop

would begin anew. In most early arcade games, if there was a boss, it was

not the game ’ s culmination, but a checkpoint along the path to higher

difficulties.

6 Expansions [233]

 Super Mario Bros. once again embodied the median point between

arcade and console forms. The Great Demon King Koopa was the game ’ s

singular boss who appeared at the end of each world. Though the Koopa

Kings seen prior to World 8 – 4 were cast as impostors hiding lesser

enemies, they used the same sprites and featured only minor pattern

variations — namely, spewing fewer flame and hammer projectiles. Once

8 – 4 was complete, Mario ’ s quest concluded with a congratulatory message

from Princess Peach and her encouragement to continue playing at a

higher skill level. In short, players could tackle the game in two ways:

continue the cycle and compete for higher scores — a gameplay holdover

from its arcade roots — or take satisfaction that they had beaten Koopa, the

final boss, and thus the game.

 As Famicom games grew in sophistication, the size and complexity of

boss fights evolved in kind. At the platform level, bosses sorted into two

general types: sprite- and background-based. The former were more

mobile, but OAM limitations set an upper limit on their size, lest their

bodies devolve into a flickering mess. Konami ’ s 1986 FDS title Akumaj ō

Dracula (aka Castlevania) drew from a menagerie of film and literary

sources to stock its boss rooms with enormous sprite-based adversaries

for Simon Belmont to slay, but the crowd of moving bodies and projectiles

resulted in significant sprite flickering.

 In contrast, bosses built from background tiles could fill the screen,

but were limited to a few (or no) moving parts. Konami ’ s 1988 port of

 Contra featured monstrous architectural boss creatures, but they were

largely static background tiles embellished with sprite appendages or

projectiles to add movement. The H. R. Giger-inspired, xeno-mechanical

creature waiting atop Stage 3 ’ s waterfall, for instance, had no moving ele-

ments beyond its gaping maw and two writhing arms, whose complex

gesticulations and impressive size caused considerable CPU slowdown

and OAM cycling.

 The Mega Man series struck a compromise between sprite- and back-

ground-based foes. The level-ending robot masters, typically comparable

to Mega Man ’ s size, were built from sprites, as was made clear from the

frequent OAM cycling that occurred when combat ensued. But once

the players cleared the robot masters, Mega Man could assail Dr. Wily ’ s

castle, a multi-stage gauntlet populated by several screen-size bosses that

moved around the screen with startling agility.

 In the first Dr. Wily stage of Mega Man 2 , for example, Mega Man must

ascend the face of Wily ’ s hideout, which stretches seven screens tall. Upon

reaching its apex, Mega Man proceeds right through a corridor that opens

into a cavernous interior. The muted blue backdrop of the evening sky

[234]

transitions to a stark black void festooned with green cabling. The walkway

ends abruptly, forcing Mega Man to jump across two suspended plat-

forms. The second of these leads to a series of precarious 16x16-pixel

blocks, first arranged in a brief sinusoidal pattern, then extending in a

straight line toward the right edge of the screen.

 Navigating the Mega Man-width blocks is difficult enough consider-

ing their irregular height and spacing, but the platforming difficulty is

quickly compounded by the sudden appearance of the enormous Mecha

Dragon, the end level boss who rises from the darkness below. Mecha

takes chase on the lefthand side of the screen as Mega Man hops along the

hanging blocks (figure 6.6). If the player loses pace, Mecha destroys

the robotic hero with a single touch.

 Both the single-block platforms and Mecha ’ s appearance mark fasci-

nating behind-the-scenes structural transitions. The first cue is a scroll

change. For the majority of the level, scrolling is player-controlled, split

between distinct horizontal and vertical sections. Once Mega Man crosses

the gap between the fifth and sixth hanging platform, however, there ’ s a

noticeable hitch as the engine switches to automatic scrolling. However,

the new fixed scroll rate is an illusion coordinated by a clever graphical

trick. The third hanging block that Mega Man crosses is actually the final

metatile drawn from the background pattern table. Once the scroll index

passes the third block, both name tables are cleared to blank tiles. The

remaining blocks onscreen are no longer background tiles, but sprites

that track across the screen at a fixed rate, maintaining the “ autoscroll ”

illusion. 82 The visible hitch signals the engine ’ s transition from hardware

scrolling to simulated sprite scrolling.

 The static black background sets the stage for Mecha ’ s appearance.

Once Mega Man lands on the eighth hanging block, a stack of green sprites

appear from the bottom of the screen, a bit of visual flair animating Mecha

warping into place behind Mega Man. A few frames later, with Mecha ’ s

name table tiles in place, the background palettes flip on and the robotic

dragon appears. As Mecha takes chase, Mega Man must hop nimbly from

block to block until scrolling ceases and the final confrontation takes

place.

 Mecha is surprisingly well-animated considering its size. The dragon

bobs up and down as it pursues Mega Man, then makes a series of vertical

and horizontal attack movements during combat. Portions of its body also

animate — namely the hinged jawline, tiny flapping wings, and the lower

portion of the tail. The wings and jaw in particular cross the sprite-heavy

rows near the upper region of the screen, where they frequently coincide

with the status bars, floating platforms, and Mega Man, triggering

6 Expansions [235]

noticeable OAM cycling. Though sprites handle the Mecha ’ s individual

appendage kinematics, scrolling updates govern its body position. Track-

ing the “ camera ” over the static name table achieves two effects: it

simulates Mecha ’ s attack movements without needing to update any tiles

and permits the smooth movement of a large non-sprite object. The flat

black background and sprite platforms are necessary to sell the effect. If

there were any other decorative elements in the background, they would

scroll along with Mecha ’ s body and break the illusion.

 Sizable moving enemies set against a solid black background evolved

into a Famicom convention (figure 6.6). Any time players reached a level ’ s

finale and the background suddenly transitioned to black, they could

expect that a massive boss was about to appear. Genres and settings that

naturally afforded black backgrounds, like space shooters or underground

lairs, made natural fits for such encounters — though most any game could

shoehorn them in by suddenly fading to black.

 6.6 Massive bosses set against a black backdrop became a recurrent design motif in

mid- and late-era Famicom/NES games. Pictured clockwise from upper left: Mega

Man 2 , Salamander , METAFIGHT , Isolated Warrior . (Source: NES-001 PowerPak capture)

[236]

 Konami ’ s 1987 space-shooter Salamander (aka Life Force) almost

exclusively portrayed its boss menagerie of weird one-eyed brains, float-

ing skulls, and flying dragons using background tiles. As the player ’ s ship

approached the end of a level, the existing terrain would either abruptly

end or dissolve from view using an elegant tile animation. Sunsoft ’ s 1988

Famicom cart METAFIGHT (aka Blaster Master) fused vehicle-

based platforming segments with overhead Zelda -style subterranean

levels. Each of the latter areas culminated, like Salamander , in a room

whose background evaporated to make way for the boss to appear. NTVIC ’ s

axonometric shooter Isolated Warrior peppered its boss battles with

impressive mid-screen raster effects that could stretch creatures across

the screen. And finally, Nintendo ’ s Super Mario Bros. 3 showcased an inno-

vative hybrid form — Koopa ’ s multi-screen airships — where the level itself

became the boss (which, in turn, contained its own boss room). The same

concessions applied; the ships had to sail against a monochrome sky so

scrolling changes could make them appear to bob up and down.

 Part of the impulse to create screen-filling bosses stemmed from

platform competition. As new consoles, arcade hardware, and PCs entered

the market with better specs, Famicom developers aimed to match the

former ’ s graphical capabilities, often by using the PPU in unconventional

ways. British game designers Ste and John Pickford, for instance, cut their

teeth on European PCs like the ZX Spectrum and Amstrad CPC. When they

began work on Ironsword: Wizards & Warriors II and Solar Jetman: Hunt for

the Golden Warship , both released in 1989, the NES was far outclassed

graphically by contemporary PCs. Ste was designing most of the graphics

in Deluxe Paint (DPaint), 83 an Amiga graphics editor, then conforming

those designs to the NES ’ s PPU which was, he wrote, “ designed for scroll-

ing video games, not static, detailed images. ” 84

 Highly detailed static images were a common sight during PC loading

screens, a phenomenon unknown to cartridge-based systems. Ste ’ s back-

ground in designing loading artwork shifted to the NES ’ s elaborate title/

attract screens (an arcade holdover) and screen-sized bosses. During

 Ironsword ’ s design, Ste explains:

 I think we were obsessed with trying to make impossibly large crea-

tures when we were designing this game, as loads of the bosses and

sub-bosses were made using either all the sprites available, or using

the background as part of the creature instead of just sprites. The

Dragon King’s body is made of characters and is part of the back-

ground. Only his head and neck actually moves, and only that is made

of sprites. It’s also fairly vertical so that it doesn’t fall foul of the NES

6 Expansions [237]

limit of only eight hardware sprites on any horizontal line. I thought

this was dead clever at the time. 85

 Much of the artwork that arose from European NES developers was strik-

ingly detailed compared to that of Japanese and American developers.

 Solar Jetman , for example, had painterly interstitials that were common-

place in Amiga games, but rare for the NES.

 Clearly the influx of competitor platforms in the late 1980s and early

1990s pushed developers to wring unconventional tricks from an aging

platform. From Donkey Kong ’ s construction from background tiles to Dr.

Wily ’ s devious contraptions to the Pickford ’ s adaptations of PC practices,

programmers continually used the Famicom ’ s sprite and background

pattern tables against type in an effort to mimic newer, more advanced

platforms.

 Game Genie

 Nintendo was not the sole arbiter of their console ’ s hardware extensions.

All manner of rapid-fire joysticks, head-mounted and voice-activated

controllers, inflatable boxing opponents, 3D glasses, drawing pads, and

even exercise bike attachments came to market in hopes of extending the

console ’ s capabilities and cashing in on Nintendo ’ s market dominance.

Most of these were ill-advised gimmicks with little software support — like

Br ø derbund ’ s majestically awful U-Force infrared motion controller —

 posing no threat to Nintendo ’ s console integrity. But one accessory

managed to raise Nintendo ’ s ire to the point of litigation.

 Codemasters ’ Game Genie was a cartridge extension that bridged

between the NES and its game paks. Booting the device dropped players

in a custom BIOS (the “ Code Screen ”) — three rows of blanks wherein

players could enter up to three codes before booting their game pak. Game

Genie publisher Galoob also included a sizable Programming Manual and

Codebook with codes for over two hundred games. Each title had a small,

lighthearted blurb describing its gameplay and a few recommended code

combinations. The number of codes were generally weighted toward pop-

ularity — a title like Wheel of Fortune had only four listings, while Super Mario

Bros. 3 had thirty-eight.

 Most codes granted standard gameplay buffs: extra lives, additional

ammo, larger treasure stores, infinite continues, etc. Others created

handicaps — starting with a single life, less fuel, limited continues — to

challenge more experienced players. The most interesting codes tinkered

with game engine parameters governing physics, drop rates, or enemy

[238]

behaviors. Such tweaks allowed players to “ sequence break ” portions of

the game, access otherwise inaccessible areas, or simply crash the game.

Most of the entries for Super Mario Bros. , for instance, bestowed Mario and

Luigi with extraordinary jumping abilities or introduced “ moon gravity, ”

both of which allowed them to jump over most of the stage ’ s obstacles,

including the flagpole. Some codes improved play, like the Donkey

Kong Classics entry that retrofitted Mario with “ air control, ” overriding

his fixed-arc jumps. Others created weird or quirky effects, like the Mega

Man 2 code that made Mega Man appear to moonwalk backward or the

 Archon codes that granted players unrestricted movement across the

chessboard. 86

 The published codes were not the sole corpus of cheats. Codemasters

designed the Game Genie with expansion in mind. The back of the code-

book included an order form for quarterly “ Code Update issues, ” which

provided subscribers codes for new games and updates for older titles.

The codebook also included a three-page “ Video Game Home Program-

ming ” section with tips for modifying codes. Though players could type in

letters at random, Codemasters recommended simple two-letter substi-

tutions to generate variations of working codes. Regardless of method, the

point was to dive in and experiment, as the codebook reassured players,

 “ Remember, programming is an art that requires lots of patient, trial-

and-error experimenting! The techniques will not work on all codes, but

keep trying until you discover a code that works. ” 87 Though using the

Game Genie was not programming in the conventional sense, the software

interface did provide a straightforward means to indirectly manipulate

the game ’ s ROM without fear of damaging the cartridge or console. Code-

masters reminded users multiple times that any errant codes could always

be fixed with a reset: “ If a code you program interrupts the game or causes

an undesired effect, just turn off the power and turn it on again, and then

program different codes to play. ” 88

 The Game Genie hardware was a gold shell roughly half the length of

a standard NES cartridge. Its lower end had a protruding card edge con-

nector to attach to cartridges, while the opposite end had its own recessed

72-pin PCB meant to slot into the console. A flexible plastic guide

extended from the bottom and fit the length of the attached cart. The

guide had a molded plastic grip that served three purposes: halting the

appendage ’ s insertion at the proper depth, “ catching ” the console ’ s lid

(which had to remain open while the Game Genie was inside), and giving

the player a handle that could remove the cartridge without leaving the

Game Genie lodged inside the NES. The end result was a less cumbersome

6 Expansions [239]

version of the unlicensed HES piggyback carts used to circumvent the

NES ’ s CIC (chapter 3).

 However, the protruding design worsened the flaws of the NES-001 ’ s

ZIF mechanism. The Game Genie ’ s connecting end was slightly larger

than a standard game pak, so it required greater force to insert and

remove, and the rather low-tech plastic guide was not a reliable means of

ensuring that players did not insert the Game Genie further than recom-

mended. Even when properly seated, the game pak hung beyond the

console ’ s lip. With prolonged abuse, the NES ’ s pin connectors would warp

and bend; distended pins created poorer contacts with cartridges; poorer

contacts led to blinking screens. And since the console ’ s door could not

close while the Game Genie was in use, its interior was more susceptible

to dust, moisture, and other debris. The peripheral ’ s sole physical benefit

was eliminating the need to seat cartridges, saving wear and tear on the

ZIF ’ s spring mechanism.

 With the hardware fitted properly and a game inserted, players

powered on the NES as they normally would. The peripheral ’ s physical

position allowed it first dibs at program execution, so players were booted

directly into the Game Genie ’ s custom BIOS. The interface had a chunky

pixel look reminiscent of an Atari VCS port of Hangman. However, the

throwback aesthetic was a space-saving measure. Codemasters drew all of

the interface elements with sixteen tiles and seven colors (one of which

cycled to produce a rainbow strobing effect). Most of the graphics were

background tiles — only the pointer hand, “ swirling star ” cursor, and the

animated tiles used to float or explode letters were sprites — though both

background and sprite tiles drew from the same pattern pool.

 Each tile ’ s 8x8-pixel matrix was split into four quadrants, creating

 “ meta-pixels ” that effectively reduced tile resolutions from sixty-four

pixels to four. All onscreen BIOS graphics were then drawn using the

sixteen variations of filled and unfilled meta-pixels (figure 6.7).

 The result was an innovative subversion of the Famicom ’ s tile-based

graphic system. Instead of rendering unique tiles for each graphical

element, Codemasters created a generic set of pattern tiles with which

 6.7 This annotated excerpt from the Game Genie ROM ’ s pattern table shows the sixteen

sprite/background tiles used to draw the Game Genie ’ s user interface. (Emulator:

FCEUX 2.1.5)

[240]

to build all of their onscreen objects, much like Nakamura had done in

 Portopia . Such memory savings were necessary because the Game Genie

only had 4KB of PRG-ROM, a mere quarter of even the most basic NROM

boards. Simplifying the GUI served to minimize the memory devoted to

visual elements, freeing up space for code logic.

 Like its enclosing hardware, the Game Genie software was parasitic —

 it operated on the host system, but intercepted data flow between

cartridge and console. The Game Genie could watch for reads in program

memory ($8000-$FFFF) for up to three addresses, intercept the intended

value, then substitute new data in its place. This form of code manipula-

tion was similar in function to the PEEK and POKE commands (used

to read and set the contents of memory, respectively) popular among

hobbyist PC programmers in the 1970s and 80s. However, Codemasters

purposefully obfuscated their interception algorithm to prevent easy

reverse engineering by players and market competitors alike.

 The Game Genie ’ s cryptography worked by coding hexadecimal

values to letters then rearranging their sequence. There were sixteen

letters available on the Game Genie screen, one for each hexadecimal

digit, arranged in two rows of eight: A, E, P, O, Z, X, L, U and G, K, I, S, T,

V, Y, N. Players could enter up to three codes per game, each either six

or eight letters long (though some effects required multi-line codes).

Six-letter codes devoted four bytes to the desired 16-bit address and

two bytes to the data value. Eight-letter codes used their additional

two bytes for a comparison check value that served as a simple work-

around for bank switching. 89 If the proper bank was in place, then

the comparison value would match the value at that address; only

then could the new data value be returned. If an unexpected bank was

in place, the comparison would fail and the Game Genie would return

the expected value in PRG-ROM. In most cases, the comparison

worked, but there was no failsafe — the check would not work properly if

identical values for separate variables were stored in the same address in

multiple banks.

 To illustrate a simple example, the Super Mario Bros. code AATOZA

reduces Mario and Luigi ’ s initial life count to 1. As seen in row 2 of the

table below, the code letters translate to the hexadecimal string $006920.

And since the Game Genie code-parsing algorithm shifts individual bits,

we will expand the individual hex digits to binary: 90

 A A T O Z A
 0 0 6 9 2 0
 0000 0 000 0110 1001 0010 0 000
 1678 H 234 +IJK LABC DMNO 5 EFG

6 Expansions [241]

 The bolded binary digits comprise the data value the code intends to

pass to an address. Beneath each digit is a numeral between 1 and 8, indi-

cating the order in which the data value is reassembled. The example

above is simple to reconstruct: %00000000, or $00. The remaining

digits comprise the code ’ s desired address, this time labeled in order

from character A to O. The final bit, labeled with the + sign, is a flag indi-

cating the length of the code — 0 for six characters and 1 for eight. Note that

this leaves us with a 15-bit address. Since addresses map between $8000

and $FFFF, the high bit is always assumed to be 1. 91 Thus our final address

is $1001 0000 0110 1010 = $906A. Consulting the Super Mario Bros. disas-

sembly, we find the value read from that address is #$02 = 2, which is

subsequently stored in RAM at $075A and $0761, the locations of both

players ’ default starting lives. 92 In SMB , the life count displayed is one

higher than the stored variable, so substituting the Game Genie value

#$00 = 0 at that location sets the default lives to 1, as advertised.

 Galoob ’ s peripheral was an instant hit, soliciting 550,000 orders

following its 1990 announcement. But Galoob clearly understood

Nintendo ’ s penchant to litigate any hardware that circumvented their

licensing structure, as they sought a preemptive “ declaratory judgment

that its Game Genie did not violate any of Nintendo ’ s property rights ” 93

and an “ injunction prohibiting Nintendo from interfering with the mar-

keting of the Game Genie, ” including modifying the NES. 94 Nintendo

retaliated with their own injunction against the Game Genie ’ s sale, citing

copyright infringement. Nintendo successfully delayed the Game Genie ’ s

debut for over a year but ultimately lost the case. Galoob ’ s lawyers argued

that the peripheral did not create infringing derivative works, but “ adap-

tations ” that were covered under fair use. 95 As recompense, Galoob was

awarded a $15 million bond paid by Nintendo to make up for lost sales

during the preliminary injunction. When Nintendo later appealed the

payout, Galoob triumphed again. The Game Genie hit U.S. shelves in

August 1991, posting one million sales by the end of the year and eventu-

ally selling as many as 6.5 million units worldwide. 96

 No POKEs

 Codemasters had another hardware trick up their sleeve, but this time

aimed at manipulating software costs rather than software cheats. In

November 1992, Codemasters partner publisher Camerica released the

Aladdin Deck Enhancer, a black plastic cartridge that housed swappable

 “ Compact Cartridges. ” The Enhancer was shaped similarly to a conven-

tional NES game pak with a trapezoidal portion of its lower half missing.

[242]

Codemasters devised a novel approach to game manufacture and distri-

bution that would leverage the Nintendo ’ s split ROM architecture (chapter

1): the Enhancer contained a custom CIC override, mapper, and 8KB of

CHR-RAM for shared use across multiple games, while individual

Compact Cartridges contained a single 256KB PRG-ROM IC soldered to a

slim PCB. Customers could purchase inexpensive Compact Cartridges

separately, then slide them into the Enhancer to form a complete

game pak.

 The back of the Enhancer ’ s box boasted its “ 64K memory upgrade for

better graphics, bigger games! ” alongside Camerica ’ s prediction that,

 “ Aladdin is the future in console game play. ” Exactly how this 64K was

an upgrade and in relation to what was unclear. Detaching the CHR-

RAM and mapper from the PRG-ROM made great economic sense,

but neither mapper nor RAM provided any benefit not found in conven-

tional game paks. Tellingly, the Aladdin ’ s sole six Compact Cartridges

were later released as standard carts, albeit in Camerica ’ s distinctive gold

cartridges. 97

 The Deck Enhancer ’ s quick demise was based more on circumstance

than confusing hardware promises or lackluster software. Both Dizzy the

Adventurer and Fantastic Adventures of Dizzy were quality adventure games

drawn from a series that had proven successful on European PC plat-

forms. Micro Machines was likewise one of the NES ’ s finest top-down

racing games. But Camerica folded just before Aladdin ’ s debut, forcing

Codemasters to assume North American distribution responsibilities at

the zero hour. Worse still, by late 1992, the NES had already been replaced

by the Super Nintendo, rendering any game pak innovations largely moot.

Ultimately, the Aladdin and its games saw limited release — a good idea

birthed too late in the console life cycle.

 It is no surprise that Aladdin and the Game Genie arose from a Euro-

pean developer. Since the videogame industry was born and raised in the

United States, most videogame histories focus heavily on that region,

despite the fact that the European videogame industry followed its own

trajectory, showing a markedly larger interest in PCs than dedicated con-

soles. 98 The 1983 crash, in particular, is often given an implicit worldwide

scope, when in reality it primarily derailed the U.S. videogame industry.

Japan ’ s PC market was isolated but thriving — led by native manufacturers

NEC, Fujitsu, and Sharp — and the Famicom, of course, would debut the

same year that the crash began. In Europe, consoles had not become as

entrenched as they had in the U.S. Instead, true to the New York Times ’ s

prediction quoted in chapter 4, PCs were becoming the videogame

machines of choice.

6 Expansions [243]

 In England there was intense competition in the low-cost PC market,

spearheaded by Clive Sinclair ’ s eponymous 1980 PC, the Sinclair ZX80,

which cost just £ 99.95 fully assembled. 99 Its low cost put computers into

the hands of those who could not afford the pricier Commodore PET or

Apple II — or even dedicated videogame consoles. As videogame historian

Donovan writes, “ The success of the ZX80 marked the moment when

affordable home computing became a reality in Britain. ” 100 A cottage

industry of game programmers and basement businesses grew up around

the budget machine, selling their games on cassette (the cheaper alterna-

tive to floppy disks) via mail-order and local computer shops. The Sinclair

symbolized the DIY programming equivalent of three chords and a guitar

in punk rock — for £ 99.95, you could be a videogame rockstar. The PC was

a tool for creative expression that closed console architectures could not

replicate.

 Throughout the 1980s, improvements to the Sinclair line, like the

popular ZX Spectrum (1982), thrived alongside the Commodore 64,

Amstrad CPC, Oric-1, and the government-funded BBC Micro. These and

similar low-cost alternatives disseminated beyond Britain into France,

Spain, Germany, and Australia. 101 Platform-specific publications like

 Zzap!64 and The Micro User formed to support the major PC formats, and

their writers and subscribers largely viewed dedicated videogame con-

soles as ossified, retrograde technology. Game cartridges, which cost

upward of £ 60, struggled to compete with cassettes priced at £ 1.99

(regardless of the latter format ’ s abysmal loading times). Furthermore,

PCs cultivated an active subculture of software piracy, trading, and

modification.

 In the 1987 debut issue of UK magazine The Games Machine , just a

few months prior to the NES ’ s first British Christmas season, the editors

provided an overview of the Famicom from a decidedly PC-centric per-

spective: “ As the Nintendo doesn ’ t have keyboard facilities, POKEs cannot

be entered to modify games. To compensate, hidden cheat modes

abound … ” 102 From the European perspective, Nintendo ’ s console was a

walled garden. Such restrictions were unfamiliar to a computing culture

reared on the open architecture of PCs. The only barrier to entry in the

Spectrum market was hardware ownership and some programming chops;

Nintendo, meanwhile, exacted licensing agreements and total control

over manufacture, marketing, and content. The games reflected opposing

philosophies — Nintendo was the platform for family-friendly play; PCs

offered that and every other imaginable genre.

 Furthermore, by 1987, the NES ’ s aging 6502 struggled to keep pace

with modern PCs, a fact exacerbated by Nintendo ’ s lack of retail

[244]

experience outside Japan and the U.S. They first partnered with Mattel,

granting them distribution rights in the UK, Italy, and Australia, but

the toy company fumbled spectacularly, angering important UK retail

partners by announcing deals before they were secured. 103 In 1988, Nin-

tendo spun off Nintendo Entertainment Systems International (NESI)

in hopes of correcting their distribution misstep, but “ in the absence of

any sales and distribution infrastructure and little UK marketing exper-

tise, sales continued to falter at less than 600 hardware units per

month. ” 104 In subsequent years, Nintendo passed marketing and distri-

bution duties to Serif (marketers for Trivial Pursuit and Pictionary), then

Bandai (the toy company behind Teenage Mutant Ninja/Hero Turtles as

well as Famicom development veterans), before once again grabbing the

reins in 1995. 105

 The NES eventually found minor success in European markets, thanks

to the appeal of its first-party software catalog and licensed retail

bundles, 106 but that success paled in comparison to Nintendo ’ s near-

monopolistic command of the U.S. and Japanese markets. Nintendo ’ s late

regional expansions found them floundering in territories indifferent to

dedicated consoles and the software cultures they signified.

 Extended Attributes

 Throughout the Famicom ’ s life span, Nintendo produced several ASIC

mappers, which grew in capability and specialty, allowing the Famicom to

break many of its own hardware rules. MMCs not only administered bank

switching, but eventually implemented scanline counters (to replace

sprite 0 ’ s screen-splitting function), onboard PPU-RAM, and additional

sound channels (chapter 7).

 Nintendo named its chips in sequence, from MMC1 (April 1987)

to MMC6 (December 1990). 107 Higher sequence numbers did not

necessarily indicate better features, increased adoption by developers, or

discontinued manufacture of previous mappers. Nor did ASIC mappers

obsolete discrete logic boards. Price considerations and per-game

memory requirements dictated a developer ’ s choice of mapper. 108 MMC1 ’ s

and MMC3 ’ s balance of cost and capabilities made them the most popular

ASIC choices, accounting for roughly 13% and 33% of Famicom and NES

mappers, respectively. 109 Other mappers saw limited use or offered slight

variations on previous models. MMC2 was used in a single game — Mike

Tyson ’ s Punch-Out!! — while the similar MMC4 mapper appeared in fewer

than five.

6 Expansions [245]

 Nintendo ’ s penultimate ASIC mapper, MMC5, was its most powerful.

The usual answer to lagging hardware was a peripheral add-on, but the

MMC5 was a console upgrade housed in a cartridge. Beyond the increased

cartridge size (which applied only to Famicom carts — NES game paks

already had the adequate height), the hardware augmentation was imper-

ceptible. The games magically looked and sounded better.

 The MMC5 ’ s flagship feature was an additional 1KB of multi-purpose

onboard memory called Extended RAM, or ExRAM. ExRAM had a control

register ($5104) that allowed the programmer to select from several

modes. In one mode, ExRAM served as a third, supplementary name table

which, used in concert with MMC5 ’ s flexible mirroring options, allowed

previously impossible name table arrangements. The diagram below

shows one such configuration using the console ’ s standard name tables

(A and B) in a “ diagonal ” configuration, augmented by the additional

ExRAM name table (X):

 [A][B]
 [X][A]

 With three name tables on hand, games could theoretically scroll both

vertically or horizontally with a full screen ’ s worth of graphics “ buffered ”

on either side, eliminating attribute glitches without relying on sprite

columns, clipping masks, or other workaround solutions.

 ExRAM also provided an extended attribute mode that bypassed the

PPU ’ s attribute tables in favor of the data held in ExRAM, which at 1KB

capacity could provide a byte-for-byte palette-to-name table match. In

other words, each 8x8-pixel background tile could have an individual

palette assignment rather than sharing its color data with three other tiles.

 Just Breed , a Famicom-exclusive RPG published by Enix in 1992, used

MMC5 ’ s extended attribute mode to paint vivid backgrounds that rivaled

those seen in early Super Famicom titles. The in-town architecture

boasted conical spires and spherical vegetation that blended seamlessly

into the surrounding backgrounds. Shadows cast realistically from the

edges of buildings. Even intricate shorelines cut convincingly between

ocean and grassland without abrupt attribute clashes.

 Another novel addition was support for a vertical screen split. MMC5

could monitor the PPU ’ s current background tile fetch on a given scanline

and trigger a name table split at a specified tile position. HAL ’ s 1990 space

shooter SDF was the only game to use the feature, and even

then it reserved the vertical split for a brief opening attract sequence.

 Figure 6.8 shows the split screen in use. The gridded region with the ship

[246]

 6.8 The attract mode from SDF is the only commercial example of MMC5 ’ s

vertical split screen function. (Emulator: Nestopia v1.40)

schematic uses a standard VRAM name table, while the rightmost bor-

dered region is filled with contents of the ExRAM name table. Once each

ship part ’ s specs are displayed, the rightmost region scrolls in the next

entry from the bottom of the screen.

 The effect required quite a bit of technological wizardry for minimal

visual payoff, especially in light of the vertical split ’ s limitations. The split

region could only contain the contents of ExRAM and, dependent on the

side selected, could only display the corresponding region of the name

table ’ s contents. Though the opposing side could scroll normally, there

was no horizontal scroll control over the split region. Consequently, any

vertical scrolling in the split region would behave as if vertically mirrored,

i.e., wrapping at the top or bottom. 110 If there were any useful gameplay

applications of the vertical screen split, SDF ’ s brief use of the feature does

not give us any indication of its potential.

 MMC5 also had several less exotic features. The board could address

PRG-ROM/RAM and CHR-ROM capacities up to a staggering 1,024KB

6 Expansions [247]

(1MB). The flexibility of banking options was equally impressive — both

PRG and CHR supported four independent banking modes with bank

sizes between 8KB and 64KB for the former and 1KB and 8KB for the

latter. 111 In 8x16 sprite mode MMC5 ’ s CHR-ROM register setup also

permitted games to access 12KB of CHR-ROM. Separate 8KB and 4KB

register access allowed programmers to reference 512 sprites and 256

background tiles simultaneously without bank switching. 112

 Despite its litany of features, few MMC5 games were manufactured. 113

The chip ’ s limited adoption was a function of chronology and cost. MMC5

did not appear until late in the Famicom ’ s lifespan and it was expensive

compared to other capable mappers. Unless the game was a sure hit or

otherwise demanded MMC5 ’ s capabilities, the added cost was not worth

the investment, especially if alternative mappers sufficed. For the pur-

poses of most games, MMC3 and MMC1 offered all the features developers

needed. And if they wanted advanced scrolling, better attribute control,

and increased name table space, it made more sense to switch develop-

ment to the superior Super Famicom.

 Those developers that did opt for the advanced IC only used a fraction

of its feature set, primarily taking advantage of its extraordinary ROM

capacities. Koei used the MMC5 more than any other publisher, porting

their popular historical strategy games from PC platforms to the Famicom

and NES. However, games like Gemfire , Uncharted Waters , and Bandit Kings

of Ancient China largely used the chip ’ s expanded memory capacity to

process in-game statistics and AI decision-making. While Gemfire ’ s box

touted its “ newest technology for better graphics and game play, ” “ 64K

RAM with battery backup, ” and “ 4 Megabit Cartridge, ” the in-game

results were underwhelming. Koei games had minimal animation, static

backgrounds, and a handful of gameplay screens — visually, they could not

stack up against an MMC3-based action game like Super C .

 Nonetheless, showcase MMC5 titles like Just Breed demonstrated how

far the Famicom had developed in its almost decade-long run in the

console videogame market. They were closer in kin to Super Famicom

titles than Donkey Kong or Door Door . Just Breed ’ s gameplay and Koei ’ s

simulations were adapting elements from 16-bit RPGs and PC strategy

games rather than their own 8-bit predecessors. Influences from the

 “ next generation ” were folding back in on the prior generation. The con-

sole ’ s late-generation titles remind us that the Famicom did not exist

in a technological vacuum — PCs, handhelds, arcades, and successor

consoles were pushing developers to expand the Famicom ’ s repertoire

into genres it was never designed to manage. And developers were often

producing games for multiple platforms simultaneously, so they had to

[248]

devise techniques to perform similar effects across drastically different

architectures.

 Though the MMC5 marked the technical peak of Nintendo ’ s Famicom

ASIC engineering, third-party manufacturers continue to push mapper

technology forward. Even today, manufacturers of new Famicom titles

continue to devise mappers to accommodate curious conversions of

unlicensed properties and massive multi-carts that shove ten or more

games into a single PCB. 114 Chinese manufacturers in particular have

engineered mappers to accommodate unlicensed cross-generational

conversions of videogames like Aladdin , Street Fighter II , Sonic the Hedge-

hog , and Final Fantasy VII . Though they often bear little resemblance to

the originals — Final Fantasy VII used 3D polygonal graphics that tile-based

systems obviously cannot replicate — they are nonetheless impressive

engineering feats, often supporting ROM capacities of several megabytes

(and befuddling emulator authors who aim to support such wild hardware

variations). And while Nintendo does not sanction such activities, the

efforts of piracy continue to support an ecosystem that thrives in regions

of the world where Famicom clones offer an economically feasible alter-

native to expensive modern consoles. Thirty years on, the limits of

a console meant to play Donkey Kong continue to expand beyond what

Nintendo ever could have envisioned for their Family Computer.

 I don ’ t use a keyboard or any instruments … It gives you a more open

mind, I would say. You ’ re thinking along the lines of the computer

and not along the lines of a keyboard or whatever instrument you

would use.

 — Timothy Follin, The Making of Solstice for NES , 1990

 I programmed the computer and the computer generated the sounds …

I was not playing, but somehow, music was coming out.

 — Koji Kondo, Electronic Gaming Monthly interview, 2005

 In August 2013, European net label bitpuritans released 2A03 Puritans , a

compilation of songs composed, true to its title, exclusively with the Fami-

com ’ s Audio Processing Unit (APU). 1 While the album sounds like a lost

archive of NES soundtracks, the range of styles and techniques on display

belie its vintage trappings. TQ-Jam ’ s “ Milky Fields ” begins with a breezy

melody reminiscent of a Sunsoft platformer, but midway through shifts to

a four-on-the-floor dance beat that sounds distinctly twenty-first century.

Likewise, KungFuFurby ’ s sprawling, eleven-minute “ Null and Void, ”

while technically feasible on the console, dwarfs the length of any extant

NES track. And while 2A03 Puritans is available in modern formats such

as MP3 and FLAC, bitpuritans also provide links to NSFs — a lightweight,

community-created format for 2A03 playback — along with the original

source files for playback in FamiTracker, a modern composition tool for

creating 2A03 music.

 7 2A03

[250]

 While 2A03 Puritans may sound anachronistic to many contemporary

listeners, for several decades chiptunes — the popular term used to describe

music that targets a specific, usually vintage, sound processor — have sus-

tained a thriving community devoted to making new music for old

machines. And while not all chiptune artists ascribe to bitpuritans ’ Prot-

estant ethic, many do pride themselves on an authentic reproduction of

the 2A03 ’ s sonic character. 2 But why do electronic musicians who have an

almost limitless range of samples, synthesizers, and software at their dis-

posal turn to a thirty year-old processor engineered to generate three

simple waveforms, noise, and gritty one-bit samples?

 To answer this question, we will take a close look at the APU ’ s design,

capabilities, and sound characteristics, along with the hardware designers

who tried early on to supplement its simple voices. Accompanying the

mapper-based extensions introduced in the previous chapter were audio

augmentations that radically altered the Famicom ’ s sound capabilities,

but unlike the MMC3 or UNROM, none of these hardware upgrades

appeared in cartridges outside Japan. In fact, much of the Famicom ’ s

sonic history would be lost without the active efforts of artists devoted to

fashioning a videogame platform into a musical instrument.

 Crystal Heartbeat

 As noted briefly in chapter 1, part of the console ’ s computational core — the

2A03 — is an integrated audio processing unit. The APU is a versatile

instrument that generates every sputtering engine in R.C. Pro-Am , every

whip crack in Castlevania , every machine gun report in Contra , and every

percussive shuffle in Super Mario Bros. Yet it contains no elements of tra-

ditional instruments — no embouchure holes, felt hammers, mylar heads,

or horsetail bows. Circuitry does not vibrate to produce sound. Electronic

musicians do not pluck traces on a silicon wafer. Bits do not shift air. So

how can a processor sing?

 The answer is synthesis, the prototypes of which developed in the early

twentieth century but reached widespread audiences in the 1960s, when

avant-garde composers and pop musicians alike began to incorporate the

sounds of electrical circuits — via synthesizers — into their performances. By

the 1980s, the synthesizer was ubiquitous in popular music, though not just

in the new wave of artists with artfully sculpted hair preening for MTV. The

sounds of synthesizers had been a mainstay of videogames since their

inception, orchestrating the lockstep march of aliens in Space Invaders , the

bowing girders in Donkey Kong , and the ghost-gobbling chomps in Pac-

Man . The heritage of sound born in arcades carried on to consoles as well.

7 2A03 [251]

 The 2A03 ’ s sound generator is commonly called a pseudo Audio Pro-

cessing Unit (pAPU) since it lives alongside the 6502 in a single die. 3

Architecturally it is part of the CPU, but programmatically it is treated as

a discrete entity — like the PPU, it has its own reserved control registers

that may be issued instructions independent of other processes. Compos-

ing with the APU is not like composing on a piano. It cannot be played

with a keyboard; it has no inherent understanding of notes, scales, or

tempo. Instead, composing is identical to programming: audio data is

encoded, stored, and interpreted in the same format as code, byte by byte

in hexadecimal numerals.

 Though most synthesizers are associated with piano keyboards, that

connection is a result of cultural, social, and marketing forces, not an

inherent technological trait. Synthesis describes the method of sound

construction, not an interface or performance style. 4 The first synthesiz-

ers had no traditional controllers. A synthesizer ’ s individual modules —

 oscillators, filters, envelopes — could be patched in various configurations

to generate, shape, and modulate sound waves. Playing a modular synthe-

sizer more resembled patching a phone call than strumming a guitar.

However, as more traditional (e.g., pop, rock, and jazz) musicians became

interested in synthesizers, the demand for more predictable, user-friendly

interfaces arose. The piano keyboard mapped well to the pitch relation-

ships desired by musicians who wished to keep their temperamental elec-

tronic instruments in tune with an ensemble. For experimental musicians

who saw synthesizers as an escape from the confines of traditional melodic

structures and playing habits, the keyboard was a regressive addition. 5

 The first synthesizers were also analog instruments. Their discrete

electrical components — capacitors, resistors, transistors, etc. — generated

continuous variations in voltage that modeled, or were analogous to, the

variations in air pressure that produce sound. Such synthesizers included

one or more voltage-controlled oscillators (VCOs) to produce predictable

voltage fluctuations over time. If the fluctuations cycled at a frequency

audible to human ears, once amplified and passed through a material

surface, like the cone of a speaker, oscillators made sound.

 Analog sound synthesis ’ s genesis from electrical components caused

unique usability problems. Temperature and moisture changes could

wreak havoc on their circuitry, causing, at best, tuning fluctuations, and

at worst, total hardware failure. Digital synthesis promised to smooth the

inconsistencies of analog synthesizers by regulating output according to

discrete mathematical values. Digitally controlled oscillators (DCOs)

replaced continuous voltage signals with a stream of digitally encoded

amplitudes, chopped and coded into numeric data. The more slices a

[252]

processor could make per unit of time, the closer the digital signal modeled

the analog source. Via a digital-to-analog converter (DAC), those values

were translated back to electrical signals that could then be routed to an

amplifier.

 The APU, like the majority of console audio hardware, is a digital

synthesizer, but its close union with the CPU makes it different than dedi-

cated programmable sound generators (PSGs) found in similar platforms,

even those that share a 6502 microprocessor. The Commodore 64 ’ s SID

chip, for instance, can be stripped from the PC and used as a standalone

instrument, 6 which Swedish manufacturer Elektron proved in the late

1990s with the SidStation module, a hardware synthesizer with a SID core

that was controllable via MIDI, rotary dials, and a numeric keyboard — no

PC required.

 There are no such means to extract the Famicom APU from the 2A03.

Every tone it generates is synced to the CPU, which in turn is clocked to a

crystal oscillator, a vibrating piezoelectric element that generates a precise

frequency — 21.477272 MHz for the NTSC Famicom/NES and 26.601712

MHz in the PAL NES. To derive each system ’ s CPU clock rate, those fre-

quencies are then divided by either 12 (1.789773 MHz) or 16 (1.662607

MHz) respectively. 7 Though additional dividers slice the system clock into

smaller subdivisions and route them to various hardware counters, the

Famicom ’ s crystal core is the console ’ s baseline frequency, its central

driving heartbeat. 8

 While it is largely free from the stability issues of early analog synthe-

sizers, the APU ’ s union with an 8-bit microprocessor introduces its own

peculiarities. In chapter 1, we saw that the difference between NTSC and

PAL clock speeds were based on the discrepancy in television refresh

rates. Games that relied on precise VBLANK timing (e.g., Battletoads)

would behave erratically or crash when played on an NES from a mis-

matched region. Since audio likewise relied on the CPU clock, porting an

60Hz NTSC game to the 50Hz PAL standard without proper sound engine

compensation played back the game ’ s music and sound effects at 5/6 the

intended speed. Many of Nintendo ’ s early PAL releases, Donkey Kong

among them, suffered from this problem. Conversely, playing a proper

PAL port of a game on an NTSC system (e.g., Tecmo ’ s 1988 title Shadow

Warriors , the PAL version of Ninja Gaiden) would speed up audio in the

inverse proportion.

 Though musicians endlessly debate the merits of analog vs. digital

synthesis, there is no objective metric by which one can say that either

produces “ better ” sounds. Each contributes its own timbre, and even

the lowest-quality digital encoding can generate sonic material that

7 2A03 [253]

composers find musically interesting. For some, the Famicom ’ s five

channels would be far too restrictive for serious composition. But for a

generation of skilled artists, the 2A03 became a rich platform for creative

musical expression.

 As a single component in an already complex package, it is remark-

able that the Famicom received the five channels it did. Consoles in the

1980s routinely had three or fewer voices at their disposal. The Atari

VCS ’ s TIA, for example, which handled both sound and graphics, had only

two audio channels, each of which was severely limited in its waveform

types and pitch range. 9 The Texas Instruments SN76489, used in the Col-

ecoVision and Sega ’ s SG-1000, a Famicom competitor, had four voices:

three square wave generators and a noise channel. In terms of audio capa-

bilities, the Famicom outclassed its peers. Based on its range of voices and

hardware effects, the APU was more comparable to a PC PSG like the SID

than any contemporary console synthesizer.

 Sound Shapes

 Sounds are described visually by their waveforms , the repeating patterns

that arise when variations in a signal ’ s intensity (air pressure, voltage,

etc.) are plotted over time. In synthesis, these are named according to

their general shape — triangle, sine, sawtooth, etc. A signal ’ s frequency

describes the number of times this pattern repeats per second (measured

in Hertz), while its amplitude describes the intensity of change. Conven-

tionally, waveforms are graphed with times along the x-axis and ampli-

tude along the y-axis. 10

 Though the APU has five dedicated hardware channels for sound, only

three generate waveforms. The first two are nearly-identical pulse waves, 11

named as such because their amplitudes “ pulse ” on and off with little or

no slope in between, creating a visual cadence of rectangles arranged one

after the other. Pure pulse waves sound crisp and bright, reminiscent of

a clarinet or a distorted electric guitar. Due to their sonic character, they

typically take the lead melodic role in Famicom music. When you are

humming along to the main themes of The Legend of Zelda , Mega Man , or

 Contra , you are likely mimicking the pulses.

 The third channel is a triangle wave, which in contrast to the pulses,

tends to sound mellow, smooth, and muted, like a flute or bowed double

bass. Due to an internal hardware difference, the triangle channel covers

a wider frequency range than the pulses, meaning that it can stretch

to both lower and (much) higher pitches, from near-subsonic bass to ear-

piercing squeals. 12 Additionally, unlike the pulse or noise channels, which

[254]

each have their own 4-bit (16-step) volume control, the triangle has no

volume envelope — it is either on or off. In combination, these traits made

the triangle channel ideal for bass. And indeed, in most Famicom

soundtracks, the triangle handles the low end.

 The fourth channel, a pseudo-random noise generator, is unique

among its APU peers. By definition, noise is meant to be purely random,

meaning that its waveforms exhibit no repeating cyclic pattern and that

its frequency content is distributed evenly across the entire spectrum.

Translated to musical terms, noise has no pitch. Composers cannot use it

to construct melodies or chords because it cannot be tuned. In common

parlance, noise is unwanted sound, so why include it as part of synthe-

sizer? Because noise is non-melodic but not non-musical. By carefully

sculpting its volume, duration, and playback speed, composers can extract

all manner of percussive and special effects, from multi-part drum kits

to fiery explosions.

 Each channel has its own set of register-level controls, allowing com-

posers to craft the APU ’ s raw waveforms into expressive instruments that

can better mimic a range of physical instruments and playing techniques

(or craft wholly alien tones). The simplest of these is the length counter ,

which controls the duration of a channel ’ s sound. Notes may be held for

variable intervals according to a simple automatic countdown timer,

allowing composers to construct meaningful tempo relationships (e.g.,

whole, half, sixteenth notes) between instruments. Without the length

counter, APU notes would have no rhythm.

 Excluding the triangle, each channel has a dedicated hardware enve-

lope, or a series of values that describe a signal ’ s shape over time, to control

it volume. Compared to contemporary synthesizers, the APU ’ s two enve-

lopes are rudimentary: one outputs a single constant volume and the other

produces a simple loopable decay. 13 The former is straightforward — set a

volume and forget it. The latter is slightly more nuanced, as the channel ’ s

volume starts at a specific value then decreases linearly until it reaches

zero. While simple in function, the decay envelope helps APU channels

mimic instruments that naturally decline in volume over time, like a

guitar or piano, instead of shifting jarringly from peak amplitude to

silence. Nintendo used the hardware decay in many of their early Famicom

soundtracks. Clu Clu Land , Mahjong , Donkey Kong , Ice Climber , Donkey Kong

Jr. , and Devil World all set decays on both pulses, usually at staggered

lengths, to create gentle volume slopes at the end of each note. When

percussive tracks were present (a rarity in 1983), Nintendo ’ s composers

used combinations of short and long decays on the noise channel to simu-

late closed and open hi-hats.

7 2A03 [255]

 The pulse channels have two special hardware features that no other

channel shares. The first is a variable duty cycle ratio that can switch

between four values: 12.5%, 25%, 50%, and 75%. 14 The percentages

describe the proportion of time the waveform spends in its positive versus

negative amplitude position in a single period. 15 Altering a pulse wave ’ s

duty cycle is a simple way to change its timbre , or tone color, without

changing its frequency. Narrower duty cycles produce hollow, reedy tones;

wider ratios sound thicker in comparison.

 In addition to giving each pulse channel three distinct tones to choose

from, duty cycles can also be swapped at any time, even mid-note. Duty

cycle modulation — essentially the rapid variation of pulse width ratios — is

one of the APU ’ s (and chiptunes ’) trademark sounds, mimicking expres-

sive musical effects like the onset of a bandpass filter or the rapid tran-

sient of a percussive attack. 16 Moreover, triggering rapid modulations

during a single tone creates a distinctive fluttering or warbling effect that

can fake arpeggiated runs (i.e., notes in a chord played individually in

quick succession) without actually changing the frequency. 17 Konami and

subsidiary Data East used this trick to great effect in several of its

soundtracks, such as Bad Dudes and Cobra Command.

 The pulses ’ second hardware feature is a sweep unit. Triggering the

effect causes the channel ’ s wavelength to “ sweep ” up or down at a given

rate. Depending on the rate and direction, the audible result is similar to

sliding one ’ s finger across the neck of a violin, causing the string ’ s pitch

to glide smoothly between notes. Though this same effect is possible by

manually updating a pulse ’ s frequency, the sweep unit provides a quicker

automatic means to do so. While sweeps have limited musical use beyond

rapid note bends, the sweep is particularly useful for generating sound

effects like character jumps, sirens, or gunfire.

 Human ears perceive changes in frequency as pitch variation. When

a pianist moves from left to right on a piano, they are playing notes of

increasingly higher frequency, starting at 27.5Hz (pitch A0) and ascend-

ing to 4.186kHz (pitch C8). However, piano keys do not represent all

possible frequencies between those bounds. To prevent the instrument

from being infinitely wide, keys are tuned to specific frequency ratios.

Those that sound pleasing to our ears are based on centuries of conven-

tion, our cultural heritage, and personal preference. Traditional Indian

music uses pitch intervals that may sound unconventional or “ out of tune ”

to North American ears; likewise for African, Asiatic, and other regional

musics. Tuning is a function of culture.

 One strength of synthesizers is their ability to be that theoretical

infinitely wide piano, representing not only the conventional frequency

[256]

relationships of acoustic instruments, but all frequencies in between.

Translating music across cultures is difficult or impossible when indig-

enous instruments are based on different pitch relationships. How does

one replicate the elegant bends of the silk-stringed Japanese koto using a

fretted, steel-string acoustic guitar or the shifting frets and resonant

gourd of an Indian sitar? While the 2A03 ’ s trio of waveforms cannot rep-

licate the individual timbres of these instruments, its frequency output is

limited by neither construction nor culture, making it equally adept at

replicating Asian, Western, and many other regional musics. Though

Famicom/NES soundtracks leaned heavily on Western genres — especially

rock and classical — such choices were based more on the composer ’ s

taste, the project ’ s budget, and the APU ’ s tonal qualities than any inher-

ent frequency limitations. So unlike language or differences in cultural

norms (chapter 3), music was rarely a barrier to a game ’ s international

release.

 ROM DMC

 The 2A03 ’ s fifth and final channel cannot synthesize waveforms or noise.

Instead it provides a rudimentary means to output samples.

 Sampling in its earliest sense was a manual process. Disc jockeys

could prolong choice instrumental breaks by reversing a vinyl record ’ s

position beneath the phonograph ’ s tone arm, thereby repeating short

 “ samples ” of the original song. 18 DJs judged the position and duration of

musical phrases according to sight, sound, and touch, using the record ’ s

physical grooves and the turntable ’ s fixed speed to locate and repeat

samples with exceptional precision. DJs were among the first “ analog ”

samplers in the same way that “ computers ” first described people — not

machines — who performed computations.

 In the 1980s, instrument manufacturers E-mu Systems, Korg, Roland,

Akai, and Ensoniq introduced a range of affordable hardware samplers

that could digitally encode audio snippets to disk. In prior years, two

sampler models — the Fairlight CMI and the Synclavier — dominated the

(admittedly tiny) market, but both were bulky and costly, relegating

them largely to studio or institutional use. Though their cheaper succes-

sors were less technologically advanced, more musicians had access to

them, and they were small enough to use in live performance. With digital

samplers, DJs and non-DJs alike had ready access to loopable digital

copies of drum breaks, horn stabs, and vocal phrases — or any other

recorded sound — freed from the manual dexterity necessary to manipu-

7 2A03 [257]

late turntables. The sampler could augment a DJ ’ s technique or replace it

altogether.

 It is here that two meanings of sampling often conflate. A sample

is both a segment of prerecorded sound reused in a different musical

context — like the short loop of Leon Haywood ’ s “ I Want ’ a Do Something

Freaky To You ” used to form the backing track of Dr. Dre ’ s “ Nuthin ’ But

A ‘ G ’ Thang ” — and the fundamental unit of all digital audio. Converting

an analog waveform into a digital waveform requires translating a con-

tinuous signal into a format a microprocessor can understand — discrete

numeric data. An analog-to-digital converter (ADC) takes thousands of

snapshots — or samples — of a waveform over time. When the samples are

reassembled and played back in sequence, they produce a digital repre-

sentation of the analog signal. Though confusing, it is accurate to say that

samples are constructed from samples.

 The Famicom is not a sampler like the Ensoniq Mirage or the E-mu

Systems SP 1200. It has no means to record audio directly nor store it

internally. Instead, samples are either recorded in advance, encoded and

stored as binary data in ROM, or output directly by the DMC. So while the

2A03 ’ s sampling channel is far less capable than a dedicated hardware

sampler, it did provide game developers a modest means of incorporating

sounds that were impossible to generate via the pulse, triangle, or noise

channels. And considering that the Famicom debuted prior to most com-

mercially available samplers, it is remarkable that it had sample-playback

capabilities at all.

 Technically, the APU ’ s fifth voice is a 1-bit delta modulation channel,

or DMC, designed to encode and playback digitized samples. DMC sam-

pling differs from standard digital audio capture that uses pulse-code

modulation (PCM), wherein each sample point of an incoming signal is

recorded independently as a sequence of variable amplitude values, or

pulses. Delta modulation, in contrast, is differential : if the current input

signal amplitude is higher than the previous sample, the output is raised

by a fixed delta value; if it is lower, the output subtracts the delta value. 19

Since the encoder only needs to store whether the comparison is higher

(1) or lower (0), a single bit suffices.

 Delta modulation is ideal for systems with limited memory, but 1-bit

sampling introduces encoding errors that audibly distort the source

audio. If the source signal ’ s amplitude shifts suddenly, for instance, it

takes several samples for delta modulation to “ catch up, ” since its slope

can only shift one delta value per sample. This slope overload distortion

alters the shape of the digital output and introduces noise. In contrast,

[258]

when the source signal remains static, delta modulation cannot accurately

record whether each successive amplitude is higher or lower, since there

is no change. To compensate, it fluctuates above and below the static

signal, introducing a distortion called granular noise . 20 Ideal analog input

sources with amplitude slopes that transition gradually and consistently

rarely exist, so any DMC playback on the Famicom sounds noisier, grit-

tier, and more distorted than its source.

 The Famicom DMC provides two sample playback methods. The first

and more common technique uses direct memory access (DMA) for

 “ automatic ” playback. To initiate sample playback, composers set the

sample ’ s starting address, its length, and desired playback frequency.

Once the channel is enabled, the DMC ’ s memory reader fills an 8-bit

 sample buffer , which the output unit then empties until the counter register

reaches zero. 21 Based on the status of a loop bit, once the sample buffer

empties, playback either stops or loops. Mike Tyson ’ s Punch-Out!! uses

short DMC loops to simulate two crowd cheering noises, one heard during

the title screen and the other during pivotal fight events, such as the

beginning of a round or after knockouts. 22

 DMA playback simplifies the use of samples, but also limits their

flexibility. Beyond setting the loop control, composers can only alter the

sample ’ s playback frequency (by decreasing a 4-bit rate index value),

effectively lowering the pitch of any DMC sample. 23 Early samplers and

synthesizers used a similar method to get more mileage out of their limited

sampling memory. One might record a sample of a piano ’ s C note at each

octave, then decrease each sample ’ s frequency at fixed intervals to fill in

the missing keys. While this technique conserved memory, it also created

unnatural encoding artifacts. Decreasing the frequency of a sample also

increased its length, so a C sample that was 1.2 seconds long might increase

to twice that length when dropped an octave, creating a noticeable slurring

effect, like dropping the speed of a 45 rpm record to 33 1/3. Likewise,

slowing the sample emphasized any digitization errors present in the

original sample.

 Further compounding its playback limitations, the DMC ’ s sixteen

rate index steps are not “ well-tempered, ” i.e., aligned to a useful musical

scale. In other words, the DMC can generate sixteen approximate pitch

relationships, listed here from highest to lowest frequencies: C11, G10,

E10, C10, A9, G9, F9, D9, C9, B8, A8, G8, F8, E8, D8, C8. 24 Assuming a

base note of C it is possible to construct a reasonable major scale, but

the lack of accidentals and the patchwork inclusion of notes spanning

several octaves makes DMC-based melodic composition challenging. 25

Furthermore, none of the notes have precise intonation, especially in the

7 2A03 [259]

higher registers. E10, for instance, is sharp by 17 cents, rendering it

audibly out of tune. Finally, samples can only have their frequencies

lowered, so it was best practice to sample the instrument ’ s highest pitch

then detune that pitch to reach the desired notes.

 Though automatic playback makes DMC usage simpler, the alterna-

tive direct load method, which can write raw PCM data directly to the DAC,

offers greater sample control and potentially higher quality. 26 By pre-

calculating the sequence of amplitude values in a waveform and the rate

at which they occurred, a composer could “ hand-draw ” any waveform

from its individual samples. However, this technique requires such a high

volume of data throughput and processing attention that any usable

musical phrase or voice sample typically required halting game logic

entirely to wait for playback.

 Games that used the direct load method generally relegated PCM

playback to static title screens (e.g., Bart vs. the Space Mutants) or altered

gameplay to accommodate the brief pauses required to load data. Sesame

Street: Big Bird ’ s Hide and Speak used a complex pseudo-phonetic sample

system to construct its impressive vocabulary, all spoken by Big Bird ’ s real

voice actor, Caroll Spinney. While Big Bird speaks, playfield graphics

remain static, save for a simple beak animation that sneaks in sprite

updates between speech samples. 27 In Will Harvey ’ s NES port of his PC

title The Immortal , enemy growls and groans were streamed as PCM data

during one-on-one battle scenes. In the game ’ s first encounter, for

example, there is a noticeable pause when your wizard strikes down his

goblin foe, evincing a brief death cry. The pause artfully transforms a

necessary sample load into a dramatic delay, timed precisely before the

killing blow.

 Vox Apparatus

 Regardless of method, DMC samples required copious ROM space, so

most developers used them like hip-hop producers used early hardware

samplers: for percussion. Drums hits were ideal for sampling because

they were brief — typically a second or less — and did not need to be pitched

to make them musically useful. Building even the simplest piano melody,

for instance, required samples for each note. If a composer chose instead

to downsample a single piano key, they faced the tuning and distortion

problems described above. Konami ’ s Hidenori Maezawa, whose

soundtrack credits include Gradius , Teenage Mutant Ninja Turtles , Contra ,

and Super C , explained the APU ’ s significant sampling limitations in a

2009 interview:

[260]

 For sampling, the resolution of the sound was very low — it sounded

cheap. Normally, when you sample, your software will interpolate the

whole scale. With the Famicom, though, we had to sample every single

note. But of course, doing that eats up memory space. So really, it was

terribly limited — I had to decide which notes we were going to use,

and which ones I should sample. It was all very complicated and

difficult. 28

 Despite his misgivings, Maezawa used the DMC extensively in both Contra

titles. By offloading the kick and snare sounds to the DMC, he allowed the

noise channel to focus on a single drum component (e.g., hi-hats), aug-

menting the percussion ’ s realism, since both channels could play simul-

taneously. Sampled drums also freed up the noise channel for sound

effects without sacrificing percussion altogether.

 A few developers reconciled with the DMC ’ s quirks and used it for

melodic samples. Sunsoft titles Batman: Return of the Joker , Journey to

Silius , Gremlins 2 , Gimmick , and Super Spy Hunter all had DMC bass lines

that sounded deeper and more realistic than the triangle bass. 29 However,

Sunsoft ’ s composers had to use multiple bass samples — namely A#, B, C,

C#, and D — to compensate for the pitch table ’ s frequency gaps. 30 Despite

the better frequency coverage, Sunsoft bass lines still suffered from dis-

tortion and tuning problems. Several of composer Naoki Kodaka ’ s bass

tracks for Gremlins 2 pedaled on a single note in two octaves, highlighting

subtle mismatches in pitch. Slight dissonances notwithstanding, the DMC

bass became a trademark Sunsoft sound and freed Kodaka to use the tri-

angle and noise channels to create a well-rounded drum kit, complete

with tuned toms.

 Though less common than percussive samples, developers also used

the DMC to encode voice. Synthesized speech emerged in electronic toys,

pinball machines, and videogames in the late 1970s and early 1980s, ini-

tially as a hardware audio gimmick meant to entice potential players.

Taito ’ s Galaxian derivative Stratovox (1980) inaugurated the arcade speech

era, featuring a dedicated sound chip that supported four synthesized

phrases, each equally impossible to discern. A slew of more articulate

titles followed, such as Berzerk (1980) and Gorf (1981), which were both

notable for using speech synthesis to simulate machine sentience. Players

approaching Berzerk heard it proclaim, “ Coins detected in pocket ” during

its attract mode, while Gorf was more direct in its intentions: “ I devour

coins. ”

 The craze for arcade speech and talking toys like the Speak & Spell soon

spread to the console market. Mattel engineered the Intellivoice Voice

7 2A03 [261]

Synthesis Module as an add-on for the Intellivision in 1982, but the

kludgy, expensive peripheral failed to drum up developer or consumer

enthusiasm. 31 Nintendo made the wiser decision to include a general-

purpose sampling channel that could handle speech, instruments, or any

other sound. They wagered that any speech synthesis required beyond the

DMC ’ s capabilities was better suited to supplementary cartridge hard-

ware, not a separate peripheral. 32

 Speech samples had limited use in-game, so they were often reserved

for special occasions like title screens or stage completions. 33 Sports

games were well-suited to speech samples, providing an added touch of

verisimilitude to referees or announcers. Konami used them frequently

for their sports titles. Double Dribble , for example, announced its name

during the title screen and had the referee say “ Free throw ” when a player

suffered a foul. 34 Hockey game Blades of Steel had a similar title introduc-

tion and a number of voiced samples for passing, face offs, fights, and

player falls. In other games, they were a simple technological showcase.

Natsume ’ s S.C.A.T. , for instance, had a remarkably eloquent introduction,

wherein the DMC narrated the player ’ s mission — “ You must destroy them.

The Earth is counting on you!! Good luck! ” Rare ’ s High Speed , a digital

reproduction of the classic Williams pinball machine, was one of the only

games to use the DMC ’ s low fidelity for thematic effect, as its voice samples

simulated police CB dispatches.

 The Wind or the Drums

 With only five channels at the 2A03 ’ s disposal, sound prioritization was a

necessity. Moreover, each channel was monophonic, meaning that only

one note could play at a time. If Mega Man ’ s buster shot and the lower

voice of composer Manami Matsumae ’ s Cutman melody fired simultane-

ously on the same pulse channel, a programmatic decision had to be made

about which was heard. There was no hardware trick that automated such

tasks — the game ’ s sound engine had to be designed to prioritize one sound

over another, dependent on what the developers deemed to be the most

important audio information for a given frame.

 Famicom games generally foregrounded sound effects over music,

since without audible feedback for jumps, menu selection, weapon

reports, and item pickups, their worlds felt sonically hollow. Sound effects

also provided an immediate feedback mechanism for player input, espe-

cially when visual cues were hidden or unavailable. When the player

directed Mario to kick a Koopa shell into a Goomba, for instance, the

engine responded visually by removing the Goomba sprite from the screen

[262]

and aurally by triggering a brief pulse wave effect. Once the player under-

stood the audio-visual correlation, the game could then introduce situa-

tions where the visual referent was absent. When a Goomba walked

offscreen, the engine continued to “ see ” its location (chapter 4) even

though the player could not. However, since kicking a shell offscreen

could still kill the Goomba, an audio cue could communicate that the col-

lision took place.

 Games that devoted all five channels to their soundtrack had to allow

for dynamic exclusions when sound effects were triggered, muting any

music that might normally occupy that channel. Attentive composers con-

structed their music to allow for brief dropouts, like Kondo ’ s harmonized

staccatos from the Super Mario Bros. ’ s World 1 – 1 music. There the pulses

and triangle channel played in rhythmic unison throughout the entire

song, so masking individual voices did not significantly damage the

melody. Similarly, the brief note durations offered adequate space for

sound effects to nestle in between.

 During gameplay, pulse channel one handled Mario ’ s jump, bumping

blocks, the pause jingle, descending pipes, raising the flag, tossing fire-

balls, and stomping enemies. Pulse channel two voiced coin collection,

Mario ’ s power-up transformations, and the end-of-level score counter.

When any sound effects triggered, they immediately superseded the

music. In most cases, the combined brevity of the sound effect and

Kondo ’ s doubled melody lines made the dropout unnoticeable. However,

there were occasions where sound effects could erase the pulse melodies

entirely. When Mario jumped repeatedly beneath a multi-coin block, the

interplay between jump (pulse one), coin collection (pulse two), and

block bumping (pulse one) reduced the soundtrack to its bass line (tri-

angle) and percussion (noise). Fortunately, the cacophony of coin collec-

tion helped mask the halved orchestration.

 The nuances of channel exclusions are often difficult to hear because

the engine is handling sound at the frame level, where prioritization shifts

can happen in fractions of a second. Many sound effects may be only a few

dozen frames long, so briefly muting a melody to make a coin chime is

likely to go unnoticed. But when sound effects sustain for extended

lengths, musical gaps become noticeable.

 The FDS version of Super Mario Bros. 2 added a gameplay mechanic

that, assuming you could survive the game ’ s steep difficulty, made it easy

to hear sound prioritization at work. Starting in World 5 – 1, Mario encoun-

tered levels with gusting wind, indicated visually by a flurry of green

leaves. For the few seconds it appeared, the wind altered Mario ’ s jumping

trajectories, and its ebbing intensity was matched in the noise channel by

7 2A03 [263]

a burst of static that swelled and decayed. Since both wind and drums lived

on the same channel, the duration of the former ’ s effect masked the per-

cussion completely.

 The Legend of Zelda provided an even simpler means to hear APU pri-

orities at work. During dungeon levels, Kondo ’ s score used three voices:

the triangle created the vibrato bass while the pulses cleverly intertwined

in alternating two-note sequences to form the melody line. As in Super

Mario Bros. , both pulses contributed significantly to sound effects: pulse

one covered the “ typewriter ” text effect, enemy strikes, and item counter

increments, while pulse two handled enemy death and item collection.

But pulse one changed priorities when a special status condition arose:

once Link ’ s health dropped to a single heart container, half of the dungeon

melody halted to sound a persistent beeping tone — Link ’ s fairy tale EKG.

The swap was most noticeable during screen transitions. When Link

passed beneath a threshold and the next screen scrolled into place, the

engine temporarily reverted pulse one back to the melody until the transi-

tion was complete.

 Today we do not have to rely solely on hardware-native examples to

hear channel exclusions at work. Most modern emulators include APU

mixers that allow users to mute or solo individual channels. Such tools are

indispensable for understanding which channels handle which roles and

how the sound engine prioritizes effects and music.

 In the opening level of Contra , if we isolate the first pulse channel, we

notice that the lead melody begins to play as soon as our combatant drops

into view. However, any time we fire our weapon, gunfire replaces the

music. As we proceed right, the first few enemies come into view. If we

shoot them, their death explosions silence the gunfire; likewise for firing

at heavier enemies (which produces a high-pitched ping) or picking up

weapon power-ups. When our character jumps, we notice that a small

pulse tick sounds when he hits the ground, yet firing while landing super-

sedes the effect. And finally, the abrasive buzz heard when our character

dies masks music, jumping, and gunfire — in fact, it supersedes every other

sound effect but the pause chime.

 Silencing all but the triangle channel creates a wholly different sonic

landscape. Its only duty is the bass line, so it plays throughout the level with

no interruptions. The second pulse is equally single-minded, carrying the

lead melody and nothing else. The noise channel has an interesting com-

plementary role, rattling off the track ’ s hi-hats when it is not busy aug-

menting the first pulse ’ s gunfire, explosions, landings, and death tolls.

Since Contra is a Konami game, we might guess that drum duties are pri-

marily handled by the DMC. Soloing that channel verifies our hypothesis.

[264]

 Isolating APU channels in this way helps us understand how develop-

ers approached sound engine design. In Contra , three channels — pulse

two, triangle, and DMC — are devoted exclusively to the music. This is a

sensible division of labor, distilling the game ’ s soundtrack to a rock ’ n ’

roll-style “ power trio ” — lead, bass, and drums — while pulse one and noise

team up to handle the sound effects. And any time they are unoccupied

with their primary job, they fill in the musical gaps. No matter what com-

bination of gameplay elements arises, neither the soundtrack nor sound

effects will fully disappear. Both are critical to the game ’ s holistic sonic

presentation.

 Sound effect priority likewise teaches us which auditory information

the developers deemed most valuable. Status alerts like pausing, dying,

and collecting weapon upgrades get top billing. This makes good design

sense, since the first two signal game-altering states that the engine must

immediately convey to the player, and the third is an important audio

corollary to a visual cue — the player ’ s weapon becomes more powerful

when they run over a pickup. Consequently, the pickup sound interrupts

gunfire to indicate the change. Henceforth we associate the sound with

artillery improvements, even if our visual focus is elsewhere. Explosion,

gunfire, and small ornamental effects like player footfall have lower pri-

ority. They augment the graphical spectacle but do not convey critical

gameplay information. Through sound, Contra is teaching the player how

they should prioritize visual information by shifting sonic information

into and out of their auditory field. In the absence of sound, a significant

portion of the game ’ s communicative structure is lost.

 Sonic Racing

 In absence of an audible example, the best means to summarize the 2A03 ’ s

practical sonic application is to step carefully through a short example,

paying attention to the relationship between voices, their use as both tonal

components and sound effects, and a few arrangement tricks that best

demonstrate each channel ’ s versatility. To do so, we will look at one of the

Famicom ’ s earliest sound experiments.

 Excitebike (1984), a brainchild of Nintendo R & D1, arrived soon after

the Famicom ’ s launch and later became a member of the NES ’ s 1985

launch catalog. Players competed in side-scrolling motocross time trials —

 either solo or against CPU-controlled racers — on one of five tracks. Racing

in front of an endless horizon of fans, players dodged hazards, wrecked

opposing racers, and vaulted massive ramps while trying to avoid both

overheating and devastating somersault crashes.

7 2A03 [265]

 Like other arcade-inspired titles of its time, Excitebike had a minimal

soundtrack. Nintendo ’ s Akito Nakatsuka composed only three tunes, each

under ten seconds long, to play during the game ’ s title, track selection,

and awards ceremony screens. In the title song, noise, triangle, and pulses

perform their customary musical roles. The dual pulses take the melodic

lead, harmonizing in pitch and duration throughout the song. However,

if we listen closely, we find that their timbres are not identical. By isolat-

ing each pulse channel and recording its waveform (figure 7.1), it is clear

that each has a different duty cycle ratio — pulse one uses 12.5%, giving it

a thinner, buzzier quality, while pulse two uses 50%, producing a fuller,

rounder sound.

 Perceptive listeners might also notice that each note of pulse one ’ s

melody bends upward in pitch, an effect that is especially prominent at

the end of each measure, when the lead holds for an additional eighth note

while it slides more than an octave past its root. Nakatsuka achieved this

unconventionally warbling lead by using the hardware sweep unit, a

trademark style that he would later perfect in Zelda II and Mike Tyson ’ s

Punch-Out!!

 7.1. Representative in-game selections from each of Excitebike ’ s four active sound

channels. Top to bottom: pulse one, pulse two, triangle, noise. (Source: Nestopia v1.4.1

output to Sound Studio 3.5)

[266]

 The remaining two channels play supporting roles. The triangle pre-

dominantly pedals on bass note pairs until the two-measure finale, when

it lends its harmony to the pulse melody. Meanwhile, the noise channel

has the simplest role. Using short bursts of noise, Nakatsuka mimics a

snare drum, accenting the beats on two and four to better highlight the

syncopations of the melodic voices. Like the bass, the percussion breaks

cadence at the end, matching the melodic rhythm until closing with an

elegant snare roll.

 Though difficult to hear without examining the track in a dedicated

NES sound format (NSF) player, the concluding roll uses two different

 “ frequencies ” of noise (figure 7.1). While the noise channel has its own

frequency control like the pulses, the composer may only select from one

of sixteen preset values. To produce noise, the channel relies on a con-

tinuous pseudo-random number generator (RNG) that outputs a repeat-

ing 32,767-bit sequence. Triggering the noise channel taps into that

stream in situ , meaning that two “ identical ” noise notes are statistically

unlikely to be the same.

 However, the noise is not truly random, because its underlying bit

sequence is finite and looped. Thus altering the channel ’ s frequency alters

the RNG stream ’ s playback rate and consequently the perceived “ pitch ”

of the noise. 35 By shifting to a slightly higher frequency in the final drum

roll, Nakatsuka creates a subtle distinction between snare sounds, mim-

icking a drummer ’ s stick articulations. Other composers would alternate

between noise bursts at larger frequency intervals to simulate the bass,

snare, and hats of a traditional trap kit (e.g., Duck Tales ’ s Amazon level).

 Once the track selection tune ceases and the racers find their marks,

there is no in-game music. Instead, the APU orchestrates an impressive

variety of sound effects to bring the motocross track to life. At the starting

line, the first pulse leads with a three-part countdown and a chime to

signal the start of the race. As play proceeds, pulse one is used primarily

to accent jumps and landings and to signal overheating/lap completions

(both use the same tone).

 Pulse two has far more textural work to do, as it handles the bulk of

the throttling engine noises. If the racer is still, a looping trill at 50% duty

cycle mimics an idling engine. When the player engages the throttle (A

button), the pulse arpeggiates quickly upward until it reaches top speed,

where it once again levels to a rapid two-note trill. Engaging the turbo

(B button) triggers an audible change to indicate that the engine can

overheat — now in a 12.5% duty cycle, the engine sounds much shriller. At

peak speed, just before the engine overheats, the turbo pulse holds on a

single note.

7 2A03 [267]

 The triangle acts as a support for pulse two. During engine idles, the

triangle does not trill, but harmonizes a single note in a lower register,

adding a cycling low frequency rumble. During acceleration, the triangle

uses the same arpeggiated sweep to signal increasing speed, but again

forgoes the concluding trill in lieu of a single cycling note. Lacking any

duty cycle switch, the triangle makes no audible change between normal

throttle and turbo, but it does provide an accompaniment to pulse two ’ s

overheating pitch.

 The curious part of the triangle throttling is that it is audibly softer

than the triangle in the intro and track selection song. But knowing that

there is no triangle envelope (i.e., volume) control, how is this possible?

At the output stage, the four waveform channels are sub-mixed into two

groups: pulses are sent to output pin 1, while the remaining three are sent

to pin 2. Summing in this manner has a circuit-level effect that creates

volume output interactions among members of the second group. 36 The

result is that changing parameters on the DMC can affect the noise and

triangle channels, sometimes in creatively useful ways. Feeding the

maximum value ($7F) to the DMC ’ s 7-bit PCM control register, for

instance, decreases both the noise and triangle ’ s volume by nearly fifty

percent. If the DMC is otherwise unused in a track, manipulating its reg-

ister can provide coarse volume control. Several of Nintendo ’ s earliest

titles, including Ice Climber and Clu Clu Land, use this oblique envelope to

step down the triangle ’ s output. Excitebike uses the same technique to

literally throttle the triangle ’ s engine — no surprise, since Nakatsuka com-

posed all three games.

 We might expect noise to pull a lot of weight in a game whose sound

design focuses primarily on engine effects, but the noise channel has

surprisingly little input. A brief burst punctuates lane changes and loops

when the bike skids out of bounds, but noise ’ s primarily role is to Foley

bike crashes. If the racer mistimes a jump, the bike propels through

several uncontrolled somersaults, ultimately flinging its rider to the side

of the course. The crowd then roars as the player taps buttons furiously,

prodding the racer to remount their bike and continue the race. The noise

channel orchestrates the initial crash by cycling rapidly between five of

the lowest noise frequencies ($A-$E), rhythmically decaying the volume

to emulate the bike ’ s circular tumbling pattern. The crowd, in contrast, is

voiced by a single low-frequency ($E) noise loop, sculpted into waves with

a volume envelope that begins low, rises to a peak, recedes, rises to a

second peak, then fades to zero.

 Excitebike is certainly not the pinnacle of 2A03 sound design, nor

even a full exhibition of the APU ’ s features, but it is a remarkable display

[268]

of the chip ’ s versatility and range. Nakatsuka not only crafted three

memorable tunes from a barebones palette, but he reconfigured those

voices to create multi-layered sound effects that both sold the realism of

the race and instructed players through clear audio cues. Jumps sounded

lively, the bike accelerated through multiple sonic stages, and racers

could monitor their engine temperature audibly without constantly con-

sulting the onscreen gauge. Beyond those utilitarian features, Nakatsuka

demonstrated some of the APU ’ s less obvious hardware tricks, using

sweeps for music and manipulating the DMC to affect the triangle ’ s

volume — all merely a year after the Famicom ’ s debut. Innovative com-

posers like Nakatsuka, who were early on establishing the possibilities of

the APU ’ s five channels, presaged a generation of musicians and sound

designers who would drive those basic sounds into previously unheard

territories.

 Making Waves

 Though NES owners were able to play many FDS cross-ports thanks to

cartridge mappers, few ever heard the difference made by one of the Disk

System ’ s lost features: an additional sound channel. Unlike the NES, the

Famicom included a sound-in pin on the card edge connector that per-

mitted external sound to combine with the APU ’ s internal channels. 37

Though developers would later embed audio hardware in cartridges, the

FDS was the first peripheral to contribute a new voice to the 2A03 ’ s stock

ensemble.

 The Disk System did not replicate either of the APU ’ s waveforms.

Instead, it used a rudimentary form of single-cycle wave synthesis that

allowed composers to “ draw ” custom waveforms of any geometry using a

series of sixty-four amplitude steps, each ranging in value between 0 and

63. 38 Sawtooth, sine, and other more exotic shapes were now at the com-

poser ’ s disposal. And since the wave ’ s geometry was stored in RAM, the

program could write and rewrite waveforms as needed. The only limita-

tion was that the wave channel could not be written to and produce sound

simultaneously.

 Despite its inability to multi-task, the wave channel still proved

multi-talented. In Zelda ’ s original disk release, Kondo used three differ-

ent FDS wave shapes in the opening theme, sculpting a unique timbre for

each section of the song. Examining a visual plot of the wave data for each

 “ instrument ” (figure 7.2) illustrates how Zelda ’ s FDS waveforms were

neither pulses nor triangles. 39 But the proof was in the sound: Tone 1 had

a clamped nasal timbre, Tone 2 shimmered like tubular bells, and Tone 3

 7.2 Reconstructions of the three FDS wave data “ instruments ” heard in the opening

theme from Zelda ’ s original disk release.

[270]

had a clear, piercing character that complemented the pulse lead. None

of these sounds were possible on the 2A03.

 The smartest aspect of Zelda ’ s opening theme is how Kondo arranged

the song with voice switching in mind. Minor pauses between the FDS

melodies provide adequate time to write enable RAM (silencing the

channel), load new wave data, then write protect RAM in preparation

to play the next note. Kondo demonstrated that the FDS channel could

output multiple waveforms in a single song with proper compositional

planning.

 Developer SEDIC built an entire game around the wave channel ’ s

switching capability. Despite being one of the Famicom ’ s most creative

aural and visual experiments, the side-scrolling shooter Otocky (1987) is

little known outside Japan because of its dependence on the FDS ’ s wave

channel. Instead of firing bullets, your anthropomorphic spaceship fires

red spheres that snap and return like a yo-yo, useful for both clearing

enemies and snatching items. As you fly, collecting musical note bubbles

fills a bar of eighth notes at the bottom of the screen. Stages loop continu-

ously until the note meter fills and triggers the stage ’ s end boss.

 Bubbles with the letter A or B change the “ instrument ” that corre-

sponds to those buttons. Pressing A fires your spheres, triggering a

musical tone that matches both the rhythm and key of the background

soundtrack. Furthermore, firing in each of eight possible directions

triggers a different pitch. Button B fires several area effect missiles

that produce a percussive rattle sourced from the noise channel. As you

play, you build the game ’ s soundtrack according to your instrument selec-

tion and firing patterns. No two playthroughs sound the same. So while

 Otocky poses as a cartoon shooter, at its core it is a generative music game

presaging titles like Rez , Lumines , and Bit.Trip Runner by more than a

decade . 40

 The FDS wave channel voices all of Otocky ’ s A-button instruments.

Each level has new instruments to collect, and their abbreviated names

are listed in the screen ’ s lower status bar (figure 7.3). The tonal selection

is diverse, including keyboard instruments like electric piano (EPIANO)

and clavichord (CLAVI), orchestral mainstays like viola and oboe, and

even indigenous Japanese instruments like the mokkin xylophone. Limited

to the APU ’ s basic waveforms, such tones would be difficult or impossible

to mimic, but the wave channel handles the game ’ s rich orchestration

with aplomb, shaping waveforms to approximate exotic timbres previ-

ously unheard on the Famicom. Even more impressive is how Otocky ’ s

instrument-switching mechanic transforms a Disk System hardware lim-

itation into an innovative gameplay system.

7 2A03 [271]

 No other FDS games were structured around the peripheral ’ s audio

channel like Otocky . Other developers used the wave channel as a simple

embellishment, an extra voice to either add texture to soundtracks, as

Kondo did, or more often to concoct novel sound effects, as composer

Hirokazu Tanaka did for Metroid ’ s weapons and creatures. The FDS ’ s wave

synthesis was ideal for such extraterrestrial sounds, but outside of first-

party titles, few developers explored the wave channel ’ s creative range.

Mid-song waveform switching was a rarity — most disk composers simply

set a single waveform shape and used it for the entirety of the game ’ s

soundtrack.

 The wave channel lived and died with the Disk System, so the periph-

eral ’ s gradual decline in Japan and aborted launch abroad silenced it for

good. As with bank switching, CHR-RAM, and game saves, the way forward

for augmented Famicom audio was via cartridges. But surprisingly, it

would not be Nintendo, but their third-party partners, who would outfit

mappers with increasingly sophisticated audio circuits.

 7.3 Otocky ’ s generative soundtrack relied on the Disk System ’ s additional audio

channel. (Emulator: FCEUX 2.1.5)

[272]

 Konami FM

 The Konami Virtual ROM Controller VI (or VRC6), developed in part by

 Super C composer Hidenori Maezawa, 41 upped the ante from the FDS ’ s solo

voice, adding three additional sound channels: two pulses and a sawtooth

wave. 42 The benefits were obvious: Konami ’ s composers could thicken the

sound of the game ’ s existing soundtrack by duplicating voices, form more

complex chords without sacrificing other compositional elements, or

reserve voices specifically for music without the need to divert them to

sound effects.

 VRC6, like most advanced audio mappers, was heard in only a few

games. Its most famous use was its debut: (Akumajou

Densetsu), released in 1989. The cart had a monstrous 256KB/128KB

outlay of PRG-/CHR-ROM, in part to support the game ’ s twenty-plus

original compositions. Composers Hidenori Maezawa, Jun Funahashi,

and Yukie Morimoto put both 2A03 and VRC6 through their paces, utiliz-

ing nearly every sound channel in concert to construct a dark, propulsive

score influenced equally by rock and classical music. 43 Konami later

ported Akumajou to the NES as an MMC5 cart, but the console ’ s lack of

external audio access precluded the VRC6 ’ s added channels, despite

MMC5 ’ s native support of three additional audio channels (two pulses

and a PCM). Konami did a fantastic job translating the spirit of the origi-

nal soundtrack, but forfeiting half of its voices dulled the original ’ s

dynamism.

 Despite VRC6 ’ s use in only three Famicom games, Konami developed

a second audio-enhancing mapper called VRCVII (or VRC7). Although

named as if it were a technical successor, VRC7 was actually a scaled-down

derivative of the Yamaha YM2413, a chip that offered six channels of fre-

quency modulation (FM) synthesis.

 FM synthesis traveled a long road from invention to market satura-

tion. Stanford researcher (and accomplished musician) John Chowning

first developed the algorithms driving FM in 1967, then spent several

years refining and expanding their practical application in sound. In 1973,

Stanford licensed the patents to Yamaha, who then worked with Chowning

for nearly a decade before releasing their first commercial FM synthe-

sizer, the GS1, in 1981. By combining two or more operators (Yamaha ’ s

branded term for a sine wave combined with an envelope generator), 44 FM

could produce waveforms with complex overtones unlike any previously

heard in analog synthesis. In its basic form, a modulator operator, acting

as a control signal, was routed to a carrier operator in various frequency

and amplitude ratios. While similar in concept to a traditional LFO (low-

7 2A03 [273]

frequency oscillator), FM differed by allowing the frequency of the modu-

lator to remain in the audible range, which, in combination with

the carrier signal, produced a new, harmonically complex waveform. 45

 Though frequency modulation was possible with analog oscillators,

the rapid advancement of DCOs in the 1980s made the complex mathe-

matics behind FM easier to reproduce and manipulate. At its most inhar-

monic, FM produced uniquely “ digital ” sounds, often crystalline and

exotic, but it was equally adept at representing timbres unachievable with

earlier analog and digital synthesizers, particularly bells, xylophones,

acoustic guitars, electric pianos, and organs. When Yamaha ’ s 1981 adver-

tisement for GS1 proclaimed, “ THE FM STANDS FOR THE FUTURE OF

MUSIC, ” it was remarkably prescient — FM ’ s expressive novelty led it to

become the dominant voice of pop music in the 1980s. 46

 FM had an equal impact on the videogame industry. 47 Arcade, PC, and

console developers began embedding Yamaha ’ s tech in their platforms,

introducing game players both to new alien soundscapes and more

realistic renditions of traditional instruments. The eight-voice, four-

operator Yamaha 2151 (OPM) chip, originally manufactured for use in

dedicated synthesizers, was first heard in Atari ’ s Marble Madness (1984),

but spread to dozens of other arcade titles, including Sega ’ s Outrun (1986),

Taito ’ s Double Dragon (1987), and Capcom ’ s Street Fighter II (1991). In the

console market, manufacturers either released peripherals that upgraded

the sound of existing machines, like the Sega Mark III ’ s FM Sound Unit,

or used FM chips as companion sound processors for newer consoles, as

in Sega ’ s 16-bit Mega Drive. PCs adopted both approaches. Some systems

were upgradeable via cartridges, as in the MSX-Audio standard, or via

sounds cards, like Creative Technology ’ s original Sound Blaster and the

AdLib Music Synthesizer Card. Other systems, particularly Japanese PCs,

had FM built-in, like the NEC PC-8801mkII SR and the Sharp X68000

series.

 While FM exploded the sonic possibilities of synthesis, it was notori-

ously difficult to program. The frequency relationships between carrier

and modulator could create harsh dissonances if not set in the proper

proportions, and the complex math driving waveform interactions was

inscrutable to most musicians. 48 FM did not encourage the same “ turn

some knobs and see what happens ” philosophy prevalent in earlier analog

synthesizers. These difficulties, combined with the cramped LCD displays

of early FM synths that stymied detailed sound programming, had the

potential to dissuade new buyers. Consequently, a distinct shift in syn-

thesizer marketing took place, prioritizing easy access to manufacturer-

supplied sounds above DIY experimentation. 49

[274]

 The Yamaha DX-7, introduced in 1983 and still one of the best-selling

synthesizers of all time, was popular in part for its user-friendly presets.

Its manual touted that it was “ delivered ready to play, loaded with 32

beautifully voiced, useful, factory preset sounds, ” assuring users that,

 “ You don ’ t have to program a thing … unless you want to. ” 50 Musicians had

a library of usable patches pre-programmed into the synthesizer ’ s

memory, leaving the complex math to Yamaha ’ s in-house sound design-

ers. 51 While the early history of analog synthesizers was marked by musi-

cians ’ willingness — by necessity, since there were no presets — to program

their sounds, the era of digital synthesizers evolved into one of factory

presets. The synthesizer with the largest program library and the simplest

user interface stood out in the marketplace.

 Following the industry preset trend, VRC7 had fifteen built-in instru-

ment patches along with one user-editable instrument. While composers

could define up to sixty-four additional instruments to occupy the user

slot, only one user patch could play at a time. In addition to instrument

selection, there were also over two dozen operator-level registers to

control frequency, tremolo, vibrato, key rate scaling, volume, ADSR

values, and waveform type. 52 Despite VRC7 ’ s capabilities being on par with

PC sound cards, Konami only released one game that used FM synthesis,

sci-fi RPG Lagrange Point (1991), which with its host of funky basses,

sparkling chimes, tinny brass, and pizzicato strings, undoubtedly con-

tains one of the richest soundtracks of any Famicom game, rivaling the

FM-driven compositions of the Sega Mega Drive. The icy, brooding

soundtrack sounded unlike anything else on the Famicom, providing the

perfect match for Lagrange Point ’ s far-future deep space setting. But

the VRC7 suffered the same fate as the MMC5 — it simply arrived too late

for the aging Famicom. FM ultimately did stand for the future of music,

but one that would arrive in the next generation of consoles.

 Gimmicks

 Though Namco was best known for their arcade titles, they, like so many

other third-party publishers in the 1980s, wished to tap into the lucrative

Famicom market. Under their rebranded console publishing division

Namcot, the company developed Famicom ports of many of their arcade

games and became one of Nintendo ’ s first third-party licensees to manu-

facture their own cartridges (in Japan). By 1986, Namcot were producing

custom circuitry for carts like Mappy-Land and Family Circuit , eventually

culminating in the NAMCOT-163 (or N163), a custom mapper that pro-

7 2A03 [275]

vided not only an IRQ counter and bankswitching capabilities but dedi-

cated audio hardware as well.

 Compared to other mappers the N163 had the richest polyphony, sup-

porting up to eight channels of single-cycle wave synthesis. 53 But unlike

Nintendo ’ s similar FDS channel, the N163 could produce wave shapes of

variable size — between four and two hundred fifty-six steps in length. 54

However, the N163 ’ s higher channel count came at a cost. Since all eight

channels clocked serially rather than simultaneously, increasing the

channel count required more processing time to cycle between channels.

At the highest channel counts, the switching rate actually shifted into the

audible range, causing the mapper to emit a high-pitched whine. Reduc-

ing the number of enabled channels sacrificed voices but improved audio

quality. 55

 At nine games, Namco ’ s N163 was the best-supported audio exten-

sion besides Nintendo ’ s FDS wave channel. But due to its serial clocking

design, only two games — King of Kings and Erika to Satoru no Yume Bouken —

 used the full channel count. 56 Namco ’ s remaining N163 games used only

half of the available voices, striking a fair compromise between composi-

tional complexity and tonal fidelity.

 Following Namco and Konami ’ s leads, Sunsoft took a crack at their

own custom audio mapper designed for a criminally overlooked plat-

former called Gimmick! , released in January 1992. True to the game ’ s

name, Sunsoft ’ s mapper would follow the third-party trend and appear in

only one cartridge, but the game and its soundtrack were so lovingly and

artfully polished that Gimmick! would become one of the Famicom ’ s true

swan songs. 57

 Gimmick! programmer Tomomi Sakai recruited Sunsoft ’ s top talent to

design the game, but he looked outside the company to find the right com-

poser. Prior to development, he had heard and admired Masashi Kageya-

ma ’ s soundtrack-in-progress for NEC PC-Engine title Out Live , but knew

the transition from the PC-Engine ’ s six programmable wavetable chan-

nels to the Famicom ’ s APU would be a compositional challenge. As Sakai

recalled in a 2011 interview, “ I knew I wouldn ’ t have to worry about the

music quality if Kageyama was going to be our composer, but I had to do

something about the fact that there weren ’ t enough sound channels. That ’ s

when I decided our game would have a built-in sound expansion. ” 58

 The result was the Sunsoft-5B mapper. Like Konami ’ s VRC7, the 5B

was a modification of another popular chip — the General Instruments AY-

3 – 8910 — found in a number of consoles and PCs, including the Intellivi-

sion, Vectrex, Amstrad CPC, and the Sinclair ZX Spectrum. Its additions

[276]

were modest compared to Konami ’ s and Namcot ’ s mappers, augmenting

the APU with three basic pulse channels, a noise generator, and an enve-

lope generator (with ten selectable shapes), though neither of the latter

two features were used for Gimmick! ’ s soundtrack.

 While the trio of pulses was not technologically stunning, they pro-

vided the voices Kageyama needed to create music on par with his PC-

Engine compositions. In a 2011 interview he said, “ I was forced to think

about music as though it were a puzzle. You can ’ t create an awesome-

sounding chord without using all 4 channels. ” 59 With the 5B and APU in

unison — and not counting Sunsoft ’ s trademark DMC bass — Kageyama had

six melodic channels to work with:

 I wanted to break the existing Famicom channels. My goal was to take

what people generally considered to be the sound of the Famicom,

and kick it up a notch. The game served as a testing ground, an envi-

ronment in which I was able to pursue the question of whether or not

I would be able to create awesome music using only a small number

of channels. 60

 Kageyama certainly put his APU/5B duo through its paces. Gimmick! , one

of the few Famicom soundtracks to have titled songs, bounces across

genres like Gimmick on his stars. At times ebullient (“ Good Weather ”),

funky (“ Aporia ”), sinister (“ Paradox ”), melancholy (“ Sophia ”), and

poppy (“ Strange Memories of Death ”), Kageyama composed a seminal

Famicom soundtrack that sounded as if it was meant for a platform from

another era of gaming. 61

 Gimmick! ’ s late release created distribution headaches, as retail

vendors were moving on from the Famicom to focus on its successor.

Sakai recounts, “ At the time, most dealers wouldn ’ t partner with us to

distribute Gimmick! When we exhibited it at places like the Tokyo Toy

Show, people would come up and ask, ‘ Is this game for the Super

Famicom? ’ When they learned it was the Famicom, they ’ d lose interest

and walk away. And there I was, thinking I ’ d get a good response for

making a next-gen game on the original Famicom! ”

 Sunsoft ’ s custom hardware likewise ensured difficulties for a world-

wide release. Ultimately, Gimmick! was only released in one other region,

Scandinavia (PAL-B), as Mr. Gimmick in May 1993. Of course, as an NES

game pak, the game received a mapper downgrade to Sunsoft ’ s FME-7,

identical to the 5B minus the audio channels. As with most NES porting

casualties, Gimmick! ’ s exceptional gameplay survived, but its distinctive

voice was lost.

7 2A03 [277]

 In the modern console era, augmenting audio quality through hard-

ware is a strange notion. Today ’ s machines are more playback devices than

proper synthesizers. Composers create music as they would for an album

or film score, pack the resulting tracks into the necessary format, and

hand them off to the development team. Technical progress has given

composers limitless options for videogame music, but it has also flattened

the distinctions between consoles. The output of the Game Boy, NES, and

Commodore 64 are now subsumed under the chiptune moniker, but the

sonic character of those machines are far more unique than those of

the Xbox 360, PlayStation 3, or Nintendo Wii. Games ported across those

platforms will exhibit visual differences, but their soundtracks will remain

the same. There is no “ sound ” of the Xbox 360 any more than there is a

 “ sound ” of an Onkyo CD player. And the thought of augmenting either ’ s

audio capabilities with special discs is absurd.

 What we have gained in audio fidelity, we have also lost in audio diver-

sity. Today, if you hear a videogame with a chiptune soundtrack, it is not

because its native audio channels are churning out pulses, triangles, and

noise natively. Rather, the composer has made an aesthetic choice, not a

hardware choice.

 .NSF

 How do we listen to 2A03 music free from the conflicts of sound effects,

in-game timers, or prescribed level lengths? Initially, this required help

from the games ’ developers, who would include “ sound tests ” within ROM

to permit arcade technicians to test audio components without playing the

game. As their name implies, most sound tests were meant for diagnostics

only. Like debug modes or infinite lives tricks, the sound test was a special

reward awaiting players who could suss out the special codes or arcane

series of button inputs necessary to unlock them. 62 But only a handful of

Famicom and NES games included accessible sound tests. As a result,

access to a game ’ s soundtrack was contingent upon a player ’ s skill. If

you could not play (or cheat) your way to Dr. Wily ’ s stage in Mega Man , you

would never hear that stage ’ s theme music.

 The 2A03 ’ s integrated design makes song extraction a tricky process.

One cannot simply excavate the APU and feed it data separate from the

CPU. And since audio data is identical to game code, locating music amid

other data requires knowledge of the game ’ s code structure. Ripping audio

is also not as trivial as inserting a disc and pressing an import button.

Even with the necessary tools, the ripped data does little good without the

means to play it back. A string of bytes with no software context are about

[278]

as useful as a CD with no CD player. The fact that most games have custom

sound engines compounds the problem. Imagine if every AAC file pur-

chased from Apple required its own version of iTunes to play.

 In the late 1990s, NES hardware hacker Kevin Horton developed a

2A03 playback device he named the HardNES. Horton ’ s Frankenstein

breadboard included a field-programmable gate array (FPGA) for program

logic, external RAM, a socketed PlayStation memory card reader, audio

amplifier, an EPROM for control code, and, of course, an NES CPU. 63

During playback, an external display output song metadata and displayed

a basic graphic equalizer. Though the HardNES was a hobbyist project

never meant for commercial production, its design has had a longstand-

ing impact on the NES community, but more for its playback format than

its hardware profile.

 In order for the HardNES to play NES tracks, Horton not only had to

rip the relevant data from game paks, but also package that data in a format

the hardware could understand. The result, the Nintendo Entertainment

System Music (NESM) file, contained the audio data, the game ’ s sound

engine, and a header describing the file ’ s contents and memory structure.

Today, NESM is better known by its file extension .NSF, or NES Sound

Format, and it is still the dominant format for encoding, distributing, and

playing back 2A03 music.

 An NSF file requires a prepended 128-byte header, eight times the

length of the iNES header used to format ROM data ripped from a car-

tridge (chapter 8). Though it might seem strange that the header used to

describe an entire game is shorter than that used to encode its audio data,

the majority of the space is filled by three 32-byte strings used to store the

name of the game, songs, artists, and copyright holders, much like the ID3

metadata container used to tag MP3s. The remainder of the header is

more utilitarian, notating the number of tracks, region encoding, any

audio expansion hardware, etc. An NSF file differs from an MP3 in that it

contains the entirety of a game ’ s soundtrack (and sometimes sound

effects), functioning more as a specially formatted playlist than a codec

for wrapping individual audio files. The closest analogy is the .M3U playl-

ist file that commonly accompanies digital albums.

 Horton designed the NESM specification to be simple and expand-

able. And it was — provided you had the ripped data to prepend it to. Horton

provided the wrapper, but it was up to the fan community to fill it with

music. Doing so proved challenging because NES song data is not carefully

cataloged in ROM or arranged according to standardized rules. Each

sound engine might position its data differently according to the needs of

the game, memory limitations, programming style, and so on. Excavating

7 2A03 [279]

the desired data can be tedious work. The ripper must understand the

intricacies of the APU, 6502 assembly, and the basics of program flow.

Equipped with the proper toolset, NSF ripping is a process of informed

detective work.

 To start, knowledge of the Famicom memory map and mapper

behavior helps parse the search into logical structures. For instance, in

cartridge-based games, all program code is mapped to the 32KB of

addresses between $8000-$FFFF. This is a hard architectural limit,

regardless of the mapper or banking structure. If you are searching for

audio in an NROM game, there are only 32,768 possible bytes to sift

through. Mappers complicate matters by swapping in new banks of code

depending on the game ’ s current operations, but most do so in chunks

of either 8KB or 16KB. Subdividing the code into discrete sections sim-

plifies the hunt.

 In some cases, one can make assumptions about data layouts based

on the game ’ s developer, since companies would often reuse sound

engines or follow predictable code organization patterns. Chris Covell ’ s

early NSF ripping guide has one such example: “ Let ’ s just say that the

best-case scenario is many Capcom and Sunsoft games. They have their

music code at $8000-$BFFF, their INIT routine is at $8003, and the PLAY

routine is at $8000. Couldn ’ t be simpler. ” 64 In the Famicom era, when

development cycles were measured in months, code reuse made a lot of

economic sense, especially when multiple concurrent games might share

the same programmer. At Capcom, for instance, Yoshihiro Sakaguchi

developed the audio engine for many of their Famicom titles between 1985

and 1992, including Ghosts ’ n Goblins , Gun.Smoke , and the Mega Man

series. 65 Likewise for Naohisa Morota, Sunsoft ’ s resident sound program-

mer, who developed their audio engine, the Sunsoft DMC bass, and the

5B mapper used in Gimmick! 66 Understanding the company ’ s develop-

ment heritage further simplifies the searching process.

 Once the proper data is located, the ripper specifies three key 16-bit

addresses: the audio data location, the entry address of the audio initial-

ization routine, and the entry address of the audio playback routine. These

addresses vary from game to game. Some developers spread audio data

across multiple banks, making it trickier to compile a complete playlist.

Furthermore, songs are often not arranged in the order they are heard

during gameplay. Purists might prefer their NSF tracklist to match the

data ’ s arrangement in code, but most rippers opt to rearrange the final

NSF according to the songs ’ in-game sequence. DMC samples (or direct

PCM writes) pose additional problems, since samples may be located in a

different part of memory than their accompanying song and may need to

[280]

be manually moved. Other games might use unconventional (or simply

poor) programming techniques to run their audio engines. In short, there

is no one-size-fits-all solution. Each game demands its own ripping

strategy. 67

 One fortunate collateral effect of the community effort to rip every

existing Famicom and NES game was the discovery of unused tracks. As

discussed in chapter 6, the extended memory capacities afforded by disk

cards and hardware mappers led developers to leave behind vestigial bits

of code, unused routines, scrapped enemy designs, programmer com-

ments, hidden messages, and even song data. Some tracks were accessible

in sound tests, but never heard in-game, like Gimmick! ’ s fantastic “ Strange

Memories of Death. ” Games could also lose song data during localization,

where music might be dropped due to a feature deletion (e.g., the name

entry music used in the FDS version of Castlevania), 68 or due to gameplay

structure (e.g., the final eight seconds of a Gremlins 2 track were never

heard because its accompanying cutscene ended before the song ’ s

completion). 69

 The final part of the NSF equation is the player — the software that can

interpret the NSF format and play it back. Based on the target platform, an

 “ NSF player ” can describe many different types of software. Some players,

like Horton ’ s original HardNES, run “ natively ” on the 2A03 but require

custom hardware/software to interpret NSF files, coordinate memory

access, run graphical displays, and so on. Players that run on modern PCs

provide an emulation layer so the original data runs on a virtual imple-

mentation of the APU. Depending on their emulation accuracy, software

players may not replicate APU hardware intricacies like sampling fre-

quencies, mapper audio channels, or PAL timing differences.

 Many early players ran within other digital audio software, like the

popular NotSo Fatso and Nosefart plug-ins for WinAmp. Newer players

run as standalone software, each with its own set of features. Brad Smith ’ s

(aka rainwarrior) Windows application NSFPlay supports extended audio

hardware and includes, among other debugging tools, an excellent visu-

alization tool that maps notes to piano keys as they play in real time. 70

Richard Bannister ’ s Mac application Audio Overload, in contrast, sup-

ports multiple platforms besides the NES and opts for an output waveform

display in lieu of a keyboard. Other NSF players hybridize the chronology

of videogame history, like Mr. SID ’ s NESsivE ATtaCK, which plays back

2A03 audio on the Commodore 64.

 Besides its closer fidelity to the source, the NSF has a clear size advan-

tage versus uncompressed audio formats like WAV and AIFF or even the

lossy compression of an MP3. An online NSF archive of over 1400

7 2A03 [281]

soundtracks, representing nearly every commercial Famicom, NES, and

FDS game produced, fills a mere 30MB, less than the size of most albums

encoded in MP3. In the late 1990s, when high-speed Internet was still at

a premium and consumer hard drives were still measured in megabytes,

the compact NSF format made it much simpler to distribute videogame

soundtracks among the fan community. This same trait would contribute

to the explosion of NES ROM trading discussed in the next chapter.

 Tracking

 In conventional digital audio software, time is plotted horizontally. Audio

and MIDI data, represented by rectangular blocks, are arranged one after

another to play in linear sequence. Blocks stacked vertically belong to

different tracks, which are commonly reserved for a single instrument —

 guitar, snare, vocal — or group of instruments — a string ensemble — so the

engineer can exercise maximum control over their volume, stereo posi-

tion, effects, etc. Blocks stacked vertically can play simultaneously, but

only one sound may play if two blocks overlap horizontally. In other words,

only one sound may play per track at any given time position.

 Digital sequencers are so named for their visual arrangement of

sound blocks. To sequence a song is to put its constituent audio blocks in

the musician ’ s desired order. But despite their digital medium, sequenc-

ers remain closely wed to the recording studio ’ s analog past. Many inter-

face elements are skeuomorphs of the tape machine and its transport

controls, the mixing console, rack-mounted effects units, keyboards, and

other equipment found in real world studios. In the early years of digital

recording, virtual reconstructions of familiar hardware helped ease engi-

neers ’ transition from magnetic reels to disk drives.

 But not all digital composition tools ape their analog predecessors.

Among the chiptune community, specialized music software called track-

ers are generally preferred to commercial sequencers because their func-

tion and design better reflect their targeted platforms. To the untrained

eye, the tracker GUI resembles a complex spreadsheet more than a musical

tool. There are no staves or notes, nor blocks of audio data, merely columns

and rows of letters, numbers, and symbols. Most user interaction occurs

via keyboard shortcuts rather than mouse input. Some trackers lack even

the most common digital audio interface elements, like play or stop

buttons. Their closest analog equivalents are piano rolls, the perforated

paper used to automate player pianos in the early twentieth century.

 In 1987, programmer Karsten Obarski released the first tracker

program, The Ultimate SoundTracker, for the Commodore Amiga. 71 The

[282]

upper half of the screen displayed the myriad rows of controls dedicated

to playback and file management, while the lower half was divided into

five columns, the first showing the song ’ s current position and the

remaining four listing SoundTracker ’ s quartet of supported instruments:

Melody, Accompany, Bass, and Percussions (figure 7.4). The lower

columns were bisected by a horizontal bar that highlighted the play posi-

tion and any notes currently playing on each track. As a song played, data

streamed bottom to top, with the current notes passing through the center

row like mileage on a car speedometer.

 SoundTracker displayed notes, effects, and parameters as alphanu-

meric data within each instrument column, subdivided by note name and

octave on the left and a four-character control parameter on the right.

Pitch, duration, volume, and effects (e.g., portamento, arpeggio, modula-

tion) were all controlled via these two sub-columns. 72

 Conventional sequencers not only proceeded left to right, but also

moved unilaterally. Looping was possible for single demarcated seg-

ments, but it was not possible to, for instance, script the playback head to

loop a two-bar phrase four times, play the following eight bars, return

to the beginning sixteen bars of a song, then skip ahead twenty-four

bars to the song ’ s finale. SoundTracker, in contrast, constructed songs

from patterns — a sequence of sixty-four rows — that could play back in any

order and loop as needed. Looping not only reflected the programmatic

structure of game logic but also fit the repetitious structure of in-

game play. Game composers could not, for instance, reliably predict

 7.4 The Ultimate Soundtracker for Commodore Amiga. (Emulator: FS-UAE)

7 2A03 [283]

how long a player might take to complete a given level. Breaking songs

into small, modular loops not only saved memory, but gave programmers

the flexibility to repeat sections of music for as long as gameplay

demanded. 73

 SoundTracker ’ s four-track layout visually mirrored its platform ’ s

sound architecture. Amiga ’ s Paula chip could output four simultaneous

8-bit PCM channels, grouped in pairs for left and right stereo playback. 74

But rather than synthesizing waveforms internally, SoundTracker was

fully sample-based; Obarski supplied the tracker with fifteen preset

instruments sampled from his Yamaha DX21 FM synthesizer. 75 Though

this limited SoundTracker ’ s sonic palette, packaging the samples with the

program made it simpler to share songs among users. Obarski devised

the module (or MOD) format to store both the sequence information and

instruments in a single file. Packaging this data in tandem made the MOD

file a “ hybrid between pure sample data files such as WAV … and pure

sequencing information files like MIDI. ” 76 Its simplicity and portability

led the format to become one of SoundTracker ’ s (and the Amiga ’ s) most

lasting legacies.

 The SoundTracker disk also included a “ playroutine ” that exported a

song ’ s source for use in demos, intros, and videogames. In the early

history of videogame sound, programmers regularly played the role of

composer due to the lack of native compositional tools. Musicians who

knew assembly and were comfortable composing manually in hexadeci-

mal were rare. Tools like SoundTracker provided a middle ground between

code and composition. The tracker mirrored its underlying platform but

spoke the language of musicians. Melody channels, instruments, and C#4

made better sense than bit shifting, length counters, and indirect address-

ing. SoundTracker ’ s playroutine enabled musicians to write in a more

user-friendly environment, then hand their work off to the programmer

for easy translation to code.

 Unfortunately, SoundTracker ’ s innovations and ease of use ultimately

assured its demise. Within months of its commercial release, hackers

disassembled the program source, expanded its functionality, and redis-

tributed it for free as TJC SoundTracker II. Copies and clones spread

rapidly among the PC demo scene, curbing the original ’ s commercial

success but ensuring the proliferation of its graphical layout, step-

sequencing functions, and file structure. 77

 SoundTracker ’ s close relationship to the Amiga architecture inspired

the tracker format ’ s translation to other platforms. Michel Iwaniec ’ s (aka

Bananmos) NerdTracker 2, released for MS-DOS in 1998, was one of the

first trackers programmed to emulate the 2A03. 78 Though NT2 expanded

[284]

SoundTracker ’ s columnar count to five (each labeled to match the Fami-

com ’ s corresponding channels), provided a robust instrument editor, and

rearranged the GUI, the program ’ s basic functionality was clearly indebted

to Ultimate SoundTracker and its progeny (figure 7.5).

 Two key differences were that NT2 did not run natively on the console

nor did it use samples of Famicom waveforms. Instead, NT2 emulated the

Famicom ’ s APU on a contemporary platform, aiming to maintain as much

fidelity as possible to the source processor while adopting the modern

amenities of a GUI.

 NT2 was a boon for APU-based music. Not only did it free composers

from writing sound engines and composing in hexadecimal, the tracker

could output track data in NSF for easy distribution and listening on soft-

ware players. For composing purists, NT2 files could also export data for

use on a real console, similar to SoundTracker ’ s playroutine. However,

NT2 files were not suited for use as a full-blown sound engine, since they

left no means to include sound effects. NerdTracker projects better

catered to standalone musical projects.

 SoundTracker ’ s platform-native tracking legacy has come full circle

for the 2A03. Composer Neil Baldwin, who wrote standout soundtracks

for NES game paks like Magician and James Bond Jr. in the early 1990s,

now develops homebrew audio tools and instruments that he distributes

 7.5 NerdTracker 2 for MS-DOS (SDL port pictured) adapted the tracker layout for the

Famicom ’ s five hardware channels. Here the tracker is playing Memblers ’ arrangement

of the Gradius level 1 music.

7 2A03 [285]

for free online. His NTRQ tracker runs natively on the NES and replicates

much of the visual style and function of trackers originating in the Amiga

era. What NTRQ sacrifices in user control — one must navigate its interface

using the NES gamepad — it gains in accuracy. Musicians can track directly

on the 2A03 with no intervening emulation layer.

 In subsequent years, more accurate PC trackers have replaced Nerd-

Tracker within the chiptune community. The open source FamiTracker

for Windows is currently one of the most accurate, feature-laden, and

widely used 2A03 trackers. 79 While it adopts the same look and feel of

previous trackers, FamiTracker focuses solely on the Famicom APU and

its associated audio mappers. As of 2014, it supports the five APU chan-

nels, FDS audio, MMC5, VRC6/7, and N163. Additional tools like rain-

warrior ’ s NSF Importer now make it possible to translate NSFs into

FamiTracker data, allowing musicians to dissect, rearrange, and remix the

music of the Famicom era.

 It may seem odd that musicians around the world are now creating

tracks on a thirty year-old Japanese computer using software that owes its

heritage to a European programming scene from the late 1980s, but as we

have seen in previous chapters, the Famicom is frequently the site of these

intersecting cultural and creative histories, absorbing the influence of

unlike platforms to extend and expand its own expressive output.

 Chiptunes

 The concurrent developments of Famicom emulation, the NSF standard,

and APU tracking software has unlocked the 2A03 ’ s potential as a musical

instrument divorced from the context of videogames. In the 1980s, when

composition for videogames became a job in its own right, the men and

women who made music for consoles and PCs were not part of a named

subgenre of electronic music. Furthermore, it is ironic that few of these

composers thought of themselves as electronic musicians. In most cases,

they were trying to replicate conventional popular genres — whether rock,

rap, classical, or jazz — with the buzzing beeping oscillators of a micropro-

cessor. But as years passed, more musicians began choosing composi-

tional platforms based on aesthetic preferences rather than market

preferences.

 Chiptunes developed around musicians ’ desire to explore the creative

dimensions of obsolete chips, whether the 2A03, SID, Paula, POKEY, or

any other number of outdated synthesis platforms. The 2A03 has had a

prominent role in this scene in part due to its versatile range of voices and

unique audio expansion hardware. The Famicom ’ s original composers

[286]

proved that nearly any genre was possible with two pulses, a triangle,

noise, and a simple sampler, and today ’ s chiptune musicians have wrung

more from five channels than Nintendo ’ s engineers likely thought pos-

sible. But the 2A03 ’ s prominence within chiptune music is also a conse-

quence of the Famicom ’ s market dominance, especially in the United

States, where tens of millions of players became accustomed to its sonic

signatures.

 As all genres tend to do as they age, chiptunes now describes a broad

range of approaches to composition. Platform purists continue to use only

the stock or extended mapper voices that were available in commercial

cartridges. Others use emulation to explore impossible combinations of

audio hardware, using the MMC5, VRC7, and N163 in a single track, for

example. Bands like Anamanaguchi or the Depreciation Guild use the

Famicom as the centerpiece of a traditional rock ensemble, layering

guitars, drums, and vocals atop the 2A03 ’ s chirps and squeals. Other

artists use chiptunes as a stylistic reference, evocative of a particular genre

or era of videogames, regardless of whether any actual chips were

involved. 80 Synthesizers are chosen according to their affinity to the

2A03 ’ s sound without necessarily adhering to its architectural limita-

tions. Though the lauded 2012 soundtrack for Fez is categorized as “ 8-bit ”

and “ chiptune, ” for instance, artist Disasterpeace did not use NES hard-

ware, opting instead to compose with software synths that evoke its dis-

tinctive timbres. 81

 For those musicians still attracted to the 2A03, why choose such

harsh, arbitrary restrictions when the options for synthesis are now virtu-

ally limitless? Driscoll and Diaz ’ s astute history of chiptunes elicits a

number of answers from its artists, ranging from cost to technological

curiosity, alongside a detailed analysis of the genre that “ draws on the

interrelated histories of home computing, video gaming, bulletin board

systems (BBS) and Internet communications, and electronic music. ” 82

The authors ultimately argue that a more performative, even incantatory,

fusion of nostalgia and cultural memory drives chiptune music:

 Contemporary chiptune artists wield their repurposed gaming hard-

ware in a ritual attempt to activate the personal attachments that

many young people have formed with these objects. Artists whose

compositions might fall into other genres distinguish themselves

from performers who use a laptop or a sampler by deploying familiar

but seemingly childish pieces of technology in a highly visible and

surprising way. 83

7 2A03 [287]

 Nostalgia is certainly a powerful motivating factor. Driscoll and Diaz

rightly wonder whether chiptunes will die with the generation that grew

up with them, as 2A03 music is evocative not only of its own technological

underpinnings, but of a specific era of videogames. Listeners with an

affinity for that era do not solely hear the chiptune artist — they hear pleas-

ing echoes of Super Mario Bros. , The Legend of Zelda , and Mega Man. Through

chiptunes, their personal aural histories are reenacted in endless

variations.

 Nintendo understands this better than anyone. The Famicom ’ s legacy

is perpetuated as much through its music and sound effects as it is through

its characters and graphical style. The APU ’ s influence resurfaces yearly

in modern sequels to Nintendo ’ s Famicom hits. Collecting coins in Super

Mario 3D World (2013) still triggers a jingle nearly identical to the pulse

wave heard in Super Mario Bros. , despite the nearly three decades that

separate them. As platforms change and sound processors refresh, the

2A03 ’ s sonic legacy is perpetually born anew.

 But nostalgia cannot account for all chiptune artists, especially as new

musicians, who were too young to experience the Famicom or NES first-

hand, join their ranks. Paradoxically, in the limitless field of contempo-

rary electronic music, constraints become liberating. Artist nullsleep,

one of the chiptunes scene ’ s stalwarts, describes the appeal:

 Chip music has kept me interested for over 10 years now because

I feel like there is still a lot left to explore. I ’ m very interested in

the themes of appropriation and limitation, which are important

aspects of this form of music … I like the idea of taking these old video

game consoles and repurposing them as cheap synthesizers and

sequencers — totally subverting their original commercial intent. The

fact that this early generation of hardware was quite technically

limited also has its appeal. I think that working within those limita-

tions can actually help focus and foster creativity. 84

 In the same way that an 8x8-pixel tile can distill an animated character to

its essential qualities, five channels of limited flexibility can establish

rigid parameters for creative exploration.

 Nullsleep also acknowledges a subversive quality to chiptunes, a

resistance to the dominant rhetoric of technological progress and genera-

tional strata that drives videogame history. Markets may declare a plat-

form obsolete, a generation over, a chip outdated, but artists can reclaim

the market ’ s trash as new creative treasures. In part, chiptunes ’ thriving

[288]

culture expresses platform studies ’ latent optimism. The Famicom has

been abandoned commercially, replaced by decades of processor improve-

ments, but its function as a creative tool remains undiminished. The study

of obsolete consoles is often fueled by misguided nostalgia, but the desire

to probe the boundaries of computer hardware is not limited to childhood

fascination or a self-conscious quotation of the “ retro. ” The Famicom is

not exhausted. Neither is the Amiga, nor the PC Jr., nor the PC-8801, nor

 Pong . We have not yet begun to understand these machines. They are

complex, living objects. No amount of reverse engineering can master

them. Decades past their death, they continue to speak, think, and sing.

 SIM-U-LATE vt : to pretend, feign.

 EM-U-LATE vt : to equal.

 — Hewlett-Packard Journal , October 1980

 Emulators herald the end of the era of the proprietary video game

console because they render such dedicated gaming boxes technically

superfluous. Emulation programs improve, PC hardware technology

advances relentlessly — and the notion that games must be played on

the console hardware for which they were developed is becoming as

antiquated as an old Atari game system.

 — Howard Wen , Salon.com , 1999

 Since the early 1990s a subgenre of play called speedruns has tested the

limits of videogame skill, performance, and technical mastery. The aim

of the speedrun is to play a game as quickly as possible, by any means

possible, short of cheating, passwords, or other “ non-diegetic ” exploits.

Games that might take an average player tens of hours are reduced to an

hour or less. Notoriously challenging NES games like Contra or Ninja

Gaiden are completed in mere minutes. 1

 In 2003, speedrunner Morimoto posted a virtuosic eleven-minute

run of Super Mario Bros. 3 , 2 executing a flawless demonstration of Mario ’ s

platforming prowess. And he did so with style — during the airship por-

tions of the game, where the scroll speed is fixed, Morimoto danced

 8 Tool-Assisted

[290]

around the screen effortlessly, weaving through cannon fire, shifting

platforms, and spinning wrenches. Viewers marveled at Morimoto ’ s skill.

The run seemed too good to be true. And it was — Morimoto had used the

Famtasia NES emulator to seamlessly splice small segments of gameplay

into a masterfully scripted performance. 3

 The discussion surrounding the “ falsity ” of Morimoto ’ s run publi-

cized an emerging split within the speedrun community: the purists on

one hand and those assembling tool-assisted speedruns (or TAS) on the

other. Though the “ tool-assisted ” moniker, like “ speedrun, ” originated

among Doom ’ s high-level players, it quickly flourished in console emula-

tion communities, describing any run that leveraged the features of an

emulator to complete games in the fastest possible time. 4 With newfound

software assistance, the TAS opened up exciting possibilities for speed

improvement. One of the first websites to host such performances, TAS-

Videos, describes the practice succinctly in their site header: “ Tool-

assisted game movies. When human skills are just not enough. ”

 Compare their motto to that of the long-standing “ unassisted ” speed-

run community site, Speed Demos Archive (SDA): “ Playing through

games quickly, skillfully, and legitimately. ” SDA does not allow the use of

emulators, primarily due to their ability to slow games to individual

frames, manipulate input piecemeal, and replay performance segments

at normal speeds. They also cite technological consistency as a competi-

tive flaw, since “ most emulators and virtualization programs have minor

inaccuracies in timing and slowdown that prevent accurate comparisons

between runs. ” 5 Unassisted speedruns are akin to rigorous athletic or

musical performances, structured around exhaustive practice, minor

tweaks to form and execution, and subtle aesthetic flourishes. Competi-

tors will undergo intensive practice regimes, playing games hours a day

for months or years to work up a record speedrun. Improving the world-

record run for popular contested titles is like Olympic competition in the

100m dash — a game of tenths of seconds. The fastest Super Mario Bros. run,

for instance, has improved by thirteen seconds between 2004 and 2014. 6

For SDA, these acute thresholds of performance require standards to

ensure fairness for all competitors.

 The TAS, in contrast, is less about the perfection of physical perfor-

mance and reflex than it is about entertainment and technical virtuosity,

propelled by meticulous observation, code study, and trial and error.

Games are run and rerun between thousands of manual save states until

the runner discovers the optimal time-saving sequence of key presses.

Code and hardware are scrutinized to reveal any exploits, glitches, or pro-

grammer errata that might improve the assembled run. Often physically

8 Tool-Assisted [291]

impossible key presses (e.g., up and down simultaneously) or “ luck

manipulation ” — understanding the underlying algorithms that manifest

as “ random ” events, like beneficial item drops — produce speed gains

achievable solely beyond the realm of human skill. Performance times are

no longer measured in human scale but in microprocessor scale, down

to the individual rendering frame, and runners adjust their language to

reflect the difference (e.g., “ I saved a few frames with this run ”). TASVid-

eos encourages moviemakers: “ Probe the game. Try, observe, and learn

how it calculates things, and use the data to your advantage. Remember,

it is only a computer program, and computer programs are predictable. ” 7

At this level, there is an unparalleled intimacy of play between human and

machine. Together, tool and flesh choreograph an elegant mastery of code.

 TASVideos acknowledge the accuracy concerns underlying SDA ’ s

prohibition of emulators by restricting their movies to an approved list

of emulators. As of 2014, the site recommends BizHawk, an emulator

that focuses on “ core accuracy and power user tools while still being an

easy-to-use emulator for casual gaming. ” 8 A TAS is about the mastery and

manipulation of a game ’ s rules, not the exploitation of an emulator or a

deliberate alteration of the game ’ s source code. Traditional and tool-

assisted runs are similar in this regard: glitches are acceptable since they

exist within the game ’ s designed rule set (whether explicitly intended by

the game ’ s programmers or not), but cheat codes are generally verboten.

An equivalent board game analogy for Monopoly would be using a consen-

sual house rule like stacking fine money in a central pot vs. photocopying

your own bills to slip into your personal cash supply. Ethical regulations

like these date back to the original Doom speed demos, which allowed

external tools like slow motion or segmented recording, but not the

in-game “ godmode. ” 9 In practice, it is a rather fine-grained distinction.

According to SDA:

 Using glitches is simply trying to use whatever is within the rules of

the game to your advantage. When you use a cheat device or outside

alteration, then you’re breaking the game ’ s rules. As for cheat codes

and debug codes, they differ from glitches in being intentionally pro-

grammed, so they are naturally outside the rules of the game as

defined by the designers. 10

 Compare this to TAS ’ s more flexible policy:

 If the key sequence is mentioned in the manual as a normal means of

playing, it is (usually) allowed. Additionally, continues used in arcade

[292]

games bought through the use of coins is considered similar to a cheat

code, as it provides advantage to the player, and goes against the

typical concept of a TAS. These rules are not strict, but are motivated

by the same concept as the guideline that says you should play on the

hardest diffi culty. 11

 The guideline referenced above emphasizes entertainment, an important

distinction between traditional and tool-assisted speedruns. The TAS is

meant to be compelling to watch. Even if a game is popular or challenging,

a rote execution of skill might be boring for the viewer. Though speed is

the preeminent concern, it may be sacrificed in exchange for entertain-

ment. The governing guideline is to keep it interesting. And “ guideline ”

is the operative word, since all of TASVideo ’ s suggestions for producing

entertaining movies are cordoned to their own section, separate from the

more stringent rules. For SDA, speed is king and that overarching mandate

is stated clearly in their rules: “ We only publish the fastest runs submitted

to us. Players are expected to use every method at their disposal, including

glitches, to minimize time; side issues such as entertainment are

secondary. ” 12

 The speedrun has now gained widespread recognition among gaming

communities, so much so that speedruns are often built into videogames

as supplementary challenges. This runs the gamut from big-budget, big-

studio releases like Grand Theft Auto IV , which includes an achievement

for completing all story missions under thirty hours, to independent titles

like Braid, which includes an achievement called “ Speed Run ” for com-

pleting the game in less than 45 minutes. There were precedents for

speedy play before “ speedrun ” was coined — Metroid ’ s best ending was only

unlocked by completing the game under an hour — but it is now established

as a legitimate means of play external to any in-game reward. A side

benefit of mainstream attention has been a renewed interest in legacy

games and an accompanying rise in the accuracy and features of emulators

for myriad systems. Emulation is now a major part of how many people

play games, whether they know it or not. Commercial ventures like Nin-

tendo ’ s Virtual Console hosts emulated versions of several hundred

vintage games for play on their Wii and DS consoles. Curated collections

of arcade games like Midway Arcade Treasures use an emulation layer to

package games for playback on modern consoles. Those willing to delve

into legal gray areas can find torrents of every NES, SNES, and N64 game

bundled alongside their respective emulators or simply visit a site that

allows them to play vintage games through an in-browser emulator.

8 Tool-Assisted [293]

 But despite emulation ’ s ubiquity, few have explored its history, nor

its relationship to how we interpret platforms. So before we delve further

into emulation ’ s role in present-day play, we need to rewind several

decades to the birth of emulation and uncover its early influences on our

contemporary understanding of the term and its uses.

 The Conversion Problem

 In the 1950s, IBM was in a transitional period. Rapid developments in tube

and transistor technologies were antiquating their electro-mechanical

punched-card machines, then widely used for military, business, and sci-

entific applications. But obsolescence was born from within: IBM was

cannibalizing the “ old-fashioned ” data processing industry they ’ d helped

create with a new, modern successor: the computer industry.

 IBM ’ s growth in the 1940s and 50s was overwhelming. Their initial

line of vacuum tube computers were so popular and technology was moving

so fast that they were continually churning out hardware revisions to keep

in pace with both market demand and engineering breakthroughs. Unre-

lenting innovation was great for new buyers, but it left existing customers

in the lurch. 13 Early computers were custom-configured to both their

price segments (e.g., high-, mid-, low-cost) and their industry-specific

applications (e.g., military, business, scientific), with no system of stan-

dardization in place to transition between old and new machines. As IBM

stretched out to wider markets, product diversity became unwieldy, while

existing customers found it difficult to upgrade to better computers absent

any compatibility solution. Imagine spending hundreds of thousands of

dollars on a custom-configured computer, adapting your business to its

unique idiosyncrasies and resource demands — including new staff to

program, run, and maintain it — then repeating that process from scratch

when a newer model came along. What would compel you to upgrade? Or

worse, compel you not to switch to a competitor ’ s product? IBM knew this

was a serious challenge to their long-term growth. 14 They had to cater to

the conflicting demands of established customers on one hand and rapid

innovation on the other.

 By the early 1960s, IBM had reorganized internally to reflect its

diverging interests: its punched-card and early vacuum tube machines

were cordoned into the General Products Division (GPD), while its more

recent (and future) computers fell within the Data Systems Division

(DSD). Though there was frequent cross-pollination of engineers between

divisions, each was responsible for its own profit quotas. Naturally,

[294]

rivalries formed around competing ideologies: the GPD reflected IBM ’ s

heritage, along with the bulk of its profits, while the DSD represented its

uncertain future — a future meant to obsolete and replace the products of

the GPD. As new or revised products were introduced independently in

each division, internal schisms increased, with no clear solution to the

diversification problem.

 In late 1961, IBM established a task force dubbed SPREAD (Systems

Programming, Research, Engineering, And Development) to stem inter-

divisional conflict and propose a new, ambitious goal for their corporate

future. Members of both divisions were tapped to outline a plan for a

company-wide, unified line of computers. The market was shifting and

IBM had to adapt or otherwise lose their competitive edge. Adaptation

meant a more flexible, unified computer architecture, as Pugh et al. explain:

 With each processor a member of a graded, compatible line, proces-

sor capabilities could not cater to a particular application class. A

looming question was whether the observed differences between

business and scientific applications truly demanded differing pro-

cessor instruction sets for cost-effective performance. Contemporary

products … while still manifesting either a business or scientific

emphasis, were tending to blur some of the distinctions evident in

earlier products. Customers increasingly seemed inclined to serve

both an accounting office and an engineering department with a

single computer facility. 15

 SPREAD ’ s work was prescient. They tackled not only the pressing eco-

nomic realities of IBM ’ s long-term growth, but a number of fundamental

computational problems that we now take for granted, from the use of a

stack architecture to the bit length necessary to encode characters for

a full alphanumeric set (they wisely chose eight bits versus six). In the

end, SPREAD drafted a proposal that outlined their recommendations

for IBM ’ s New Product Line (NPL) alongside its potential strengths and

weaknesses. 16

 IBM introduced the resulting product family, the System/360, in

1964. True to the foresight of the SPREAD group, a large part of the NPL ’ s

eventual success (and long-term legacy) was program compatibility across

all System/360 models. 17 Of course, compatibility was only useful for cus-

tomers once they had bought into the new product family. SPREAD ’ s

report advised about a serious complication, the so-called “ conversion

problem, ” a need to translate programs from old machines to the newer,

now radically different, architecture. Conversion was time-consuming,

8 Tool-Assisted [295]

costly, and error-prone, and it had to be done without grinding their

customers ’ businesses to a halt. Customers that now relied on computers

for their day-to-day data processing could not cease operations while a

new system was put in place. Likewise, it was not reasonable to expect

customers to jettison the sizable investments they had already made in

programs and programming costs.

 The conversion problem was not new. Its specter had haunted IBM ’ s

engineers for several years prior to System/360s introduction, with no

real comprehensive solution. One avenue was semi-automatic conver-

sion, wherein software would perform an instruction-by-instruction

translation from the old architecture to the new, which would then be

pruned and edited by a human programmer. This turned out to be opti-

mistic vaporware — no one had actually built such a program. And beyond

the challenges of devising and implementing it, the number of personnel

hours necessary to provide support and documentation were quickly

deemed impractical.

 Simulation was another avenue. The process was essentially mimetic —

 the simulator machine stored a program that mirrored both the functions

and components of the simulated machine:

 The first processor ’ s memory contained not only the simulator

program but also areas used to represent registers and memory of the

other. The area representing the other processor ’ s memory was ini-

tially loaded with the application program. Then one of the simula-

tor ’ s subroutines would fetch an instruction from simulated memory,

analyze the instruction, load simulated registers, and then branch to

another subroutine designed to simulate execution of the given

instructions. 18

 Though simulation was a proven conversion technique, it was unreason-

ably slow. Simulation was not a one-to-one translation, but one-to-many.

The simulation program not only allotted resources to imitate the target ’ s

memory area, but also stored the simulation program itself. Executing a

single instruction on the simulated machine resulted in multiple instruc-

tions running on the simulator (the “ fetch, analyze, load, branch ” steps

quoted above). Any multiplication of necessary instructions meant a sub-

sequent increase in execution time. Simulating computers with similar

architectures could mitigate instruction proliferation, but even in the best

case scenario, simulated programs ran forty times slower. 19 In the early

1960s, the net effect of simulation ’ s performance hit was measured in

minutes rather than microseconds.

[296]

 In summer 1963, IBM engineers Stuart Tucker and Larry Moss devised

a novel solution to the conversion problem. A late addition to the NPL

spec granted its hardware some excess space in the control store, a high-

speed area of read-only memory dedicated to running microcode. Micro-

code is different from the source code we typically associate with

programming, typically the domain of high-level languages like C++,

Perl, or Java. The term microcode was given its prefix due to its close

relationship to the microprocessor, at a scale of intimacy beyond even

low-level languages like assembly. The control store was devised in the

early 1950s as a means to implement circuit-level control of the CPU —

 logic gates, voltage fluctuations, etc. — in a more flexible and program-

mable memory store. Writing routines in the control store was called

microprogramming — similar to programming, but at a more fundamental

level. 20

 Tucker and Moss used the NPL ’ s expanded control store to implement

several dozen microprogrammed instructions customized for conversion.

Their microcode, running in conjunction with a simulator and a few spe-

cialized circuits, decreased conversion speeds dramatically. So dramati-

cally, in fact, that their emulation was practically indistinguishable from

a program running on the original machine, save for the fact that it often

ran faster on the new host. The engineering team ’ s efforts effectively

updated a legacy program ’ s performance to levels beyond its native hard-

ware. The novelty of reversing the conversion problem was not lost on

Tucker and Moss:

 [They] deemed the new combination of software, microcode, and

hardware sufficiently different from a conventional simulator to

merit a new name. [Moss] suggested emulator, a word whose root

goes beyond the notion of imitate to embrace “ equal ” or “ excel. ” An

emulator came to consist of two entities, a software part and a proces-

sor part (the latter being microprograms and special circuits) called

the compatibility feature. 21

 Tucker published his and Moss ’ s work in the 1965 article, “ Emulation of

Large Systems. ” 22 There he outlined previous attempts at conversion,

from simulation and translation (i.e., automatic conversion) to repro-

gramming (what we would now call porting). And each, in turn, was dis-

missed for its inefficiencies. Emulation turned out to be the best solution

to the conversion problem primarily because it cherry-picked the best

bits of prior failures. Simulation, for instance, was used as a hardware

 “ diagnostic ” step, highlighting any trouble spots that might hamper

8 Tool-Assisted [297]

performance. Those wrinkles were ironed out manually, with specialized

microcode or hard-wired “ transistor logic. ” In other words, there were

elements of automated machine analysis and human revision working in

unison at all levels, from circuits to the control store to programmed

software.

 Four points are important to emphasize in the early history of emula-

tion: first, the original conception of an emulator was a hybrid solution,

involving both software and hardware, that harnessed the advantages of

previous unsuccessful strategies; second, emulation differed from simu-

lation by exceeding the simulated source; third, IBM devised emulation

for use in its own hardware, not its competitors ’ machines; and fourth,

emulation was not devised in the PC era. Emulation developed concur-

rently with the computer industry, in the era of “ large systems, ” and was

essential for its continued growth.

 Machines That Do Not (Yet) Exist

 Today, in the context of videogames, we think of emulators as software-

based solutions. Nestopia or Nintendulator do not require custom-

soldered transistors or special graphics cards to emulate NES games. They

run alongside other applications, like word processors or web browsers,

but load ROM images rather than text or HTML files. Likewise, emulators

are not constrained to a particular operating system, nor even PCs. NES

emulators run on nearly every operating system since the mid-1990s,

from MS-DOS to Linux, and most consoles, from Sony ’ s PSP to Ninten-

do ’ s own Virtual Console on the Wii.

 Conceptually, software emulation is as old as the original “ hybrid ”

solution. Tucker hinted at the possibility of pure microcode emulation

only a few paragraphs after he coined the term, writing, “ Although all the

functions could be handled with only microprogramming, a significant

speed advantage is gained by adding some transistor logic. ” 23 The primary

obstructions for IBM ’ s engineers were logjams in processing speed. Until

CPUs became faster, dedicated transistors would prove more capable.

 After a few years, Moore ’ s Law transformed theory into reality. In

1969, computer scientist Robert Rosin published an article on emulation

that divested the term ’ s definition of any reliance on supplementary

hardware:

 [W]e use the term “ emulator ” to describe a complete set of micropro-

grams which, when embedded in a control store, define a machine.

We shall call a machine which is realized by an emulator a “ virtual

[298]

machine ” and the machine which supports microprograms a “ host

machine. ” 24

 Rosin ’ s conceptual divergence had two key implications. First, it reframed

emulation as a theoretical and practical concern outside the scope of a

single corporation. Rosin ’ s footnote to the quote above specifically men-

tions Tucker ’ s earlier paper but points out that the latter ’ s definition is

 “ reflected in the products of the IBM Corporation, ” while “ several other

manufacturers appear to use the term as defined in the present paper. ”

Rosin was an academic rather than an IBM employee, so his research was

not geared specifically to the success of a product line. Second, it abstracted

the native platform from its roots in circuits and registers to a machine

defined solely in code. Though emulation in the late 1960s was still in the

realm of microcode rather than high-level languages, the conceptual

break was already taking place.

 As “ virtual machines, ” emulators could take on all the connotations

of the term: idealized, practical, imitative, “ close enough. ” Even immate-

rial. A virtual machine was an abstracted machine; hardware could be

represented in code prior to its physical instantiation. In practical terms,

a programmer could configure, test, and modify a computer that had not

yet been built. In 1978, Marsland and Demco published an article on the

PDP-11 ’ s (a microcomputer popular for educational, scientific, and busi-

ness use) potential as a “ universal ” emulator that could support multiple

architectures. Besides the obvious advantage of running programs from

several legacy mainframes on a single host, they listed a number of other

appropriate cases for the use of emulation. Among them:

 (1) The confi guration of the target machine is too small for software

development. During such development the emulator could provide

extra assistance in the form of better debugging aids, larger virtual

machine, and access to the host ’ s peripherals.

 (2) The target machine does not (yet) exist. 25

 These two use cases are particularly pertinent to the development of vid-

eogame hardware, especially in the Famicom era.

 When new consoles are in development, they begin as a set of speci-

fications, usually built to suit a specific software profile. In Nintendo ’ s

case, they aimed to build a console capable of playing Donkey Kong (chapter

1). As the realities of cost, speed, and industrial design came to the fore,

concessions had to be made: the Z80 core was swapped for a 6502, con-

trollers were connected directly to the board, the keyboard peripheral was

8 Tool-Assisted [299]

dropped, and so on. Meanwhile, software had to be developed while the

hardware design was still in progress. Otherwise, no games would have

been available for console launch. Early photos of the Famicom prototype

show bare metal chassis, one each for the CPU and PPU, slotted with large

circuit boards. But this is not the hardware Teiser and his fellow Atari

executives saw during their visit, since Nintendo “ had only just received

their 1st pass silicon (with some bugs) and were not able to show us a fully

assembled and working prototype. ” 26 Instead, early versions of Donkey

Kong Jr. and Popeye were demoed “ on their TTL emulator. ” In other words,

Famicom emulation preceded the Famicom console.

 Consistent with Marsland and Demco ’ s first case for emulation,

the memory constraints of consoles necessitated software development

on virtual systems. Today, most consumer PC software is developed on

the same hardware that runs it. Mac developers use Macs to develop

software that will run on other Macs. Likewise for Windows or Linux

developers. 27 Console development requires a different strategy. Typi-

cally, development studios license “ dev kits, ” specialized hardware whose

architecture, in concept, mimics the Tucker-style emulator. But consoles

of the 1980s rarely had an operating system, firmware, or BIOS. 28 Thus

console videogames could not be developed on the consoles that played

them.

 Early Famicom games, for example, were developed by Nintendo on

the NEC PC-8001, 29 a popular, Z80-based Japanese PC launched in 1979.

Later in the Famicom ’ s life-cycle, separate systems were used to create a

game ’ s assets. Photos from a 1989 Japanese educational text show Nin-

tendo employees working on level layouts, graphics, and code for Super

Mario Bros. 3 . 30 The graphics designers used Fujitsu FM R-50s, a DOS-

based business PC released in 1987. The programmers were relegated to

more antiquated fare: the HP 64000 Logic Development System, first

introduced in 1980. 31 The HP mainframe allowed up to six developers to

work on a shared network without the constraints of conventional time-

sharing systems — each work terminal had its own processor and memory.

The HP also included an “ emulator pod ” with a socket to host interchange-

able target processors, including the 6502. Programmers could write,

debug, and even download their code to physical ROM, since each termi-

nal had a “ PROM personality interface unit, ” a friendly marketing name

for a built-in ROM burner. 32 They could then socket the ROM into a car-

tridge and test their code on a Famicom. Again, emulators like the HP

64000 were not simply replicating, but also augmenting their target plat-

forms. Not equal, but better — a relationship that persists into the modern

era of console emulation.

[300]

 Console Emulation

 In the home videogame market, the conversion problem took a different

cast. In the early 1980s, most manufacturers had only introduced a single

cartridge-based console. As Fairchild and Atari discovered early on, it was

cheaper to mass-produce individual ROMs in plastic cases than to manu-

facture the games and their hardware in a single package. The transition

from single-purpose to cartridge-based consoles, meant to ease both

manufacturing costs and consumer investment, developed into a conver-

sion problem known by another name: backward compatibility.

 The backward compatibility problem arises during the technological

shifts that take place as consoles are retired in favor of new machines.

How might console manufacturers encourage consumers, some of whom

had invested a lot of money in building up a software library for the current

console, to upgrade to a newer system? And should they help ease the

transition by developing some hardware or software means to play their

back catalog on new consoles?

 For many console generational shifts, the answer to the second ques-

tion has been no. Manufacturers presume that consumers buy new con-

soles to play new games. Those who wish to play older games must keep

obsolete consoles operational. Nintendo in particular has taken this

approach numerous times: the Super Famicom could not play Famicom

games, the Nintendo 64 could not play Super Famicom games, and the

GameCube could not play N64 games. Prior to the Wii, Nintendo ’ s com-

patibility exceptions were either in the portable domain (e.g., the original

DS played GBA software) or in odd lateral hardware support, such as the

Super Game Boy, a peripheral that not only supported Game Boy games

on the Super Nintendo, but added limited colorization, sound, and two-

player functionality.

 Part of the reason for lack of backward compatibility was the early

consoles ’ limited processing capabilities. Though the Super Famicom ’ s

5A22 microprocessor was nearly twice the 2A03 CPU ’ s speed, it still could

not fully emulate the NES. Similarly, the Super Game Boy only managed

backward compatibility via piggybacked hardware — the full Game Boy CPU

was housed in its cartridge adapter. And Nintendo was not the first to

adopt this strategy for cross-console compatibility. The 1983 version of

the VCS successor, the Atari 5200, was revised for compatibility with the

CX-55 VCS Cartridge Adapter, an unwieldy bit of kit that allowed 2600

games to play on the newer console. The CX-55 was a reactionary move on

Atari ’ s part, in response to competitors Coleco and Mattel releasing their

own 2600-compatible hardware, the Expansion Module No. 1 and the

8 Tool-Assisted [301]

Intellivision System Changer. In a 1983 Mattel catalog, Atari owners were

reassured that they could “ finally upgrade to Intellivision, without leaving

all their Atari 2600 cartridges behind. ” 33 Providing backward compatibil-

ity for one ’ s rivals was a litigiously risky move, one rarely repeated in

console videogame history without preemptive licensing agreements. 34

 The Sega Genesis supported compatibility for Master System games

with the Power Base Converter. Unlike Atari or Nintendo, Sega benefited

from the foresight to embed the Master System ’ s Z80 and sound processor

into the Genesis itself. Similarities in the two consoles ’ VDPs allowed the

newer system ’ s chip to stand-in for the elder system ’ s graphics processor.

As a result, the Power Base served primarily as a pass-through device to

rectify the cartridge mismatch between Master System games and the

Genesis cartridge slot — the heavy lifting was done onboard.

 Many of these examples straddle the line between Tucker-style emu-

lation and so-called “ clone ” systems. Often the host console did not

shoulder any of the emulation weight, but acted as the I/O and video pro-

cessor for a parasitic platform. The Intellivision certainly could not bear

the processing burden of emulating the VCS, so its System Changer

included a 6507 replica built from “ off-the-shelf ” components, at least

according to Mattel ’ s counterclaim to Atari ’ s threat of litigation.

 Contemporary consoles are powerful enough to emulate their ances-

try in software alone, though they still leverage hardware solutions for

certain cases. Nintendo ’ s Virtual Console on the Wii offered an assort-

ment of NES, Super Nintendo, and N64 titles as well as offerings from

prior rivals Sega and NEC. GameCube support, however, was handled

similarly to the Power Base. Initial versions of the PlayStation 3 offered

hardware-level support for the PlayStation 1 and 2 library, but later ousted

the latter in favor of software emulation — a decision advertised as cost-

related but certainly motivated by the bevy of HD “ remasters ” of PS2

software that soon followed.

 Microsoft ’ s Xbox 360 was one of the rare consoles to opt completely

for software emulation. Microsoft rolled out this support incrementally,

picking and choosing backward compatibility based on the most popular

and/or demanded Xbox titles, eventually supporting several hundred

games. Their Xbox Live Arcade (XBLA) service has also seen a diverse set

of emulated ports spanning console and arcade generations from the Atari

VCS to the Sega Dreamcast. Most notably, the abandoned Game Room

service, a downloadable simulacra of a personalized arcade (including

virtual quarters for purchase), emulated a host of VCS, Intellivision, and

arcade titles. Though contemporary emulation offerings appear to mimic

the cross-compatibility tactic of the Expansion Module or System Changer,

[302]

note that all of these services emulate competitors who are no longer

active in hardware manufacturing. Sega and Atari are fair game for virtual

consoles, but you will not find a first-party Nintendo property on a Sony

console.

 Split Format

 The aim of console emulation is simple: to allow users to play game soft-

ware from a given platform with the closest approximation to the original

experience as possible. In all cases, perfect accuracy is the driving design

goal, but in practice, perfect emulation is nearly impossible to achieve.

Emulation is not solely a matter of replicating the target console ’ s CPU,

but also any additional co-processors, I/O devices, lower level instruction

sets, and so on. In the Famicom ’ s case, that means the CPU, PPU, APU,

controllers, light gun, and any number of peripherals, from the FDS to

the Game Genie. Each of these core and ancillary components are neces-

sary for complete and accurate emulation.

 For the needs of most players, low-overhead emulators that play

most popular games with reasonable accuracy are fine. Small glitches

or color inconsistencies are acceptable to (or go unnoticed by) most

players, so long as the overall look and feel of the original game are

intact. For the TAS community, there are more stringent requirements

that most players would never notice, like cycle-accurate CPU timing

and frame-level control. But higher accuracy comes with a concomitant

increase in processor demands, especially if the emulation is purely

software-based. Emulation is a constant balancing act between speed,

allegiance to the source hardware, compatibility, and providing useful

tools for the players.

 Until the 1990s, emulating a console on a personal computer was not

viable; most PCs did not have the necessary processing power to accu-

rately model another platform. As a computational device, the NES had

only one mandate: execute the game code. Every bit of RAM, every byte of

storage, every spare clock cycle was rallied for the sole purpose of getting

the game on the screen. PCs, in contrast, were multi-modal Renaissance

machines meant to run games alongside spreadsheets, documents, email,

and web browsers. All processes were obliged to share from a single pool

of resources. This discrepancy in purpose meant that consumer PCs were

typically a generation or two behind the curve in console emulation.

 Equally daunting for accurate console emulation was the lack of ade-

quate technical documentation. Access to such documents was reserved

for official licensees and protected legally, as Nintendo held copyrights

8 Tool-Assisted [303]

over the form and function of their console. Circumventing the licensing

track required outright theft or tedious reverse engineering. Even if unli-

censed developers could obtain the official Famicom documentation, they

still faced a steep language barrier. While some developers enlisted the

aid of translators, others opted to trudge through the guts of the NES to

figure it out themselves.

 The latter tactic was the strategy of most emulation developers.

The NES ’ s operation had to be sussed out through study and experimen-

tation, so the early NES emulation scene benefited from a concerted

community effort. Many developers shared their meticulous research,

homespun documentation, and source code with one another. But many

of these coders, being young or otherwise shrouded by online anonymity,

were brash, competitive, or outright malicious. Competing emulators were

mocked online; ethical debates arose between freeware, shareware, and

commercial software advocates; prominent coders left the emulation

scene in anger and frustration; and source code was copied and even

stolen from unprotected hard drives. Emulation development appears

less contentious now, as robust NES documentation is freely available

online, but in the nascent years of NES emulator development, there was

a fragile balance struck between enmity and community.

 The first Famicom emulators appeared as early as 1996. 35 Developer

Nobuaki Andou programmed the first publicly-released software, a Japa-

nese shareware program called PasoFamicom (or PasoFami). 36 Though it

is still in active development (and now emulates a number of other con-

soles), PasoFami failed to gain the widespread popularity of subsequent

emulators due to its language barrier, cost, and complex file structure for

game images. PasoFami required a special “ split format ” for Famicom

games, consisting of four separate files: .PRM (header file), .PRG (data),

.CHR (data), and .NAM (game title). Though unwieldy for users, the mul-

tiple data components more accurately mirrored cartridge hardware and

separated supplemental header and title information from the game ’ s

contents.

 PasoFami also required a registration fee of ¥ 3000 (~$30). The

unregistered version ran for one minute, then halted the game and flashed

a pop-up window asking for registration. In response to PasoFami ’ s lin-

guistic and monetary barriers, hackers produced patches and cracks to

translate the GUI into English and circumvent the “ nag message. ” Threads

on the comp.emulators.misc discussion board frequently labeled it “ crip-

pleware, ” due to its prohibitive timer lockdown. One commenter justified

his own and others ’ software piracy based on the inconveniences of cost

and translation:

[304]

 There ’ s a difference between shareware and crippleware, and Paso-

Fami is definitely the latter. And, besides, it ’ s in Japanese. We

can hardly be expected to evaluate a crippled Japanese program

in America. THAT ’ S why you see the cracks, THAT ’ S why you see

the translations. Shareware is software you evaluate before you buy.

The demos of PasoFami don ’ t provide NEARLY enough to evaluate the

product. Also, by pirating in the US market, we are not affecting

the Japanese market, which is what the emulator was aimed at. So who

are we hurting by our rampant piracy of PasoFami in the US? Certainly

not Noubbaki, as we ’ d never have stuck with it at ALL if it weren ’ t for

the cracks and translations. It cost him no sales, and was a form of

free advertising. 37

 The worldwide “ advertising ” was effective — English-language sites

hosting PasoFami commonly included the crack download alongside the

retail binary. In retaliation to the rampant piracy, Andou began setting

code traps in the source of his official releases, meant to spring when the

emulator was patched or otherwise tampered with. He likewise focused

exclusively on the Japanese emulation market, requesting that PasoFami

be removed from all sites besides his own. But by the time Andou had

rejected non-Japanese “ evaluators, ” several new emulators were appear-

ing, eventually pushing PasoFami to the periphery of the emulation com-

munity ’ s attention.

 The Birth of .NES

 By fall of 1996, there were at least six new NES emulators either in devel-

opment or publicly available: Marat Fayzullin ’ s iNES, Alex Krasivsky ’ s

LandyNES, Mr. Snazz ’ s VeNES, Y0SHi and Riff ’ s qNES, TaNdRuM ’ s

dNESe, and Paul Robson ’ s NESA. 38 iNES, despite its $35 registration fee,

emerged as the early leader.

 In the early 1990s, Krasivsky (aka Landy) was working on a Nintendo

emulator for MS-DOS that he planned to call interNES, or iNES for short.

Early on, Fayzullin stepped in to assist in the development, then, when

Landy “ lost interest in the project, ” he carried on with iNES on his own. 39

In the documentation accompanying an early version of interNES, Fayzul-

lin cited his collaborator ’ s contributions several times: “ The original code

was written by Alex Krasivsky from Moscow. I added missing CPU com-

mands, wrote screen drivers, and did some thorough hacking to make the

emulator run about 85% of games. ” 40 Due to alleged interpersonal issues

8 Tool-Assisted [305]

with Fayzullin, Landy retired from the iNES project and shifted his atten-

tion to his own emulator, LandyNES.

 Fayzullin ’ s iNES arrived at an advantageous time, since the emulation

community was looking for a simpler, English-native alternative to Paso-

Fami. iNES proved to be stable, functional, and well-documented. Fayzul-

lin was one of the first developers to assemble and share technical details

of the NES that he, Landy, Robson, Y0SHi, and others in the emulation

community had discovered through testing and experimentation. Fayzul-

lin ’ s compiled “ Nintendo Entertainment System Architecture ” is a fasci-

nating snapshot of the state of knowledge about the console in late 1996. 41

In particular, mapper and sound emulation were uncharted territory. Fay-

zullin provided scant documentation for the four most common mapper

types and noted, “ There are several other mappers, some of them very

sophisticated. INES partially supports them, but as this support either

doesn ’ t work correctly, or the mappers are uncommon (such as 100-in-1

cartridge mapper), I don ’ t cover them here. ” The “ Sound ” section simply

read, “ To be written ” — fitting, since early Windows builds of iNES had

poor sound emulation.

 As of 2014, iNES is still in active development, but its popularity has

waned in comparison to its contemporary competitors. However, its legacy

is still alive in the .NES file extension. Apart from being an emulator, iNES

was also a standard format for encoding the data ripped from NES car-

tridges. Early on, as NES emulators became more popular, the desire to

stock one ’ s hard drive with a full catalog of NES games intensified.

However, stripping a NES cartridge ’ s data was not as simple as ripping a

CD or transferring photos from a flash drive; there was no cartridge slot

in the computer that one could plug a game into for quick transfer.

 “ Dumping ” a cart ’ s contents, as it was called, required a hardware car-

tridge copier to transfer the data. (Early on, the iNES homepage provided

the schematics for such a device.) The resulting binary dump was called a

ROM image, or simply ROM — “ Read Only Memory ” — the portion of a cart ’ s

memory that could be read from but not written to. Though this shorthand

was something of a misnomer, since a cart could also contain RAM or the

image could be derived from a Famicom disk, the name stuck. ROMs were

and are the stock-in-trade of the emulation community.

 Of course, raw binary images were not enough. Once dumped, the

data then had to be formatted into a file that the emulator could under-

stand. Since NES carts contained a variety of augmentative hardware

(chapters 6 & 7), emulators could not rely on a one-size-fits-all configu-

ration. To compensate, Fayzullin devised a straightforward sixteen-byte

[306]

string to append to the images providing crucial hardware descriptions of

the dumped cart, such as the mapper type and the cart ’ s mirroring setting.

Once concatenated, the header and the image were known as a .NES file,

ready for play in the iNES emulator.

 Though .NES was developed in conjunction with the for-pay iNES, it

was by no means proprietary to its host emulator. Other developers built

in iNES support to accommodate the influx of .NES files circulating online

in lieu of developing multiple competing formats. Paul Robson, developer

of the open-source DOS emulator NESA (and later TNES), explained that

he chose the format due to its quick adoption and ease of use:

 Most of the ROMs were already in that format and it was documented

properly. It was the only sensible choice because of the different

mappers — you couldn ’ t just have a binary dump of the ROMs, you had

to have some form of system for saying how it was wired up. There ’ s

umpteen “ mappers ” for the NES. 42

 Progress in the NES emulation scene moved extraordinarily fast. Devel-

opers had to quickly glom to a sensible standard or otherwise see their

emulator fizzle into obscurity. Fayzullin had first-mover advantage,

coupled with a simple, open format for describing ROMs. Fayzullin ’ s gra-

cious attitude toward sharing technical information (and reciprocal

sharing back to him) meant that the entire emulation community bene-

fited from the iNES format. The snowball effect intensified as subsequent

emulators adopted .NES because previous emulators had done so.

 The .NES file improved on the PasoFami split format in several ways.

It was a single, unified file with a commonsense extension. Users did not

have to understand the underlying cartridge architecture that informed the

.PRG and .CHR extensions or why they required a header to function prop-

erly in an emulator. Semantically, it also made sense to the average com-

puter user that an NES emulator would run .NES files. With the introduction

of the iNES format, it became much easier for NES emulation to spread.

The hunt to collect “ NES ROMZ ” ensued, prompting a grassroots network

of ROM-hosting sites to appear online. Especially in non-Japanese coun-

tries, where PasoFami was near inscrutable, users shifted their attention to

iNES. As its popularity grew, so did the need to support .NES files.

 Dirty Headers

 A new conversion problem arose between competing emulator formats.

iNES did not support PasoFami ’ s split images, so users had to develop

8 Tool-Assisted [307]

utilities to translate .PRM to .NES. Initially, Fayzullin posted command

line instructions for assembling .NES files manually:

 1. Create a 16-byte header:
 ″ N ″ ″ E ″ ″ S ″ $1A$xx$01$01$00$00$00$00$00$00$00$00$00
 ^^^
 this byte is either $01 for 16kB games or
 $02 for 32kB games

 and call it, let us say, mario.hdr

 2. Do

 cat mario.hdr mario.prg mario.chr > mario.nes

 You have the .NES file now. 43

 Ambitious users could also strip the raw .PRG and .CHR segments from

their PasoFami files, use a hex editor to append the appropriate iNES

header, and assemble a functional .NES ROM. By the late 1990s, all-in-

one utilities like Matt Conte ’ s cajoNES (“ the only NES ROM tool with

balls ”) automated the process, permitting conversion to and from the

PasoFami format, as well as another emerging Japanese format, .FAM. 44

 Enabling the conversion of PasoFami and other incompatible formats

to iNES was not simply a means of besting competing emulators. Many of

the games available in .PRM, .FAM, or .DKA (Famicom Disk format) were

Japanese-exclusive Famicom games. For the majority of Western NES

players, emulation was their first avenue to experience a substantial

portion of the Nintendo catalog. Importing games posed a series of chal-

lenges: differing cart shapes and sizes required either the purchase of a

Famicom or 72-pin/60-pin converter; language barriers cordoned off

many Japanese-heavy titles; and the time and cost involved in shipping

titles across the Pacific dissuaded all the but the most persistent or wealthy

Famicom fans.

 Emulation mitigated all of these challenges. Cartridge pinouts were

not a problem for ROM images and language barriers would soon be sur-

mounted through ROM hacking efforts. Shipping cost and distance were

eliminated by online distribution. The sole physical barrier was getting

the Famicom cart dumped and formatted, but this only had to be done

once. Of course, this did not solve the problem of Western players gaining

access to Famicom carts in order to dump them — it merely amplified the

importance of leveraging the work that had already been done by the emu-

lation community. A treasure trove of Famicom games lay locked behind

their emulator formats. Conversion tools like cajoNES were the key.

[308]

 The critical portion of the iNES format is its header, the first sixteen

bytes of the .NES file that describe the contents and arrangement of the

data to follow. Bytes 0 – 3 are always the same: $4E, $45, $53, and $1A.

These hexadecimal values are the ASCII encodings of the letters “ NES ”

followed by the ASCII SUB control character, meant to denote an EOF

(end-of-file). 45 (So even as the .NES format lives on in modern operating

systems, it still bears a permanent trace of its MS-DOS heritage.) Byte 4

describes the size of the cartridge ’ s PRG-ROM split into 16K banks, while

byte 5 describes the size of CHR-ROM split into 8K banks. Bytes 6 and 7

are flags whose individual bits denote a number of cartridge features,

including the mirroring type, the presence of a special “ trainer, ” 46 and

whether battery-backed SRAM is present. Most importantly, the last four

significant bits of bytes 6 and 7 contain, respectively, the lower and upper

nybble of the mapper number.

 Mapper numbers are a classification system Fayzullin implemented

to answer the need for a standardized system to organize and collate the

manifold in-cart circuitry used in licensed, unlicensed, pirate, or other-

wise bootlegged carts. Emulation as an archival effort aims to support all

Famicom/NES/Dendy/clone/pirate/homebrew cartridges available world-

wide, not just those sanctioned by Nintendo. Since Fayzullin chose to

reserve a single byte for the mapper number, there are only 256 available

mapper slots. In the 1990s, this was thought to be sufficient to cover all

possible mappers, but the continuing global life of Nintendo ’ s 8-bit

console, especially in the bootleg markets of Asia, South America, and

Eastern Europe, has led to the continued proliferation of unique mapper

hardware.

 The original iNES mapper specification organized the numbers by

similar board types and function. Fayzullin ’ s numbering did not follow

mapper development chronologically nor adhere to a master list provided

by Nintendo (since there was none). Thus, for example, MMC3 (mapper

#4) and MMC5 (#5) appear sequentially before MMC2 (#9) and MMC4

(#10). Likewise, variations within single board profiles, e.g., various

flavors of CxROM or MMC3, are problematically represented by a single

number. The underlying logic behind the numbering choices appears to

be based on abundance — the most common PCB types were assigned the

lowest numbers. According to the NesCartDB, iNES mappers #0 – 4

(NROM, MMC1, CNROM, UNROM, MMC3) comprise nearly 80% of the

most commonly used PCBs. Other choices were more functional: Mapper

0 makes sense for NROM, since it came first (and is technically not a

mapper at all). Today, as new mappers are developed or discovered,

numbers are assigned by their availability.

8 Tool-Assisted [309]

 In the early iNES specification, header bytes 7 through 15 were

ignored — or more accurately reserved for future implementation. Ignor-

ing byte 7 meant that initially only four bits were allotted for mapper

numbers, resulting in an exponential loss of available mapper slots, from

256 down to 16. Until those bytes were needed (and supported by emula-

tors), proper headers were supposed to pad the remaining bytes with 0s.

However, since emulators at the time ignored this portion of the header,

the space ended up as a dumping ground for self-promotional graffiti.

 One of the more infamous cases was the nine-byte string $44,$69,$

73,$6B,$44,$75,$64,$65,$21, whose ASCII translation read “ DISK-

DUDE! ” This header signature was a residual artifact of using the NES

Image utility, a ROM format converter released in 1996 by Australian

programmer John Pappas, aka DiskDude. NES Image was one of the first

conversion utilities available at a time when many PasoFami users were

switching to iNES. Dumping new ROMs or sourcing .NES versions was

either resource intensive or time-consuming, so users made the obvious

choice of using NES Image to translate their existing ROM stockpiles. The

tool ’ s popularity sent thousands of DiskDude-branded ROMs into

the wild.

 As emulators evolved and began using the reserved iNES bytes,

DiskDude ’ s self-aggrandizing gesture began to gain infamy, though not

in the manner he probably hoped for: DiskDude ROMs were breaking

emulator support. With unexpected data in the reserved header bytes, the

 “ dirty ROMs ” failed to load properly due to a mapper mismatch. This

prompted a wave of new ROM utilities designed to scrub dirty headers.

DiskDude ROMs continually frustrated emulation developers working

toward a standardized iNES format and more accurate emulation. 47 If a

user ’ s ROMs failed to work in a given emulator, they were more likely to

blame the emulator than the ROM, especially if it had worked in the past.

Supporting legacy ROM formats became a new conversion problem within

the emulation community. Emulator authors had to decide whether to

include checksums, header fixes, or other workarounds to accommodate

dirty ROMs, or to summarily reject them in favor of accuracy and

standardization. 48

 To his credit, Pappas ’ utility was not the only header corruptor. The

 “ aster ” signature ($61,$73,$74,$65,$72), named after a utility of the same

name, appeared frequently, along with “ DisNi, ” “ MJR, ” and other ASCII

remnants. By version 3.34, NES Image no longer injected its author ’ s

name, a welcome modification that unfortunately, even in 1997, arrived

too late. In the utility ’ s documentation, Pappas wrote, with mock

incredulity:

[310]

 [Version 3.34] removed any extra “ junk ” (?) in the .NES format

header. In previous versions, the version number of NES Image, or

the word “ DiskDude! ” was present: I have seen many Nintendo ROM

Images with this information within the header … great to see people

actually used this utility!

 His enthusiasm will be long-lived. Despite the emulation community ’ s

efforts to whitewash dirty ROMs, they continue to be an infinite-headed

hydra. The rampant circulation of ROMs in the 1990s ensured that Disk-

Dude multiplied beyond any manageable scale. If just one ROM hosting

site used NES Image, their corrupted ROMs could have reached potential

thousands of downloaders, each of whom could trade, copy, or host those

files for other users, who could pass them along in turn, and so on in

perpetuity. Even today, torrent packs of every imaginable NES and

Famicom ROM are littered with DiskDude ’ s header junk.

 Though dirty ROMs continue to be a bane to emulator authors, their

persistence is a boon to researchers. They create an embedded archive of

a file ’ s geneaology, an ASCII trace of its circulation within a community

of programmers and programs. Without such evidence, these minor his-

tories would be lost. 49

 The Severed Hand

 Bloodlust Software, founded by Icer Addis (aka Sardu) and Ethan Petty,

posted the first public release of their new NES emulator on April 3, 1997.

News of NESticle v0.2 — released as freeware — quickly circulated online.

Its unique portmanteau, anatomical icon, and laissez-faire documenta-

tion initially did not inspire much confidence in its quality. Even Blood-

lust ’ s bundled README.TXT called the emulator “ essentially the product

of 2 weeks of boredom and a smattering of effort. ” 50 But the juvenile over-

tones belied the emulator ’ s speedy interior and easy-to-use feature set.

Bloodlust had leveraged a number of breakthroughs within the NES devel-

opment community to build a sleek emulator that could run handily on

486 and Pentium PCs. 51

 NESticle v0.2 was spartan compared to today ’ s NES emulators, but it

had a visual charm that helped differentiate it from its contemporaries.

The GUI was colorful and easy to use, wrapping its chunky windows in

vibrant shades of blue accented with gray, green, and white (a look

strangely similar to Windows XP ’ s default “ Luna ” theme, which debuted

four years later). Consistent with Bloodlust ’ s house style, they replaced

the mouse pointer with a severed left hand extending its pointer finger,

8 Tool-Assisted [311]

terminating in a bloody stump (figure 8.1). In subsequent versions, the

stump dripped animated blood.

 Taste notwithstanding, NESticle featured several useful utilities

beyond playing NES ROMs. Via the “ View ” pulldown menu, users could

access visual representations of the NES ’ s internal parts and processes,

including the pattern tables, name tables, palettes, and waveform output.

For many NES players, this was their first exposure to the platform ’ s tech-

nical underpinnings. Viewing the pattern table, one could see the ROM ’ s

entire graphics set, arranged into contiguous background and sprite sec-

tions. Clicking either section allowed users to cycle between available

palettes in order to better identify specific tiles. More remarkable was the

palette view, which allowed users to isolate and edit palette entries in real

time. Want to make Donkey Kong pink instead of brown? Locate his asso-

ciated background palette and adjust the three RGB sliders. The “ Mes-

sages ” view outlined NESticle ’ s various processes as well as details about

the currently loaded .NES file. Selecting “ Get ROM info ” displayed the

ROM ’ s outlay of PRG and CHR memory (or ROM and VROM, as NESticle

labeled them), mirroring, and mapper number.

 NESticle also implemented simple systems for both saving one ’ s

game and taking screenshots. Keying F5 or F7 would respectively save and

 8.1 NESticle v0.2 running a Donkey Kong ROM with several sub-windows open.

[312]

load the current emulation state, independent of the game ’ s in-game

saving mechanism (or lack thereof). True to its name, the save state cap-

tured a “ vertical slice ” of the NES ’ s internal state at a given frame. This

included the contents of RAM, status register flags, stack contents,

program counter location, patterns, name tables, attributes, mirroring

setting, and so on. 52 The resulting file was saved as the ROM ’ s name with

an .STA extension (e.g., BalloonFight.sta) in the NESticle directory.

Loading a save state reversed the process, injecting the emulator with a

set of parameters to reinstate the virtual NES (and its accompanying

ROM). Similarly, F9 captured a .PCX (a DOS image format) snapshot of

the current screen and saved it alongside the ROM file.

 Both features had instant appeal. Born-digital screenshots obviated

the need to set up a camera to capture a game ’ s graphics or record a

high score. Players accustomed to the limited or non-existent save

systems implemented in NES games were suddenly able to save and

reload as they pleased. Difficult games could now be broken into smaller

segments — levels, screens, or a handful of key presses — if a player

so desired. It was now possible for many more players to tackle

nigh impossible games like Ghosts ’ n Goblins or Dragon ’ s Lair. And

more significantly, since save states were stored separately from the

ROM file, they could be shared and swapped online and on floppy

disk, provided the receiving player had NESticle and the matching

ROM on their computer. Popular emulation sites like Zophar ’ s Domain

served as repositories for downloadable save states, 53 especially those

stacked with a host of in-game power-ups or positioned at the conclusion

of a final boss battle, allowing the user to easily view the game ’ s ending.

NESticle ’ s feature bred a new form of assisted play — either cheating

or player advantage, depending on your perspective — that would later

evolve into the tool-assisted speedrun. Save states were the first step

along that path.

 Although many save states were captured legitimately by skilled or

patient players, they could also be opened and modified with a hex editor.

Players with enough time and patience, coupled with some elementary

knowledge of the NES hardware and the ROM image ’ s memory layout,

could isolate variables that determined the player ’ s in-game attributes.

This was particularly useful for maxing out lives and collectibles or equip-

ping RPG avatars with enough gold, equipment, and experience to breeze

through battles. Sliver X ’ s guide to state hacking The Legend of Zelda ’ s item

inventory highlights the mix of technical knowledge, experimentation,

and blind luck that was involved:

8 Tool-Assisted [313]

 The way this works is that there aren’t individual bytes representing

each item. All of them are represented by 01, with the exception of the

2nd potion, White and Magic swords, the Silver Arrow, the Red

Candle, Triforce, and the Red Ring … Another thing to note is that

items you can have multiple numbers of, such as bombs, keys, and

Rupees can be represented by numbers up to their maximum limit of

255, which is FF … A few instances of weird shit can happen if you

change a byte to something out of its range, like changing the sword

byte to 04 or the Potion to 05. Try messing around with some crap,

you might get some cool results. 54

 Cottage communities grew up around the creation, hacking, and distribu-

tion of NESticle .STA files. For the most popular titles, hackers took it one

step further and programmed game-specific editors. These custom pro-

grams allowed players to edit NESticle ’ s save states in a more user-friendly

environment than the bare numeric fields of a hex editor. 55

 NESticle also had its share of technical drawbacks. For one, version

0.2 supported only four mappers (0 – 4). This covered a large swath of the

NES and Famicom library, but excluded several “ greatest hits, ” like Cas-

tlevania III (iNES 005/MMC5), Battletoads (iNES 007/AOROM), Cobra

Triangle (iNES 007/ANROM), Mike Tyson ’ s Punch-Out!! (iNES 009/

MMC2), and the entire Wizards & Warriors series (iNES 007/AxROM).

 Due to the sparse documentation of the NES ’ s APU, NESticle ’ s audio

implementation was also severely underdeveloped. Bloodlust ’ s README.

txt recommended simply turning the sound off if users found it irritat-

ing. 56 And while NESticle ’ s palettes were not as jarring as the soundtrack,

they were wildly inaccurate compared to the NES ’ s typical composite

output. More importantly, mid-screen raster effects, used for status bar

splits or palette swaps, were not properly understood at the time, so games

that relied on carefully-timed PPU updates either did not work or exhib-

ited noticeable glitches. Bloodlust attributed this to the shortcomings of

the NES:

 There are still some bugs with games that utilize split screens. In my

opinion, the NES method of split screening is utterly horrible. Lots

of games rely on CPU speed to tell when to split the screen, others

use a dumb hitflag, and others use IRQs. Games that switch pattern

tables halfway through the frame were a bitch. Adjusting the HBlank/

Vblank length under Settings/NesTiming may fix some split screen

quirks.

[314]

 Whether Sardu ’ s assessment is true or not, today ’ s emulator authors tend

to withhold judgment of Nintendo ’ s engineering prowess and instead

implement the console ’ s architecture as accurately as possible.

 Despite its shortcomings, NESticle development progressed quickly.

Within two months of its debut, NESticle introduced online play (for

Windows users), recording and saving audio output, and the ability to

record and playback gameplay movies. 57 This latter feature was the logical

extension of the .STA format. NESticle movie files (.NSM) recorded the

emulator ’ s current state as a standard .STA along with any subsequent

player inputs detected until the user selected “ Movie/Stop. ” 58 The result-

ing file was the combined record of a machine ’ s initial state and a player ’ s

frame-by-frame performance.

 Once Bloodlust introduced the .NSM format, sites featuring archives

of NESticle movies proliferated. For the first time, NES players could

witness extended game performances remotely. Prior to emulation, that

type of telepresence was only available via television broadcasts or VHS

direct-feed captures of gameplay, usually sold by game magazines to

demonstrate tactics and tricks for a handful of games. But large-scale

VHS production and distribution was impractical for most hobbyist

players.

 Even digital video distribution faced steep technological barriers.

In the mid-1990s, hosting or viewing video online was rare. The neces-

sary infrastructure of Internet bandwidth, PC processing power, and

consumer-grade digitization software was not yet in place. Even down-

loading video was resource-intensive — few modems could shuttle data

more than a few kilobits per second, nor could most hard drives accom-

modate massive video files. But describing a “ movie ” as a sequence of key

presses mitigated the limitations of bandwidth and storage. NESticle

movies were modestly sized, even by late-1990s standards, consuming

approximately 432KB per hour. As long as the viewer had the proper emu-

lator, ROM, and .NSM file, they could replay a lengthy gameplay movie at

native resolution on their computer screen.

 Hacks and Patches

 The user modifications NESticle afforded were a new phenomenon for

console owners. Few had the resources or know-how to dump, edit, and

burn custom EPROMs. A handful of NES games like Excitebike and Wreck-

ing Crew featured built-in level editors, but such tools were uncommon,

edits were temporary, and there were no means to share creations with

other players. Hardware cheat devices like the Game Genie only permitted

8 Tool-Assisted [315]

users to tweak existing game parameters, and without knowledge of the

peripheral ’ s underlying code generation algorithm, players were typing

codes blindly in hopes of surfacing novel results.

 Emulation eliminated the hardware barrier from the modification

equation. Suddenly players had the ability not only to play NES games, but

also to edit, reconfigure, and remix them — a practice commonly known as

 “ ROM hacking. ” Super Mario Bros. ’ s popularity made it an early and fre-

quent target for player revision, 59 and NROM ’ s lack of bankswitching

made it trivial to pick out and edit individual tile patterns in CHR-ROM.

Most alterations were simple visual tweaks, such as writing one ’ s name

in Kinoko ’ s clouds, editing Mario ’ s hair color, or “ upgrading ” the

sprite and background tiles to resemble those from later games in

the series. Modders also outfitted Mario in a range of outlandish — and

frequently offensive — costumes and accessories, including a clown

wig, wheelchair, Nazi regalia, an Afro, drug paraphernalia, and even a

Ku Klux Klan hood. Intentionally or not, ROM hacks were intermingled

with clean dumps of Super Mario Bros. , so unsuspecting downloaders

might be surprised to find a ninja in Mario ’ s place when they launched

their .NES file. Eventually, as these variations spread online, it was a

challenge to find a Super Mario Bros. ROM that had not been altered in

some way.

 ROM hacks likewise introduced strange cross-fertilizations of game

worlds, a digital fan fiction that combined characters and scenarios

from different games: Link ’ s sprite appeared in Super Mario Bros. , Mario

made cameos in Metroid (and every other conceivable game), Pauline

replaced Jumpman as Donkey Kong ’ s protagonist, and Galaga ’ s armada

of spaceships transformed into beer cans and bottles. Other hacks

were less innocuous — overtly racist, violent, and homophobic versions

of popular games cropped up in equal measure. With few barriers to

expressive creation, the best and worst traits of online culture were on

display.

 The ease of modding existing games encouraged budding artists and

level designers who might not otherwise have had access to programming

tools. Mario ’ s thirty-two original levels were reimagined and rearranged

to the point that they resembled homegrown versions of the Japanese

 Super Mario Bros. 2 , meant to offer new challenges to players who had

mastered Mario ’ s first adventure. Fan-remixed versions of The Legend of

Zelda scrambled the dungeons and power-ups, much like Nintendo ’ s own

Second Quest. But all of these hacks were executed within the original

ROM ’ s parameters. Without altering the source code, any edits were still

governed by the game ’ s mapper and engine. No ROM hack, for example,

[316]

could allow the Super Mario Bros. engine to scroll left. Elementary modi-

fications could not bypass code-level constraints.

 As ROM hacking evolved, modders pushed beyond rearrangement

and remixing to tool-assisted reprogramming. IKA ’ s top-to-bottom hack

of Rockman 2 , Rockman No Constancy (2007), constructed all-new level

layouts, increased the game ’ s difficulty, modified weapon and boss

behaviors, altered tile patterns, and rescored the soundtrack. 60 Game-

Makr24 ’ s Zelda Challenge: Outlands (2001) gave The Legend of Zelda a

similar treatment — every aspect of the original was changed, from the

storyline to the NPC dialogue. 61 DahrkDaiz ’ s Mario Adventure (2004)

delved into Super Mario Bros. 3 ’ s engine, adding save features, new enemy

types and behaviors, random weather effects, and more. 62 This so-called

 “ assembly hacking ” required in-depth technical knowledge of the NES

hardware coupled with the advanced capabilities of modern emulators,

spawning fresh games from obsolete engines.

 An equally important ROM hacking innovation was the translation

patch, a supplementary file that could rewrite a ROM ’ s contents (and

often expand its mapper profile) to translate the in-game text from one

language to another. Again, NES emulation ’ s rapid online dissemination

granted players access to games that were otherwise unavailable short of

importing Japanese or European consoles and cartridges. ROM distribu-

tion eliminated economic and geographic barriers, but language still

barred access to foreign titles, especially Japanese-intensive graphical

adventure and RPGs. However, ROM hacking gave players access to a

game ’ s tile and program data, which in turn made fan translations pos-

sible. Players began to take localization into their own hands.

 But custom translations were not as simple as swapping a few tiles,

especially between languages whose grammars and character sets were

drastically different (chapter 6). A single kanji ideograph, for instance,

might require one or more words in English translation. This mismatch

led to condensations of dialogue or menu items that ranged from artful to

nonsensical — the “ I AM ERROR ” problem born anew, though this time as

a result of limited memory rather than faulty translation. Many text-heavy

RPGs like Final Fantasy II used compression to pack dialogue into fewer

bytes, so merely locating the text in memory proved challenging, much

less decrypting the techniques used to store it.

 Building on the techniques they learned while disassembling com-

mercial games, translation groups developed their own compression

tricks to sneak more data into a game ROM. The documentation accom-

panying Demiforce ’ s 1998 translation of Final Fantasy II detailed one such

process:

8 Tool-Assisted [317]

 Another technique is one of DTE (Dual Tile Encoding). DTE method

was cracked on 1/16/98, meshed by the combined talents of Landy,

Alex W. Jackson, and Dark Force. What it means is we took advantage

of a coding technique Square uses in its japanese for the “ chon chon ”

marks. Since there are two tiles used in chon chon characters, we took

the subordinate tile and placed it after the dominant character, allow-

ing us to display two characters with just one byte call in the ROM.

When first implemented, we had about 1000 extra bytes to work with

(!!!), so ever since then there’s been a lot more leniency concerning

detail and story length. 63

 Hobbyist translation efforts such as these, which could take months or

years to complete, expanded the diversity of accessible Famicom software

and exposed non-Japanese audiences to games that were previously

unplayable. They also foregrounded the platform ’ s mediating effects on a

game ’ s expressive content, an underlying layer of material translation

necessary to adapt Japanese to English and cartridge to ROM.

 The explosion of user-friendly emulators like NESticle helped cata-

lyze the cultural cross-fertilization between Asian, European, and Ameri-

can nations presaged in the decade prior by arcade games, science fiction,

comics, and animation (chapter 2). Non-Japanese players had access to a

less mediated version of Japanese culture, since the Famicom-exclusive

games now available as .NES files were never meant for audiences outside

of Japan. Dumping ROMs directly from their Japanese sources circum-

vented Nintendo ’ s corporate control over game content and distribution.

Forbidden games like Devil World , Miyamoto ’ s only title that never made

its way to the U.S. (chapter 3), were playable by fans for the first time.

 Beyond the obvious Famicom exclusives, players began to notice dis-

crepancies in games that were released in multiple regions. Famicom

Disk System originals had richer soundtracks and robust save systems.

Discrepancies in cartridge hardware often hamstrung U.S. releases of

Famicom titles, as in Contra , whose Japanese version featured animated

backgrounds and interstitial cutscenes. VS. System and PlayChoice-10

varieties of familiar titles began to appear alongside their console ver-

sions. PAL exclusives joined the ranks of the NTSC catalog. Dumps of

bootleg and pirate carts introduced regional variations previously

unknown outside Russia, China, and Taiwan.

 Developers answered the onslaught of multiplying ROMs — many of

which were of questionable quality and origin — with a standardized clas-

sification system. Utilities like GoodNES, part of a larger GoodTools soft-

ware suite, audited a user ’ s ROM catalog against a verified database and

[318]

labeled them according to region, variation, and quality. (ROM auditing

utilities could also properly rename files and scrub dirty headers.) Dis-

tributed ROM packs often contained a text guide to help players decipher

the trail of symbols and letters that now followed file names (e.g., “ Metroid

(E) [!].nes ”). Psych0phobiA ’ s “ GoodCodes.txt, ” for instance, covered the

GoodTools hieroglyphs used for Genesis, SNES, Game Boy, and NES

ROMs. Country codes were typically single capital letters in parentheses:

(J) for Japan, (U) for USA, (E) for Europe, and so on. Bracketed codes

indicated variations such as hacks [h], bad dumps [b], pirates [p], trans-

lations [T], or, ideally, verified good dumps [!]. Players now had a short-

hand reference, written directly to the file name, to help them sort the

thirty variations of Metroid on their hard drive.

 But how did “ bad dumps ” originate and circulate in the first place?

Errors that occurred during image transfer, hacking, zipping, or upload-

ing files introduced data corruption to the cartridge ’ s raw binary stream.

Unwitting players would then download, copy, and share those files, pol-

luting the pool of good dumps with bad. Nonetheless, if a ROM was par-

ticularly rare, it might be the only dump available until a cleaner source

surfaced, and semi-working ROMS were better than no ROM at all. Fur-

thermore, once utilities like GoodNES appeared, it was simple to scan

one ’ s library and highlight offending files. If a user chose not to discard

the corrupted ROM (or simply didn ’ t understand the [b] designator), its

further dissemination would at least be flagged for future downloaders.

Even amidst the grey legalities of ROM dumping, hacking, and distribu-

tion, rules arose to ensure the pedigree of one ’ s virtual collection.

 Text Movies

 NESticle was not the first NES emulator, but it introduced or popularized

a number of now standard augmentations like save states, simple tile

editing, and movie recording. Above and beyond those early innovations,

contemporary NES emulators now offer near-IDE levels of code manipu-

lation. FCEUX, for example, features a built-in hex editor, inline assem-

bler, debugger, and PPU viewer. 64 Modern emulators not only play games,

but dissect and disclose their processes, allowing users to watch the game

engine access and write registers, populate pattern tables, manipulate

RAM, and more. It is like going to a movie theater and watching the film

run from Final Cut on a seat-mounted laptop that allows you to tweak the

speed, angles, and edits to your liking.

 Though the film metaphor seems like an apt fit for the tool-assisted

speedrun, since the outcome of its performance is commonly called a

8 Tool-Assisted [319]

 “ movie, ” that label does not accurately describe either its process or

result. NESticle .NSMs were save states with twice-per-frame key presses

appended. The underlying content was not visual, but a chain of bytes

meant to trigger response from an emulator loaded with the appropriate

ROM. The .NSM was more akin to a macro or script than what we would

commonly call a video. Likewise, tool-assisted runs are not spliced sec-

tions of normal gameplay, but meticulously assembled frames of player

input, closer in function to animation and choreography than filmmak-

ing. In a practice called “ re-recording, ” players drop the game ’ s playback

speed significantly and cycle through small segments of gameplay —

bookended by save states — altering variables until they generate an opti-

mized run. 65 Once that segment is satisfactorily complete, they create a

new save state and the process continues.

 In FCEUX, a movie is a specially formatted plain ASCII text file saved

with the extension .FM2. 66 The .FM2 ’ s ASCII format is advantageous since

it is human-readable. Once one is familiar with .FM2 ’ s syntax, it is easy

to decode the system of key presses and edit them like a spreadsheet. Like

the ROMs they enact, movie files contain a short header followed by a data

stream. The header is a chain of key-value pairs used to describe the

emulator version, the type of input device used, the frame length of the

movie, runner comments, and so on. The header for Nick Mong ’ s (aka

mmbossman) TAS of Arumana no Kiseki , for example, reads as follows:

 version 3
 emuVersion 20100
 rerecordCount 13078
 palFlag 0
 romFilename Arumana no Kiseki
 romChecksum base64:hjO8JpyaAlI9rmzVvydgCA==
 guid F91714F1 – 7905 – 8548 – 6B40-C4600750A645
 fourscore 0
 port0 1
 port1 1
 port2 0
 comment author mmbossman 67

 The checksums, ids, and version numbers are meant to ensure the TAS ’ s

exact replication on a user ’ s system. Without the properly calibrated

setup, a movie will not play back accurately. 68

 The data section following the header is called the input log. Each

frame of the movie is given its own line, bookended by pipe (“ | ”) charac-

ters. Following the first pipe is the input port value (e.g., “ 0 ” for joypad

1), another pipe, then eight “ bits ” representing the possible joypad

presses for that frame. The text block below is a four-frame excerpt from

Mong ’ s TAS:

[320]

0	R..U....	
0	R..U..B.	
0	R..U....	
0	R..U...A	

 Line/frame 1 represents the D-pad ’ s right (R) and up (U) keys pressed

 simultaneously. Frame 2 ’ s input continues to hold right and up while also

pressing B. The final two frames release B then press A. Note that the

preceding text block describes only 1/15 of a second. The full TAS input

log of a NES speedrun, which is typically under twenty minutes in real-

time playback, can run tens of thousands of lines long.

 A finished movie reads as a frame-by-frame list of inputs in sequen-

tial order, an editable input recipe for perfect play. Conceivably, with

superhuman skill and memorization, a player could replicate this list on

real hardware. In practice such play is impossible, since speedruns often

rely on mutually exclusive key presses (e.g., left and right simultaneously)

in a single frame, a feat humanly and mechanically implausible. Mashing

left and right on the D-pad requires at least two fingers and a fair bit of

force — a task much too convoluted to execute in 1/60 of a second, much

less in a series of similarly deft key presses.

 These strange inputs, in turn, trigger conditions that the game ’ s pro-

grammers did not account for. When object interaction in a game engine

expects to execute branch statements based on binary inputs — if the player

presses up, move up, otherwise, move down — “ overloading ” the system

with unforeseen input can create unexpected behaviors. A sprite ’ s coor-

dinates, for instance, might suddenly update by several pixels more than

intended, bypassing the collision detection check that was meant to

prevent the sprite from passing through a solid wall. Holding up and down

simultaneously while riding elevators in Zelda II, for example, allows the

player to warp vertically through dungeon levels. 69 Input glitches like

these are the holy grail of TAS assemblers, allowing them to short-circuit

large segments of gameplay in the name of faster completion.

 What motivates this type of play? Can we still label it “ play ” as such?

And what do the limits of play teach us about the limits of platforms?

James Newman provides a number of answers to the first question in his

discussion of “ superplay. ” 70 First, there are the goals common to video-

games, non-digital games, sports, and many types of unstructured

play: creative expression, competition, socializing, self-improvement,

community-building, and public recognition. Another process at work,

and a proclivity of digital media like videogames, is the mastery

and manipulation of an underlying procedural system — “ playing ” and

 “ gaming ” in the sense of bending or breaking rules to gain an advantage.

8 Tool-Assisted [321]

Newman explains that “ this system of rules and boundaries is not fixed

but rather is permeable and in a state of flux as it is interrogated, operated

on, and played with. Moreover, the system may behave in an unpredict-

able manner unintended by the game designers due to imperfections in

the code or unanticipated emergent contingencies. ” 71 In this interplay,

Newman concludes, “ both player as performer and game system should

be considered agents in the process of gameplay. ”

 Rule-breaking is certainly enticing to TAS assemblers. There is a

transgressive aspect of playing a game “ wrong, ” while in the process,

playing it better than any human could. The perceived rigidity of com-

putational platforms — slaves to the stark microcosm of algorithms

and binary digits — loosens as we witness the odd spectacle of a violated

game space. The game engine behaves erratically when fed unexpected

inputs. Algorithms run awry. Binary says “ and ” instead of “ either/or. ”

This is why the TAS movie, in its text form, is eventually recorded as

a movie proper that can be posted online and shared with others. The

TAS community ’ s emphasis on entertainment value insists that a run

must be seen.

 TAS text movies archive encounters between source code and input

code. Over time, as a platform is better understood, one might reasonably

assume that the human player ’ s role will eventually disappear, that a com-

puter might learn to play the emulator and ROM with limited external

assistance. TAS assemblers are already building external tools to automate

some aspects of the TAS-building process. Adelikat ’ s TAS of Gradius , for

instance, uses a “ macro editor patch ” for FCEU that allows him to program

complex input strings, resulting in the ship flying in a number of pre-

defined patterns:

 To create this run, I used a “ macro-editor. ” With this editor, I can

create a series of button presses and put them together into a single

command. This allows me to push one button to initiate very complex

movement patterns. Writing my name “ adelikat ” for instance was a

large programmed macro … I simply had to find a frame to start it that

didn’t result in the ship being destroyed. 72

 As the TAS evolves, tools are encroaching into play itself.

 Choreographic Play

 N. Katherine Hayles coined the term “ dynamic heterarchy ” to describe a

 “ multi-tiered system in which feedback and feedforward loops tie the

[322]

system together through continuing interactions, ” whose tiers “ continu-

ously inform and mutually determine each other. ” 73 She develops the term

to describe our encounters with various electronic texts, but reminds us

that these heterarchies can be biological as well, like the complex “ system ”

formed between mother and fetus.

 The adjective “ tool-assisted ” indicates a dynamic heterarchy between

player and emulator that operates in the execution of a speedrun. The

player initializes the system through input, making an onscreen character

run, jump, or shoot. The system then reacts procedurally — an adversary

appears, the character ’ s body makes contact with an object, a timer ticks

down. Based upon this feedback, the player then adjusts their subsequent

input — or, more crucially, revises prior inputs by resetting the system to

a known state in order to either perfect their input or evaluate an alternate

system response. In real time (e.g., the traditional speedrun), this trade

of actions and reactions is linear and unpredictable. A player cannot ret-

roactively adjust their input stream beyond the typical looped structure of

play, death, and re-play, while the range of system reactions are too

numerous or complex to react to with normal human reflexes.

 By leveraging the assistance of the emulation tool, the execution of

the underlying computational processes becomes legible. A player wit-

nesses the machinations that take place in a single frame or cycle. At this

fine-grained level of perception, fissures arise: the sparse boundaries of

objects permit elisions of solids and bodies; a system expecting only

single inputs per frame reroutes to unexpected junctures when this expec-

tation is overloaded; the bare clockwork of computation becomes predict-

able, even manipulable. Tool-assisted speedrunners have even coined a

clever oxymoron — “ luck manipulation ” — to describe their ability to coax

a game ’ s pseudo-random processes toward predictability, like avoiding

enemy encounters in Dragon Warrior or triggering favorable item drops in

 Mega Man 3 . 74

 Even experienced video game players are left bewildered by a number

of the most extreme tool-assisted runs. The content of a glitched perfor-

mance borders on illegibility as fragments of displaced tiles rearrange

into 8-bit cubist collages, bizarre visual references to what was once a

playable game. 75 Other TASs are comical in their brevity. The run for

Genesis title King ’ s Bounty completes the lengthy turn-based strategy

game in under ten seconds — and most of that time is spent loading the

screen. In a 2009 feature on “ insanely thrilling ” tool-assisted speedruns,

videogame journalist John Teti describes a Rockman run that uses bugs

and exploits “ to such a degree that the action is distorted and barely rec-

ognizable, almost like an avant-garde film. ” 76 Teti is alluding to the

8 Tool-Assisted [323]

systematic breakdown of spatial and temporal boundaries that violate

viewers ’ expectations of continuity, coherent objects, and even legible

behavior of the underlying procedural system. In everyday computer use,

the glitch or bug are phenomena to be avoided. The TAS elevates and

foregrounds error as a means to mastery.

 What happens at the limits of the tool-assisted speedrun, when all

possible avenues for gains in speed and glitch manipulation are exhausted?

One possibility is the emergence of a TAS that is meant to be visually

interesting or aesthetically pleasing for its own sake, regardless of whether

speed is sacrificed in the process. Practices such as these, which hover at

the fringe of many disciplines, including dance, animation, performance,

video, and sport, I call choreographic play .

 Adelikat ’ s Gradius TAS is a prime example of the form. Since Gradius

is a side-scrolling shoot- ’ em-up, it seems an odd choice for a speedrun,

as most of its gameplay speed is fixed. Scrolling progresses at a constant

rate regardless of player action. Barring death or pre-scripted action

sequences, the player is meant to arrive at the end of a stage on schedule.

Only the boss fights that occur at the end of each stage grant any leeway in

the final run time. Accordingly, Adelikat ’ s description under the “ Overall

Aim ” heading in his author ’ s notes emphasizes both speed and beauty:

 The goal is to take a game with this kind of speed potential and push

it to the limit. This allows me to create a run where the on screen

animation becomes a visual pattern resulting in the less & less impor-

tance on the game itself. The run transcends the usual gaming logic

and becomes a sort of abstract art. The run becomes something

unique and emphasizes the potential for TASes to truly be considered

art. 77

 I am less concerned with the artistic merits of the TAS than their careful

marriage of speed, form, and motion. Using the spaceship to paint geo-

metric patterns or the author ’ s name emphasizes the subjective element

of the TAS while still leveraging the automated assistance of non-human

tools. The underlying aesthetic dimension of play — a trait we appreciate

in sport, musical improvisation, and videogames alike — points to a new

direction in emulation-assisted play that is not focused squarely on raw

speed or entertainment.

 Baxter ’ s mesmerizing TAS of Arkanoid has similar aims. 78 He chooses

to skip the time-saving Laser power-up, which can obliterate blocks by

shooting them with the paddle, in favor of the 3-ball power-up, which

releases two additional balls on the screen. The result is a hypnotic

[324]

high-speed juggling act that is as compelling sonically as it is visually. The

geometric arrangements of kaleidoscopic bricks emanate erratic melo-

dies as they struggle to keep apace of the ricocheting balls. Similarly,

Baxter and AngerFist ’ s collaborative multi-screen TAS of Mega Man 3, 4,

5, and 6 — played simultaneously by the same sequence of inputs — coalesces

into a manic cacophony of sound and image, more John Cage than Keiji

Inafune. 79 In all cases, the weird creative artifact that is a TAS exposes the

strange limitations of medium specificity that exist at the borderlines of

all media. A completed TAS is called a movie, but it is not. Instead it is,

all at once, a text file, a performance, a dance, an animation, a procedural

event, sport, entertainment, a social act, an ethics, an archive, and yet still

a videogame.

 The vitriol initially surrounding Morimoto ’ s Super Mario Bros. 3 TAS

implied that the human element was somehow slipping away, that autom-

ata would eventually surpass the efforts of flesh and blood. An artificial

intelligence system could conceivably find the best routes, manipulate

luck in beneficial ways, and minimize the key presses necessary to com-

plete a game. Certainly some of the scripting tools now available to auto-

mate play lean toward that outcome. But we should be wary to rely solely

on the end result of the TAS process. The final “ movie ” is a human impos-

sibility, but using it as an example of eliminating human intervention

ignores hundreds of laborious hours invested into perfecting a run.

Moreover, as long as games are differentiated at the engine level, there

can be no reliable means to algorithmically generate speedruns for a wide

swath of games. The engine driving Ninja Gaiden is fundamentally differ-

ent than the one driving The Legend of Zelda . Their object handling, colli-

sion detection, sound routines, bankswitching, and compression

algorithms make it impossible to write a generic TAS-generator that could

compete with the most meticulous human assemblers. Stranger still, the

efforts of the TAS community now influence the traditional speedrun-

ners. The latter study the techniques of the former to learn new strategies,

adapt their play styles, become more mechanistic and precise in their

play. Humans emulate emulators. New and unforeseen heterarchies arise.

 This isn ’ t a compilation …

 - Nintendo ’ s official NES Remix website

 In December 2013, Nintendo simultaneously announced and released

 Famicom Remix , known as NES Remix outside Japan, for download on the

Wii U eShop. Famicom Remix compiles sixteen first-party titles, from

 Super Mario Bros. to Urban Champion , representing Nintendo ’ s early

console history. Though most of these games were available for download

previously as standalone Virtual Console titles, Famicom Remix intro-

duces, true to its name, a series of escalating gameplay variations that

recasts each game as a host for dozens of mini-games, similar to Nin-

tendo ’ s popular WarioWare series.

 Players must first complete a number of trivial exercises meant to

acclimate them to each game ’ s mechanics. An introductory challenge

series in Zelda , for instance, requires the player to 1) enter the cave in the

opening screen and grab the sword, 2) clear a screen of Octoroks, 3) revive

life from a fairy, 4) purchase an item from the shop, and 5) find and enter

the first dungeon. The sum of these actions takes approximately forty-five

seconds. Successfully completing challenges awards stars and points that

unlock new challenges, new games, and special remix levels.

 In the standard challenge mode, games are presented in their original

format. Beyond some sprite scaling to bring the PPU ’ s native resolution

up to modern standards, a border to pad out the 4:3 resolution to 16:9,

and the Remix HUD, no in-game embellishments are added. Ice Climber

 Afterword: Famicom Remix

[326]

looks and plays like the original, for better or worse. However, Famicom

Remix ’ s namesake mode introduces odd variations of the games ’ core

mechanics, enhanced graphical effects, and mixtures of characters and

settings. In one remix series, the player must guide Link through a Death

Mountain screen while its pixels gradually abstract into blocky mosaics,

then seconds later use Link to complete Donkey Kong ’ s opening girders

scene — without the benefit of Jumpman ’ s jump. Similar challenges require

players to speedrun Super Mario Bros. stages, collect the bonus coins in

 Mario Bros. with a duplicate Mario sprite, finish an Excitebike track with

only a spotlight to guide them, and navigate a Donkey Kong Jr. level while

the background tiles blink on and off.

 Famicom Remix 2 quickly followed in April 2014, reaching further into

Nintendo ’ s first-party catalog with twelve additional games, ranging from

their most famous sequels, like Super Mario Bros. 3 and The Adventure of

Link , to their final Famicom release ワ リ オ の (Wario ’ s Woods) . The

sequence of challenges and unlocks are largely similar, though the indi-

vidual tasks feel more developed, since the range of titles are no longer

predominantly single-screen arcade fare. The sophisticated open-world

adventuring of Metroid generates a richer series of challenges than, say,

 Pinball or Wrecking Crew. Genre subtleties notwithstanding, it is clear from

the sequel ’ s rapid development time that Nintendo found a successful,

iterable formula.

 In the U.S., critical reception to the series has been mixed. 1 The initial

excitement of playing recontextualized NES classics quickly evaporates in

the face of the menial gameplay labor required to unlock the game ’ s more

inventive remix levels. It is a sentiment best expressed in Kyle Orland ’ s

 Ars Technica review, which calls the collection “ more evocative than trans-

formative, ” banking on Nintendo ’ s “ vast troves of nostalgia ” to ultimately

produce another franchise rehash — “ recycled and chopped up classics

dressed up in a new form. ” 2

 The critical malaise is partly attributable to a mismatch between Nin-

tendo ’ s intended audience and the demographics of games journalism.

Seasoned players who have spent decades with Nintendo ’ s catalog find

directives like “ jump a barrel ” rote, but to new or younger players, the

grammar of nostalgia — and its accompanying haptic reflexes — is not so

ingrained. Nintendo ’ s own gender-specific marketing indicates as much:

 “ All those games our dads played passionately back in the day have been

reborn! ” 3 This is not a game designed for the dads (and hopefully moms)

to relive their Famicom halcyon days. It is a game meant to introduce a

new generation to Nintendo ’ s legacy.

Afterword Famicom Remix [327]

 Orland ’ s deeper complaints stem from a misunderstanding of

 Famicom Remix ’ s technological underpinnings. Series director and pro-

grammer Koichi Hayashida stressed in a 2014 interview that he wanted

the games to be “ true to the spirit of the originals, ” including Famicom

quirks like OAM cycling and gameplay slowdown, 4 and several textual and

technical details indicate that Remix is, in fact, running on a sophisticated

emulation core rather than ground-up rebuilds of each game. For one, the

development turnaround indicates that Hayashida ’ s team is not creating

custom replicas of dozens of Famicom games (as Capcom did for faux-

retro releases Mega Man 9 and Mega Man 10). While their engines are

simplistic by modern standards, accurately modeling the look and feel of

games as disparate as Metroid and Ice Hockey in only four months would be

impossible. Building Remix ’ s engine around a single emulation core that

can play and manipulate multiple ROM images is far more feasible.

 There are also platform-specific clues that emulation drives the Remix

series. In Super Mario Bros. 3 , attribute glitches are clearly visible along the

screen ’ s border, sprites cycle accurately when the scanline limit is

exceeded, and power-ups spawn properly behind blocks. 5 In The Legend

of Zelda , APU channel priorities and the noticeable sound engine hiccup

while scrolling dungeon screens are identical to those found in the

original. In remix stages, when background tiles vanish to add an extra

challenge, only tiles from the sprite pattern table remain. In Donkey Kong

Jr. , Jumpman and Donkey Kong disappear, since they are composed of

background tiles. Replicating these arcane platform behaviors to such

exacting detail would be possible in a custom engine, but not in Remix ’ s

limited development time.

 As the Game Genie proved decades ago, manipulating memory regis-

ters to create alternate physics or life counts is a straightforward process,

even on hardware. With emulation, altering game attributes is far simpler.

 Famicom Remix ’ s introductory challenges likely use a variety of save states

to place the player at predetermined points. Remix ’ s engine can then

watch for specific changes in memory — did Link collect the sword? — to

trigger a challenge ’ s success or failure. HUD cues like the circles and

arrows that instruct players during challenges have no effect on gameplay,

so they can simply be painted atop the emulation window.

 The remix stages prove trickier to assess since they clearly violate the

PPU ’ s capabilities. Game protagonists swap, objects have depth and

shading, backgrounds are painted with smooth gradients, tiles expand to

many times their original size, and sprites duplicate without any apparent

processor impact. But as we saw in the previous chapter, Famicom Remix

[328]

is duplicating, albeit in a polished commercial package, the work ROM

hackers and emulator authors have produced for decades. Link has been

playable in Donkey Kong since NESticle made it simple for any user to draw

over in-game pattern tiles. Sharable save states and hex editing have made

it trivial to play a game from any point with any outlay of stats and equip-

ment you might desire. Blinking a game ’ s background tiles into and out

of existence is a clever gameplay challenge, but the effect only requires a

one-bit PPU register toggle. Even Remix ’ s advanced graphical tricks have

corollaries in the emulation scene. Procyon Loto ’ s FCE3D, for instance,

is a fork of the FCEUX emulator that incorporates voxel rendering, extrud-

ing the PPU ’ s tiles into 3D space.

 But emulation can only extend so far. One can poke and prod at the

ROM ’ s memory, augment the PPU ’ s rendering routines, isolate audio

channels, or simulate NTSC artifacts, but one can not fundamentally alter

the game ’ s engine without extensive reprogramming. Assembly hacks like

 Rockman No Constancy require deeper technical engagement than emula-

tion alteration. To produce such a drastic gameplay overhaul, one must

delve into the source and alter code. So when Orland levels his strongest

complaint against NES Remix , it belies a misunderstanding of the plat-

forms at work:

 The most frustratingly intriguing bit of NES Remix is found in a

couple of microgames that throw Legend of Zelda hero Link into levels

from Donkey Kong, showing Nintendo ’ s willingness to actually mix

together its disparate game worlds in some interesting ways. Unfor-

tunately, Link can ’ t even use his trademark sword in these levels,

functionally transforming him into just a version of Mario that can ’ t

jump. It ’ s kind of incredible that Nintendo didn ’ t take the concept of

mix-and-match characters and environments further, especially

when indie fan games like ROM Check Fail have already done so with

aplomb. 6

 Regarding Donkey Kong ’ s inclusion of a jumpless, swordless Link, Orland

adds: “ What ’ s the point? ”

 The point is that the remix Orland desires is impossible without a

platform-level redesign of Donkey Kong ’ s mechanics. It is simple to

re-skin Jumpman with Link ’ s sprite and disable the jump button — these

all fall within Donkey Kong ’ s engine parameters. But introducing a

mechanic that does not exist would require injecting new assembly rou-

tines, a meticulous and time-consuming task not worth the effort for a

twenty-second mini-game. 7 One does not simply mix the Legend of Zelda

Afterword Famicom Remix [329]

and Donkey Kong engines and expect a gameplay hybrid to arise. Games

like ROM Check Fail that scrape the graphical and audio assets from classic

games and reconfigure them in chimeric form do so superficially. Spend-

ing time with Mario ’ s controls in Super Mario Bros. then swapping to ROM

Check Fail makes it clear that the engines are not the same. ActionScript

and assembly bear different fruit.

 Famicom Remix , in a single digital object, encapsulates the multiple

themes driving this book ’ s purpose. The divergent regional titles are a

nod to an era in Nintendo ’ s history when translation was a mediating

factor in their potential success abroad. Worldwide release of a game

called Famicom Remix, its title redolent in gold and maroon, would stir

some Nintendo diehards, but the majority of videogame players who still

have no idea what a Famicom is or was would pass it over as a Japanese

oddity. But NES Remix , its title emblazoned atop the familiar shape and

palette of an NES controller, has a far bigger impact on audiences outside

Japan.

 Subtler translations are at work in the selection and presentation of

 Remix ’ s titles. In Japan, Nintendo respects their own platform chronology

and offers the original FDS versions of Ice Hockey , The Legend of Zelda ,

 Zelda II , Kid Icarus , and Metroid , complete with emulation of the periph-

eral ’ s additional sound channel. NES Remix swaps appropriately to their

respective NROM and MMC1 cartridge ports minus the bonus audio.

Likewise, NES Remix receives two versions of Super Mario Bros. 2 — the NES

 “ original ” and the so-called “ Lost Levels ” — while Famicom Remix contains

FDS Super Mario Bros. 2 and Super Mario USA.

 From a platform studies perspective, Famicom Remix ’ s gameplay

quality or the resulting review metrics are its least interesting charac-

teristics. More fascinating is the game ’ s reabsorption of the Famicom ’ s

platform history after its commercial demise. Speedruns, save states, and

ROM hacks are all residuals of emulation development, the output of a

community that has existed largely among amateur programmers and

Nintendo hobbyists, often at the periphery of legality. Nintendo is not

simply re-presenting their own legacy, but directly competing with the

emulation ecosystem that has thrived for decades, generating their own

Famicom hacks and remixes. Nintendo is redefining its platform in its

own emulated image. But they are also expanding the notion of what the

Famicom platform is and can be.

 Nintendo adopts the trendy musical lingo of the “ remix ” and

 “ mash-up ” to market the Remix series, but the culture of reappropriation,

revision, and recycling evinced by these terms has been a prevalent part

of Nintendo ’ s design philosophy since at least the 1970s, when Gunpei

[330]

Yokoi began adapting proven concepts from his toy designs to electronic

and computer games. With Nintendo ’ s future uncertain in the face of

competitors who are more adept in mobile gaming, app ecosystems,

online infrastructures, and third-party recruitment, critics are quick

to attack Nintendo ’ s rigorous adherence to proven franchises and

formulas.

 That assessment holds a grain of truth. The whimsical animation used

to show progress during a Virtual Console download often feels like a

metaphor for Nintendo ’ s design strategy — Mario runs left to right in an

infinite loop, collecting coins, while the player waits eagerly, hoping

something will change. But the criticism also ignores Nintendo ’ s history

of patient iteration, often conjuring the phoenix of success from the ashes

of failure. Radar Scope yields Donkey Kong. The LCD calculator yields the

Game & Watch. The Game & Watch yields the D-pad and the Nintendo DS.

The Virtual Boy yields the 3DS. And on and on. The Wii U may be a bust — it

is too soon to tell — but it is certain that its creative spark will live on in a

future design.

 Among hobbyist programmers, the Famicom and NES ’ s futures are

bright. Thanks to the convergence of increasingly accurate emulators,

robust development tools, and crowd-sourced documentation, the home-

brew community has begun to produce games that rival commercial NES

titles. Sivak ’ s Battle Kid series, miau ’ s Super Bat Puncher demo, Rachel

Simone Weil ’ s Track + Feel II , Damian Yerrick ’ s Thwaite , Gradual Games ’

 Nomolos , shiru and pinwizz ’ s Zooming Secretary, Adolfsson and Eriksson ’ s

 Driar , and thefox ’ s Streemerz are all standout examples. Hundreds of other

programmers, hardware hackers, artists, designers, and musicians con-

tinue to use the Famicom as a platform for creative expression, indepen-

dent of Nintendo ’ s commercial concerns.

 When we try to comprehend the entirety of a platform ’ s uses, its

expressive range, its variation in hardware and software, its persistence

and improvement through emulation, we find that its reach is strangely

liminal. What is the Nintendo Family Computer platform? Is it a collec-

tion of ICs, PCBs, card edge connectors, and silicon traces assembled in

a plastic frame? If so, then what is the NES, the Sharp Twin Famicom, the

Mattel PAL NES, the Dendy? Is the platform merely an abstraction of

hardware that can play Famicom and NES games? If so, then we have sud-

denly expanded the field to all manner of Famiclones and emulators, from

the homebrewed RetroZone PowerPak to NESticle to Animal Crossing ’ s

unlockable NES games to Famicom Remix.

 In light of these blurred boundaries, it is clear that a platform is an

evolving negotiation between static and dynamic forms. A finalized

Afterword Famicom Remix [331]

configuration of hardware and software must be settled upon as a basis for

creating digital objects, but that configuration is susceptible to transla-

tion, transposition, modification, revision, expansion, and emulation. A

platform is therefore more convention than console, more abstraction

than assembled product. And how strange that platform studies, an

approach so rooted in material objects, should lose grasp of its borders at

the moment when they feel closest at hand.

 Platform studies owes much to the discipline of bibliography, which pro-

vides systematic descriptions of manuscripts, books, codices, pamphlets,

rolls, and other printed matter. Bibliography is itself split into manifold

sub-disciplines, each with its own corpus of study, technical language,

and process. 1 Readers are likely most familiar with enumerative (or refer-

ence) bibliography, the list of works, print and otherwise, found at the end

of this and other books. In its utilitarian form, the enumerative bibliog-

raphy is meant to provide readers with enough information to locate the

sources mentioned in the text.

 Other branches of bibliography analyze printed matter for evidence

of their production. Codicology , for instance, narrows its study to the codex

as a material form, distinct from papyrus rolls (papyrology) or various

legal documents (diplomatics). Similarly, analytical bibliography studies

printed books as “ products of a particular manufacturing or technical

process. ” 2 In other words, the content of the book is not the focus. Rather,

the bibliographer examines the work as a specific material artifact com-

prising ink, paper, binding, printer ’ s marks, and so on. Two books with

identical authors, chapters, and words may in fact be wholly distinct phys-

ical objects. The related discipline of descriptive bibliography widens the

analytic net to describe all features of a particular book, whether they are

related to the print process or not. Stray marks, bookplates, page counts,

and missing leaves all fall within the descriptive purview.

 To claim that videogame bibliography demands a closer allegiance

to the practices listed above assumes that a unified practice called

 Appendix A: Famicom/NES Bibliographic Descriptions

[334]

 “ videogame bibliography ” even exists. At their best, videogame citations

adhere to the barest enumerative models. Even in those texts that most

seriously grapple with electronic artifacts as objects that exhibit physical

properties worthy of description, such as Kirschenbaum ’ s Mechanisms or

Montfort and Bogost ’ s Racing the Beam , videogames are still afforded

scant bibliographic information. Their treatments within the text are

generally better. Kirschenbaum, for instance, devotes an entire chapter

to a “ forensic investigation ” of the Apple II game Mystery House , but the

comprehensive work done in that chapter is supported by the following

bibliographic entry:

 Williams, Roberts and Ken Williams. Mystery House . Los Angeles:

Sierra On-Line, 1980, 1987. Available online at ftp://ftp.apple

.asimov.net/pub/apple_II/images/games/adventure/ . 3

 Kirschenbaum ’ s citation uses a familiar enumerative model, but in a

study so intimately concerned with the material substrate of disks and

drives, what does this tell us about the object itself? What is the disk size

and file format? What do the multiple dates denote? Are they the release

dates of the original disk or the disk image available for download?

Kirschenbaum mentions the APPLEWIN emulator as a means to play

Apple II disk images, but was that the emulator he used to investigate

 Mystery House ? And should we not differentiate between emulated and

non-emulated media?

 One problem facing videogame bibliography is the medium ’ s relative

youthfulness. Commercial videogames have only been with us since the

1970s. Generations of consoles and games still litter yard sales, attics,

pawnshops, and thrift stores. Our familiarity with and access to video-

games is taken for granted, since many of us are old enough to recall

first-hand experience with the entire history of videogames — a claim that

cannot be made by scholars of other media. There is an implicit assump-

tion that we all know what a Super Mario Bros. cartridge looks like, so why

bother with thorough descriptions?

 Consider the following citations for Super Mario Bros. culled from a

number of scholarly texts on videogames. In Newman, all references to

the game are listed with title alone — no dates, authors, or bibliographic

citations. In contrast, traditional printed texts, films, and even websites

merit standard enumerative listings. 4 The game fares the same in Kline —

 no date, attribution, or citation. 5 In Wolf, we see a slight improvement,

complete with media-specific distinctions to indicate that both a video-

game and a film share the same title: “ Super Mario Bros. (game, 1985; film,

Appendix A Famicom/NES Bibliographic Descriptions [335]

1995). ” 6 In Montfort and Bogost, we have the following: “ Nintendo. Super

Mario Bros. Nintendo Entertainment System. Designed by Shigeru Miya-

moto. 1985. ” 7 In Bogost ’ s How to Do Things with Videogames , we find a

terser version: “ Super Mario Bros. Nintendo Entertainment System. Devel-

oped and published by Nintendo, 1985. ” 8 In both cases, we see the

acknowledgment of a console, credits for a developer/publisher, and a

release date. Bateman is a notable outlier, tipping his hat to materiality,

despite a minor factual inaccuracy: “ Nintendo EAD (1983). Super Mario

Bros. [Cartridge], Nintendo Entertainment System, Kyoto, Nintendo

Co., Ltd. ” 9

 Compare these citations to bibliographic descriptions found among

fan communities. BootGod ’ s NES Cart Database lists fourteen individual

entries that include “ Super Mario Bros. ” in the title. These range from the

original Famicom release to the German RevA multi-cart Super Mario

Bros./Tetris/Nintendo World Cup . Each entry include copious technical

details, part listings, scans of carts and boards, manufacturer informa-

tion, revisions, chip labels, and more. The NintendoAge game search,

which pays closer attention to variations in cart labels, box art, and related

miscellany, lists more than two dozen entries for Super Mario Bros . The

rabbit hole runs deeper when we consider arcade versions, ports, tabletop

toys, ROM hacks, and the hundreds of extant pirate cartridges featuring

 Super Mario Bros. that circulate worldwide.

 Are these variations important? Consider a hypothetical foil from the

print world:

 Tolstoy, Leo. War and Peace . 1869.

 Would this citation be sufficient for a scholarly article? Am I citing the

original Russian? If not, who were the translators? Is the French trans-

lated inline or in footnotes? Is the text based on the original manuscript,

the printed version, a later revision, etc.? I use this example as an extreme

case, but the above citation style is the shorthand we see used time and

again for videogames, if we see any at all.

 Worse yet is the conflation of emulated and physical videogame arti-

facts. Chapter 8 has hopefully divested readers of the notion that ROMs

are identical to cartridges. Emulation serves admirable aims in preserva-

tion, archiving, scholarship, convenience, and accessibility, but it is never

perfect. In The Medium of Video Games , an early example of videogame

scholarship, Wolf provides a prescient warning for scholars relying on

emulation:

[336]

 For researchers trying to track down hard-to-find games, emulators

can sometimes give a good idea what certain early games were like.

However, not all emulators give exact renditions of the games they are

emulating; graphics may not appear at their original ratios, and the

experience of watching a computer screen is often quite different

from that of a television screen, or better still, a period television of

the sort on which the games would have been played. Emulators can

be of use in video game research, but users should beware of the dif-

ferences and get firsthand experience whenever possible. 10

 Even the lowly 6502, an ancient slab of silicon compared to today ’ s micro-

processors, is an almost infinitely complex bit of hardware, subject to

manufacturing bugs, temperature fluctuations, corrosion, and program-

mer exploitation. And this is only one component of a complex console,

a machine that continues to yield surprises unknown to programmers and

engineers of the Famicom era. And while ROMs may reproduce identical

 visual results when played alongside physical cartridges, we know that

they often carry along unseen textual artifacts of their history, circulation,

and distribution. None of these aspects should be ignored when we take

bibliographic account of our digital objects.

 Montfort, following the work of Clara Fernandez-Vara, proposes that

emulators count as “ editions ” (or “ printings ”) of a computer. 11 This

approach leans in the right direction, but there is an assumed hierarchical

and chronological organization that belies the reality of emulated systems.

As he says, “ The first edition would be the original piece of hardware, ” but

the “ original ” is often not a given. In many cases, for both hardware and

software, emulation precedes the physical platform. Even in the Famicom

era, game software often ran on an emulation terminal before it was burnt

to an EPROM for hardware testing. In such cases, the physical object is

rightly the edition of a prior emulated form.

 Though I list specific works and authors above, the point is not to pick

on this or that scholar. The point is to raise the bar for the minimum

acceptable quality of bibliographic information. Quality descriptive bib-

liography is hard work. It is, on its own, a platform studies problem that

warrants careful attention to the types of descriptions available for any

given computational object. In other words, rich bibliographic records

necessarily require a baseline technical understanding of the objects

they describe. This is true for analog and digital media alike. If I do not

understand the form and function of the Famicom ’ s various mappers, for

instance, I may not comprehend their importance to a game ’ s descriptive

listing. Likewise, the bibliographic description that suits a Famicom

Appendix A Famicom/NES Bibliographic Descriptions [337]

cartridge will not necessarily suit a ColecoVision cartridge, TurboGrafx-16

HuCard, Xbox Live Arcade download, or PlayStation 3 Blu-Ray disk. There

is not a generic enumerative style that will apply to all videogames across

all platforms.

 This presents a problem for videogame texts with a wide scope. As a

Famicom scholar, I may possess the terminology to describe that plat-

form ’ s media but meanwhile lack the platform-specific knowledge to

properly cite a PlayStation 2 game. My listings for the latter will suffer as

a result. And I AM ERROR inevitably fails on this account. Chapter 2 alone

lists dozens of arcade games, most with their own peculiar hardware

architectures. Granting each its due description poses a sizable research

challenge. One solution is to build up a body of platform-specific descrip-

tions that others may use as a model for their own research, in the

same way that codices or contracts have their own unique languages and

methodologies. Once a workable model forms, it may disseminate to the

scholarly community for adoption and, more importantly, refinement.

But such shared knowledge will take time and work.

 I AM ERROR aims to be an example of good form, both in theory and

practice, within its narrow scope of platform history. Outlined below are

two models for bibliographic records of Famicom/NES artifacts, both

physical and digital. The first is a proposed enumerative form I adopt for

all Famicom/NES cartridges and disks cited in the book. The second enu-

merative model describes ROMs meant for play in a compatible emulator.

Since ROMs are a different digital object than the hardware they describe,

they deserve a separate entry. Again, I have adopted this model through-

out the book, making sure to notate when a game is played on authentic

hardware or on an emulator, especially when screenshots are provided.

 The proposed listings are models, not canon. In my examples, I

borrow extensively from the bibliographic tradition. Over time, these

conventions may prove inadequate. But until videogame bibliography

develops its own voice, it must speak with borrowed tongues.

 Listing 1: Enumerative type for citing Famicom, NES, and compatible

cartridges and disks.

 Format:

 Title . Platform (media), TV format [Region]. Catalog ID (Form, Revi-

sion). PCB Class [Mapper | ROM1 size/type | ROM2 size/type | … |

Lockout model | Mirroring]. Developer {Credits}: Publisher, Release

date.

[338]

 Videogame authorship poses problems for citation, especially games

hailing from the early years of the medium. The standard enumerative

model that lists author first is often stymied by the absence of a single

author (since games are usually designed by teams of tens to hundreds)

or any credits at all. As such, listing the game title first is preferable.

Games are commonly known by their title rather than by their designers,

so this aids readers consulting citations. It also groups similar titles across

divergent platforms. Comparing the myriad ports of Donkey Kong is far

simpler when they are listed sequentially.

 The choice of how and where to list the game ’ s creative team is up to

the discretion of the bibliographer. One choice is to treat the videogame

as an “ edited volume, ” using the creative lead/director as the “ editor. ”

This does not solve the auteur-centric problem inherited from cinema,

wherein the director takes top billing above all other collaborators, but it

does serve the practical purpose of narrowing down dozens or hundreds

of contributors to a short list. I opt to list known contributors in braces

next to the developer credit. This may be omitted for editorial purposes

or if the contributors are unknown. There are no perfect solutions to

videogame attribution, only those that suit the text at hand.

 The title should be as accurate as possible. Japanese titles in particu-

lar pose problems for Famicom citations (in English) since the labels

often display Japanese titles, English titles, or a mixture of both. When

possible, list the most prominent title first, along with the alternate title

in parentheses. When the title is a translation not seen on the actual cart,

indicate it as such.

 Next list the platform and media type. Famicom games come as carts

or disks and should be labeled as such. Pin sizes further differentiate

Famicom (or pirate) carts from NES game paks. Pin sizes may be trun-

cated to “ 72-p. cart ” or “ 60-p. cart ” if preferred. The TV format and

region follows, indicating the cart ’ s proper playback and country of

origin.

 Catalog IDs designate Nintendo ’ s internal cataloguing scheme,

though many third-party licensees adopted similar nomenclature. Within

parentheses, one can list further details about the cartridge form factor

(e.g., 3- or 5-screw, prototype, test cart) and any relevant revision infor-

mation (e.g., bug fixes or scrubbed content were often shipped as separate

revisions).

 The PCB class and subsequent cartridge hardware descriptions can

vary in length according to the complexity of the mapper and the underly-

ing ICs. When applicable, the mapper should be listed first, followed by

Appendix A Famicom/NES Bibliographic Descriptions [339]

ROM types and capacities, lockout chip (or circumvention hardware),

batteries, SRAM, and sound chips. The last element in this field will des-

ignate the cart ’ s mirroring setting (e.g., “ V ” for vertical, “ H ” for horizon-

tal, “ MC ” for mapper-controlled).

 The final line lists the development house, any known contributors,

publisher, and release date. Many FC/NES games do not a have known

release dates. Sometimes we know the specific day, other times merely

the year. Use the most accurate date possible.

 Family Computer Disk System games require a slightly different

format. The media type is double-sided QuickDisk, which may be trun-

cated to “ d.s. QD ” if preferred. Unlike cartridges, FDS disks only have a

single capacity, so it is not technically necessary to list the number each

time. However, for the sake of consistency, I have chosen to do so in the

examples below. Also note the number of disks when known and, if appli-

cable, the disk side(s) the game occupies.

 Examples:

 Castlevania III: Dracula ’ s Curse. Nintendo Entertainment System

(72-pin cartridge), PAL-B [Germany]. NES-VN-FRG (3-screw,

DAS). NES-ELROM [MMC5 | 256KB PRG | 128KB CHR | CIC 3195A |

MC]. Palcom: Konami, Sept. 1990.

 メ ト ロ イ ド (trans. Metroid). Family Computer Disk System

(double-sided QuickDisk), NTSC [JP]. FMC-MET. Disk (one) [8KB

PRG-ROM | 32KB PRG-RAM | 8KB CHR-RAM | MC]. Nintendo

R & D1/Intelligent Systems: Nintendo, 6 Aug. 1986.

 ス ー パ ー マ リ オ ブ ラ ザ ー ズ (trans. Super Mario Bros.). Family

Computer (60-pin cartridge), NTSC-J [JP]. HVC-SM. HVC-

NROM-256 [32KB PRG | 8KB CHR | V]. Nintendo {Kondo, Koji;

Miyamoto, Shigeru; Nakago, Toshihiko; Tezuka, Takashi}: Nintendo,

13 Sept. 1985.

 Super Mario Bros. Nintendo Entertainment System (72-pin

cartridge), NTSC [US]. NES-SM-USA (3-screw, REV-A). NES-

NROM-256 [32KB PRG | 8KB CHR | CIC 3193 | V]. Nintendo {Kondo,

Koji; Miyamoto, Shigeru; Nakago, Toshihiko; Tezuka, Takashi}: Nin-

tendo, Oct. 1985.

 U-Force Power Games . Nintendo Entertainment System (72-pin

cartridge), NTSC [US]. < Unknown > (3-screw, prototype). NES-

GNROM [32KB PRG UV EPROM | 32KB CHR UV EPROM | CIC 6113B1

| V]. TOSE Software: Broderbund, 1990 (unreleased).

[340]

 Listing 2: Enumerative type for citing Famicom, NES, and compatible

ROMs/patches/save states used in emulation.

 Format:

 Original cartridge/disk title [Type]. Author. “ Filename and extension . ”

File size. Mapper format: Mapper number. [File header in byte

format]. Date modified. Emulator. < Download source >

 Though originally derived from a dump of a physical cartridge, a ROM

intended for play on an emulator is a fundamentally different object than

its progenitor. ICs that are separate in a physical cart are combined into

a single binary data stream and appended with a header to describe their

contents. The underlying data may be identical, but its form and configu-

ration are significantly altered. As such, the ROM file demands a separate

enumerative format.

 The original cartridge or disk title is listed first, as above. A small

bracketed designator indicates the format (ROM, IPS patch, save state,

etc.), followed by the name of the file(s), including extension(s). 12 Of

course, since files may be renamed at the user ’ s discretion, such titles may

vary considerably. However, ROM files ’ names and contents have proven

surprisingly resilient, contrary to the perceived “ ephemerality ” of digital

artifacts. Likewise, homebrew utilities for naming ROMs according to

prevailing community standards have ironed out many of the inconsis-

tencies that arise from user intervention, file transfer, hacking, and so

on. Certain ROM hacks, demos, or homebrew programs may have a known

author. In such cases, the author may be listed prior to the file name.

 Next list the file size followed by the mapper format and mapper

number. In combination, these details can indicate whether a given ROM

has been altered from its initial mapper configuration in order, for

example, to add additional capabilities, increase ROM space, play on a

specific emulator, and so on. The mapper number indicates a specified

cartridge hardware configuration and emulator compatibility. Not all

emulators support all mappers. In most cases, the mapper format will be

iNES or iNES 2.0, since those are the reigning standards. However, alter-

natives did and do exist (e.g., PasoFami), so they should be specified.

 All valid .NES files will include a 16-byte header. If the format is a

ROM, the header should be listed in full. For iNES headers, grouping

bytes into four groups of four is recommended for better readability.

Bytes do not need to be labeled with hexadecimal notation (e.g., “ $ ”)

unless it aids readability. It is also acceptable, based on the bibliogra-

Appendix A Famicom/NES Bibliographic Descriptions [341]

pher ’ s preference, to list the ASCII equivalents to the byte-encoding. For

non-iNES formats, a comparable header description should be included.

 Next list the ROM ’ s last date modified field (not the user ’ s last access,

as used in website citations) and, if applicable, the emulator(s) used for

analysis. For patches, hacks, or save states, the release date may be avail-

able and would be preferable to the modified date (though they are typi-

cally identical). Since emulators vary widely in accuracy, the emulator

listing provides the reader with information about how the author viewed

the particular file. If NESticle is listed rather than Nintendulator, for

instance, the reader will know that the file ’ s raster effects, sound, or pal-

ettes may have been emulated improperly.

 Finally, if known, the file ’ s download source may also be listed in

angled brackets. Standard URL format is desirable.

 Examples:

 Casino Kid 2 [ROM]. “ Casino Kid 2 (U).nes ” (131KB). iNES: 2.

[4E45531A 08002000 00000000 00000000]. 18 Oct. 2002. Macifom

v0.16.

 The Legend of Zelda [ROM] . Elric. “ Quest of Zelda V0.15 (Zelda

Hack).nes ” (131KB). iNES: 1. [4E45531A 08001200 00000000

00000000]. 7 Jan. 2003. Nestopia v1.4.1.

 Isolated Warrior [ROM]. “ Isolated Warrior.nes ” (262KB). iNES: 4.

[4E45531A 08104000 00000000 004D4A52]. 19 March 2000.

RockNES v5.08.

 Super Mario Bros. [ROM]. “ Mario ’ s Adventure (SMB1 Hack).nes ”

(41KB). [4E45531A 02010544 69736B44 75646521]. 16 Jan. 2003.

Macifom v0.16.

 Super Mario Bros. [IPS patch]. acmlm. “ StrMBro1.ips ” (aka Strange

Mario Bros. 1) (12KB). [50415443 4800000B 00054E49 322E3100].

20 May 2000. FCEUX v2.1.5. < http://www.romhacking.net/

hacks/14/ >

 Super Mario Bros. 2 [ROM] . “ Super Mario Bros 2 (U) (PRG 0).nes ”

(262KB). iNES: 4. [4E45531A 08104100 00000000 00000000]. 29

Jan. 1995. FCEUX v2.1.5.

 10NES: The lock-and-key “ handshake ” software that runs on the NES ’ s

Checking Integrated Circuit (CIC).

 2A03: Shorthand for RP2A03G, the IC package that contains both the

Famicom ’ s modified 6502 CPU and custom APU.

 2A07: Shorthand for RP2A07G, the PAL version of the 2A03, which fea-

tures a modified memory divider ratio and adjusted PCM audio play-

back rates.

 6502: Shorthand for the MOS Technology 6502 8-bit microprocessor.

The Famicom ’ s 2A03 package features a Ricoh-manufactured revi-

sion of this popular chip lacking decimal mode. Many popular com-

puting platforms in the 1970s and 80s used the 6502, including the

Apple II, Commodore 64, and Atari 800XL.

 Accumulator: A special 8-bit register of the 6502 used to store data for

the purposes of arithmetic and/or logical operations.

 Address: The location of a data word in memory.

 Advanced Video System (AVS): An early prototype of the Nintendo

Entertainment System designed by Lance Barr and shown at the 1985

Winter Consumer Electronic Show. Its modular design included a

control deck, cassette tape storage, QWERTY keyboard, infrared con-

trollers, joystick, light gun, and a musical keyboard.

 Application-specific Integrated Circuit (ASIC): An integrated circuit

designed and manufactured for a specific, often proprietary, purpose.

Nintendo ’ s custom memory management controllers (e.g., MMC1)

are ASICs.

 Appendix B: Glossary

[344]

 Assembly Language: A low-level programming language corresponding

closely to its host CPU architecture.

 Attribute Table: A 64-byte array located at the end of the Famicom ’ s four

name tables that designates the palette entry used for each 16x16-

pixel (i.e., 2x2-tile) region of the background.

 Audio Processing Unit (APU): The Famicom ’ s programmable sound

generator, which has five dedicated channels: triangle, noise, two

pulses, and delta modulation.

 Bank Switching: A technique used to extend the usable memory address-

able by a microprocessor. In the Famicom, mappers could swap banks

of ROM into the CPU ’ s address space when values were written to a

designated hardware register.

 Binary: A base 2 number system that represents all numbers as combina-

tions of either 0 or 1. For instance, decimal 9 is %1001 in binary.

Binary values in the book are prefixed with “ %. ”

 Bit: Shorthand for “ binary digit, ” the fundamental unit of information

that a computer can compute, abstracting the two physical states of

any bistable element, e.g., the “ on ” or “ off ” state of a semiconductor

gate.

 Bit Depth: In digital audio, the “ vertical resolution ” of sample data, i.e.,

the number of bits used to encode a sample ’ s amplitude.

 Bit Flag: A single bit used to indicate the occurrence of a specific “ event, ”

e.g., a carry overflow resulting from binary addition.

 Black Box Games: The first game paks released for the U.S. Nintendo

Entertainment System that shared a uniform packaging style, most

prominently the black star field background and exaggerated pixel

graphics. Some collectors extend the designation to include a few

non-standard exceptions, such as the “ silver box ” releases of Kid

Icarus and Metroid .

 Byte: An eight-bit unit of data, typically represented as either eight binary

digits (%01011101) or two hexadecimal digits ($5D).

 Card edge connector: The “ top-loading ” style of cartridge connector that

was the industry standard prior to the NES ’ s “ front-loading ” zero

insertion force (ZIF) connector.

 Cathode Ray Tube (CRT): A highly pressurized tube containing a barium-

coated cathode that, when heated, emits negatively charged electrons.

CRT is also shorthand for a television or monitor that contains such

a tube.

 Character Internal RAM (CIRAM): The 2KB portion of VRAM that stores

the Famicom ’ s name and attribute tables.

Appendix B Glossary [345]

 Character ROM/RAM (CHR-ROM/CHR-RAM): The cartridge IC that

contains the pattern data used to draw sprites and background tiles

onscreen. CHR-RAM is supplied pattern data during program

execution.

 Checking Integrated Circuit (CIC): A hardware microcontroller included

in all Nintendo Entertainment System consoles and game paks. When

a pak is inserted, both lockout chips execute the 10NES “ handshake ”

software to ensure that the pak is valid, i.e., manufactured by Nin-

tendo under their licensing terms.

 Chiptunes: A genre of electronic music produced using synthesizers

sourced from vintage arcade, console, or PC microprocessors — i.e.,

 “ chips. ”

 Crystal Oscillator (Xtal): A vibrating piezoelectric crystal that provides a

precise clocking frequency for a microprocessor ’ s CPU.

 Delta Modulation (DM): A 1-bit, differential pulse-code modulation

(DPCM) technique used to sample audio data. Instead of encoding the

sample amplitude data, DM encodes the current sample ’ s differ-

ence — either positive (1) or negative (0) — from the previous sample.

 Delta Modulation Channel (DMC): An APU channel that can playback

prerecorded samples or stream raw PCM data.

 Dendy: The unauthorized Russian Famiclone system originally marketed

and sold by Steepler.

 Digital/Directional Pad (D-Pad): The patented cross-shaped direc-

tional input device first devised by Nintendo engineer Gunpei Yokoi

for the portable Game & Watch LCD systems. The joystick alternative

became the de facto standard for game controllers after the NES ’ s

release, continuing until the advent of 3D gaming. Also commonly

called the “ cross pad ” or “ plus pad. ”

 Emulator: Originally a hybrid hardware/software solution meant to

mimic (and often augment) a target platform, specifically for the pur-

poses of supporting legacy software. In contemporary videogame par-

lance, an emulator is software designed to play games from older

console, PC, or arcade platforms on a more modern machine.

 Erasable Programmable Read-Only Memory (EPROM): A ROM whose

contents can be erased (typically by exposing it to sustained ultravio-

let light) and rewritten.

 Famiclone: A hardware clone of the Nintendo Famicom, typically associ-

ated with the unauthorized sale and distribution of pirate software.

Since Nintendo ’ s NES hardware patents have expired, Famiclones are

no longer illegal to manufacture. Thus third-party NES-compatible

[346]

consoles are sold in videogame stores or used as a hardware baseline

for affordable computing in developing nations.

 Famicom: See Family Computer .

 Family Computer Disk System (FDS): The disk drive add-on to the

Family Computer originally intended to make up for the shortcom-

ings of cartridge mask ROMs. The proprietary “ disk cards ” initially

had higher capacities, permitted game saves, and were cheaper to

manufacture. Due to piracy and the development of more capable

cartridge mappers, Nintendo discontinued the peripheral.

 Family Computer: Nintendo ’ s first cartridge-based videogame console

released in Japan in July 1983 and commonly known by its port-

manteau, Famicom. It is significantly smaller than its international

counterpart, the NES, and is distinguished by its white and red color

scheme, top-loading cartridge slot, and hardwired controllers.

 First-party: A videogame developer who is also the platform owner/

manufacturer. Nintendo was the sole Famicom/NES first-party

developer. Also see Second-party and Third-party .

 Game Pak: The marketing term devised by Nintendo of America ’ s Gail

Tilden to describe NES cartridges.

 Glitch abuse: A practice in the speedrun community that exploits pro-

gramming errors, bugs, or other in-game errata to grant the player a

competitive edge.

 Glob Top: A low-cost method of semiconductor production that bonds

and protects the IC and its connections with a thick coating of black

epoxy resin. Many early, unlicensed, and pirate Famicom carts use

this technique to bond cartridge ROM to the PCB.

 Hexadecimal: A base 16 numbering system commonly used in assembly

language programming. Values 0 – 9 are numbered as in the decimal

system, but 10 – 15 use the characters A-F. Each digit of a hexadecimal

value represents four bits. Hexadecimal values and addresses in the

book are prefixed with the “ $ ” character. In other sources, a trailing

 “ h ” may also be used (e.g., $3C0 = 3C0h).

 Hex Editor: Software that represents a game ’ s raw binary data file as

hexadecimal-encoded bytes for the purposes of editing, hacking, or

analysis.

 Homebrew: A term adopted from the home beer brewing community to

describe videogames and software tools created by amateur or non-

professional programmers.

 Horizontal Blank (HBLANK): In Famicom programming, the HBLANK

is the interval of time between when the scanning electron gun

Appendix B Glossary [347]

reaches the edge of the screen and when it resets to the opposite edge

to resume scanline rendering.

 interNES (iNES): An early shareware NES emulator, released in 1995,

as well as the community-adopted standard header appended

to NES ROMs to indicate mapper number, PRG-ROM banks, mirror-

ing, etc.

 Kill Screen: An impassable final screen in otherwise “ infinite ”

arcade-style games, usually resulting from programmer oversight,

limitations of 8-bit architectures, and prolonged expert play.

 Large Scale Integration (LSI): An integrated circuit containing

roughly between one thousand and tens of thousands of logic gates/

transistors.

 Light Gun: A videogame peripheral that employs a light-sensing circuit

housed inside a gun barrel to simulate target shooting on a television

monitor.

 Launch Title(s): The software available on the same day that a new vid-

eogame platform is released.

 Localization: The process of modifying a game ’ s content for release in a

foreign market. In the simplest cases, localization strictly involves

translation (e.g., Japanese to English menus, text, dialogue, etc.). In

sophisticated examples, cultural allusions that might be misunder-

stood (or found offensive) are either updated to references relevant

to the target audience or excised altogether.

 Lockout Chip: See Checking Integrated Circuit (CIC) .

 Mapper: Additional cartridge hardware that permits the Famicom to

perform tasks that were not possible with the base hardware, such as

bank switching or scanline counting.

 Mask ROM: A cost-efficient form of read-only memory named after the

 “ masking ” technique used during fabrication.

 Memory Management Controller (MMC): The official published name

for Nintendo ’ s ASIC mappers. Nintendo ’ s original patents described

it as the “ multi-memory controller. ”

 Memory Map: A tabular representation of a microprocessor ’ s address-

able memory and each segment ’ s associated function and/or

contents.

 Metatile: A graphical and computational object composed of multiple

sprites and/or background tiles, typically used to build characters

larger than a platform ’ s default sprite size and/or to locate and com-

press larger groups of graphical elements.

 Mirroring: Duplicating a memory area across multiple addresses in a

memory map.

[348]

 Name Table: A 960-byte region in PPU memory used to store pattern tile

indices designating the arrangement of the 32x30-tile background.

The PPU has addresses for four name tables, but sufficient memory

to store only two. Consequently, two name tables are mirrored.

 .NES: iNES-compatible file extension for dumped cartridge data, includ-

ing the contents of CHR- and PRG-ROM along with a prepended

header.

 NES-001: The original model of the NES, commonly called the “ front-

loader ” or “ toaster, ” characterized by its boxy industrial design and

greyscale color scheme. The NES-001 included the ZIF cartridge

loader, both composite and RF outputs, an expansion port, and the

CIC lockout chip.

 NES-101: The 1993 redesign of the NES, commonly called the “ top-

loader, ” that removed the NES-001 ’ s ZIF connector, lockout chip,

expansion port, composite output, and front-loading cartridge slot in

favor of a more robust card edge connector and a chassis style more

akin to its successor console, the Super Nintendo.

 Nintendo Entertainment System (NES): The “ localized ” version of the

Family Computer released by Nintendo in the United States in 1985

(and elsewhere in subsequent years). Commonly pronounced “ Ness ”

or “ N-E-S. ”

 Noise: A signal with no discernible periodicity whose energy is distrib-

uted across the entire frequency spectrum.

 Non-Maskable Interrupt (NMI): An interrupt handler generated by the

2A03 that signals the start of the VBLANK period.

 .NSF: The “ NES Sound Format, ” a popular malapropism for the Nintendo

Entertainment System Music (NESM) format, originally developed

by Kevin Horton for the HardNES, a hardware NES music player. Like

the .NES standard, .NSF includes both dumped cartridge data and a

prepended header.

 Nybble: Four bits, or half of a byte.

 Object Attribute Memory (OAM): A 256-byte segment of (independent)

PPU memory that stores attributes for the Famicom ’ s sixty-four

available onscreen sprites.

 OAM Cycling: A technical term describing onscreen sprite flicker. When

sprites exceed the Famicom ’ s eight-per-scanline limit, programmers

cycle the contents of OAM to prevent a given object from disappearing

completely.

 Overscan: A variable image area around the four edges of a television

screen or monitor that may not reliably be seen by the viewer.

Famicom/NES graphics in the overscan area may be cropped, depend-

ing on the display.

Appendix B Glossary [349]

 Pattern Table: The first 8KB of the PPU ’ s VRAM. Each pattern table is 4K

and contains either 256 background or sprite tiles.

 Printed Circuit Board (PCB): The material substrate used to support and

connect electronic components. Its conductive pathways are typically

etched from laminated copper sheets.

 Picture Processing Unit (PPU): The common name for the Famicom ’ s

custom Ricoh RP2C02G-0 graphics processor. The PPU handles all

aspects of rendering the Famicom ’ s video signal.

 Pixel: Shorthand for “ picture element, ” the smallest graphical unit of a

pattern tile.

 Platformer: A videogame genre that involves a character running across,

jumping, climbing on, or otherwise surmounting multi-tiered obsta-

cles or terrain, i.e., platforms.

 Program Counter (PC): A 16-bit register that contains the address of the

next instruction to be executed by the CPU.

 Program ROM/RAM (PRG-ROM/PRG-RAM): The cartridge ROM

directly addressed by the CPU. It contains the program ’ s source code

and data.

 Pulse-code Modulation (PCM): A method of representing a continuous

audio signal as discrete digital data. PCM quality is governed by the

digital converter ’ s sampling rate and bit depth.

 Random Access Memory (RAM): A form of computer data storage that

may be both read from and written to.

 Read-Only Memory (ROM): A form of computer data storage that may

only be read from.

 Register: A CPU memory storage location. In the 6502, registers are eight

bits wide.

 ROM: The colloquial term for data dumped from cartridges for play on

emulators. NES ROMs typically include the contents of CHR- and

PRG-ROM and an appended header.

 ROM Hack: A videogame ROM that has been altered from its original

commercial release. Often these are simple graphic replacements

or enhancements, but they can also include significant revisions to

level designs, enemy behaviors, physics, in-game items, narrative,

dialogue, and so on.

 Robot Operating Buddy (R.O.B.): An optically controlled robot peri-

pheral included both in the original NES Deluxe Set and as a stand-

alone accessory. Although heavily emphasized during the NES ’ s

initial promotion and marketing, only two software titles supported

it. A Famicom version was also released.

[350]

 Run Length Encoding (RLE): A simple form of compression commonly

used in the 8-bit era to eliminate the redundancy of multiple repeated

tiles. Instead of listing each tile in sequence, a tile ’ s reference

is provided, followed by its “ run length ” (i.e., how many times it is

repeated), and a final terminating byte.

 Sample: In audio, a sample is discrete digital representation of a continu-

ous signal. In musical practice, a sample is a short — often looped —

 section of previously recorded musical material.

 Sampling Rate: In digital audio, the number of samples encoded per

second, commonly measured in kilohertz (kHz). CD-quality audio

has a sampling rate of 44,100 samples per second, or 44.1kHz.

 Scanline: A single line, or row, of the raster scanning pattern traced by

the CRT ’ s electron gun.

 Scrolling: The simulation of movement through a virtual space that is

larger than that contained in a single television frame.

 Second-party: A videogame developer who is either partly owned or

funded by the platform manufacturer to produce games exclusive to

that platform. Intelligent Systems, for example, who worked on titles

such as Wild Gunman, Duck Hunt, and Metroid , comprised members

from both Nintendo R & D1 and Nintendo partner Iwasaki Electronics.

Also see First-party and Third-party .

 Speedrun: A competitive gameplay practice that aims to complete a game

as quickly as possible, without the assistance of cheats, hacks, or com-

puter tools. In some cases, emulators may be used, but they are not

required. A special variation called segmented speedruns permits

stitching together multiple runs to form a single, master speedrun.

Traditional, or “ single-segment, ” speedruns are performed in one

continuous session.

 Sprite: A pattern table object that may be moved independently from

other objects. The term may also designate a group of related tiles —

 e.g., the Mario “ sprite ” — though technically such examples are

metasprites. The Famicom has two selectable sprite sizes: 8x8 or 8x16

pixels.

 Sprite 0: The first entry (position 0) in sprite OAM, commonly used to

time mid-screen scrolling changes.

 Third-party: A videogame developer licensed to produce games for

another company ’ s platform. Konami, Enix, and Namco, for instance,

were third-party developers who produced games both for the

Famicom and competing platforms. Also see First-party and

 Second-party .

 Tile: An 8x8- or 8x16-pixel area of graphics data.

Appendix B Glossary [351]

 Tool-Assisted Speedrun (TAS): A speedrun that is performed on and

assisted by an emulator and its associated enhancements (i.e., tools),

such as save states, re-recording, frame-by-frame advance, scripting

macros, etc.

 Tracker: Music sequencing software that uses a vertical display based

around columnar monophonic tracks, each typically designating a

hardware channel from the source platform.

 Vertical Blank (VBLANK): In Famicom programming, VBLANK mea-

sures the interval of time between when the electron gun completes

its raster scanning pattern and when it resets to the screen ’ s upper

corner to recommence scanning. In some contexts, VBLANK may also

describe the distance traveled during that time, typically measured

in scanlines. VBLANK varies according to the refresh rate of the

television.

 Video RAM (VRAM): In Famicom parlance, VRAM describes the memory

allotted to both the PPU ’ s name tables and palettes (CIRAM), as well

as the CHR-ROM/RAM on the cartridge. In some technical docu-

ments, CIRAM and VRAM are synonymous.

 Waveform: A visual representation of sound ’ s variation in air pressure

(i.e., amplitude) over time. Waveforms are commonly named accord-

ing to their approximate geometric shape, e.g., square wave, triangle

wave, sawtooth, etc.

 Word: A two-byte unit of data. This is the common length of an address

used in Famicom/NES programming (e.g., $2001). Note that word

length varies according to the processor architecture.

 Z80: Shorthand for the popular, low-cost Zilog Z80 8-bit microprocessor,

introduced in 1976. Numerous consoles, consumer electronics, and

arcade boards used the Z80, including the Nintendo Game Boy, Sega

Master System, ColecoVision, Pac-Man , Donkey Kong , Texas Instru-

ments TI-81 calculator, and the Roland Jupiter-8 synthesizer.

 Zapper: See Light Gun .

 Zero Insertion Force (ZIF) connector: Nintendo ’ s patented, VCR-style

cartridge loading mechanism used in the NES. Though novel, it

proved to be more susceptible to corrosion, debris, and wear after

long-term use. Nintendo eventually released an updated console, the

NES-101, that returned to the more traditional card edge connector.

 Zero Page: The memory addresses located at the start of a CPU ’ s

memory map, beginning with a leading zero. In 8-bit architectures,

addressing zero page memory takes fewer processor cycles, so it is

used to store data that requires frequent access.

 Chapter 0

 1. Tanner, “ Adventure of Link - Retranslation. ”

 2. To cite a recent example, ZeldaDungeon.net ran a short piece titled, “ I Am … Not

Error? ” The comments are illuminating.

 3. Mandelin, “ A Look at the Metroid Series ’ Varia Suit. ”

 4. For example, Kazuhisa Hashimoto, who worked for Konami in the Famicom era,

said in an interview, “ It was normal for a NES game to be designed in 4 – 6

months by a team of 4 people. This practice didn ’ t really change until the Super

Nintendo era. ” See Tanner, “ Konami: The Nintendo Era. ”

 5. Derrida, “ Letter to a Japanese Friend, ” 275.

 6. Sandifer, “ Am Error. ”

 7. When referring to the platform as a whole, I have opted to use Famicom as

the shorthand for the Family Computer, the NES, and their multiple revisions.

When I refer to the NES specifically, I mean to reference its regional model

exclusively.

 8. Donovan, Replay: The History of Video Games .

 9. Sheff, Game Over .

 10. Chaplin and Ruby, Smartbomb .

 11. Provenzo, Video Kids: Making Sense of Nintendo .

 12. Ryan, Super Mario: How Nintendo Conquered America .

 13. Montfort, “ Continuous Paper: The Early Materiality and Workings of Electronic

Literature. ”

 14. Kirschenbaum, Mechanisms .

 15. See Chaplin and Ruby, Smartbomb ; Dillon, The Golden Age of Video Games ;

Donovan, Replay ; Gamespite, GameSpite Quarterly 5 ; Goldberg, All Your Base Are

Belong To Us ; Herman, Phoenix ; Kent, The Ultimate History of Videogames ; Kline

et al., Digital Play ; Kohler, Power-Up ; Ryan, Super Mario ; Sellers, Arcade Fever ; and

Sheff, Game Over .

 Notes

[354]

 Chapter 1

 1. Masaharu (trans. Tanner), “ Part 6 - Making the Famicom a Reality. ”

 2. Katayama, Japanese Business into the 21st Century , 169.

 3. Sheff, Game Over , 29.

 4. Masaharu (trans. Tanner), “ Part 6 - Making the Famicom a Reality. ”

 5. GAMECOM and Famicom have obvious similarities in English. However, in

Japanese the former is rendered in four characters ガ メ コ ム pronounced

 gamekomu (gah-may-ko-mu). To maintain the English-style pronunciation of

 “ GAME-COM, ” Nintendo would have opted for the five-character ゲ ー ム コ ム ,

pronounced geemukomu (gay-mu-ko-mu). My thanks to Aria Tanner for point-

ing out the subtleties of the Japanese pronunciations.

 6. Masaharu (trans. Tanner), “ Part 8 – Synonymous With the Domestic Game

Console. ”

 7. The Famicom name is actually trademarked by Nintendo ’ s longtime hardware

partner Sharp. See Masaharu (trans. Tanner), “ Part 8 – Synonymous With the

Domestic Game Console. ”

 8. Katayama, Japanese Business into the 21st Century , 166.

 9. Sheff reports Yamauchi ’ s admonition to stave off competition for “ at least one

year ” (Game Over , 29), while Uemura says three. See Nintendo of America Inc.

 “ Iwata Asks - Volume 2: NES & Mario, ” 1.

 10. Sheff, Game Over , 30.

 11. Masaharu (trans. Tanner), “ Part 7 - Deciding on the Specs. ”

 12. Dillon, The Golden Age of Video Games , 38.

 13. Despite Yamauchi ’ s decision, Sharp and Nintendo continued to work in close

partnership for many years. Sharp, for instance, manufactured the officially

licensed Family Computer / Family Computer Disk System all-in-one console

called the Sharp Twin Famicom.

 14. Nintendo of America Inc. “ Iwata Asks - Volume 2: NES & Mario, ” Section 1.

 15. See Masaharu (trans. Tanner), “ Part 7 - Deciding on the Specs ” and Aoyama and

Izushi, “ Hardware Gimmick or Cultural Innovation? Technological, Cultural,

and Social Foundations of the Japanese Video Game Industry, ” 431.

 16. Nintendo of America Inc. “ Iwata Asks - Volume 2: NES & Mario, ” Section 2.

 17. Sheff, Game Over , 32. Yamauchi later contested this figure to the Japanese

press.

 18. Nintendo of America Inc. “ Iwata Asks - Volume 2: NES & Mario, ” Section 2.

 19. Masaharu (trans. Tanner), “ Part 7 - Deciding on the Specs. ”

 20. Masaharu (trans. Tanner), “ Part 8 - Synonymous With the Domestic Game

Console. ”

 21. See O-Young, The Compact Culture , 24.

 22. Teiser, “ Atari - Nintendo 1983 Deal. ”

 23. Ibid.

 24. W., Dan et al. “ Exclusive Interview with Donkey Kong Creator Shigeru

Miyamoto. ”

 25. This design conceit would appear again in Lance Barr ’ s design of the Nintendo

Entertainment System (chapter 3).

 26. Masaharu (trans. Tanner), “ Part 8 - Synonymous With the Domestic Game

Console. ”

Notes [355]

 27. The reset and power switches have explanatory stickers. The left one reads, in

Japanese, “ When removing a cartridge, please be sure that the system is off, ”

and the right, “ Pressing the reset switch will cause the score you ’ ve obtained to

be deleted. ” The internal eject mechanism, a wide plastic bar with two protrud-

ing arms, is attached to the interior of the console ’ s upper cover. The mecha-

nism has a thin metal bracket that attaches to the red slider used to hoist

cartridges out of the system. When the player pushes the slider, the metal

bracket, itself attached to a small spring, rolls the mechanism along its angled

arms until they collide with the cartridge. With a slight bit of pressure, the arms

pop the cartridge off the card edge connector. Since the slider is spring-loaded,

once the player releases pressure, it moves back to its initial position. It is a

handy mechanism, but largely for show. Players could also grip the cartridge

and pull it out manually, but Nintendo R & D1 ’ s lead engineer Gunpei Yokoi

thought the eject lever added a nice toy-like feel, delighting children: “ Even

when they weren ’ t playing games, they could entertain themselves by clattering

around. ” Masaharu (trans. Tanner), “ Part 8 - Synonymous With the Domestic

Game Console. ”

 28. C.f., Hosokawa, “ The Walkman Effect. ”

 29. Nintendo only missed the mark by a few millimeters: Famicom carts measure

11cm x 7cm x 1.7cm in comparison to the 10.9cm x 6.9cm x 1.7cm dimensions

of a cassette case.

 30. The expansion port also has an instructional sticker: “ Please don ’ t touch the

terminals using fingers or metal objects. This will cause failures. ”

 31. Sheff, Game Over , 33.

 32. A 1987 profile of the Famicom noted that Nomura Securities “ announced

plans to develop a system allowing investors to use their famikons to read

market information and to buy and sell stocks at home. ” See Kodansha Ltd., Best

of Japan , 182.

 33. There are several accounts of how and why Nintendo settled on the Family

Computer ’ s trademark color scheme. The red, for instance, has roots in Japa-

nese culture, where historically color could indicate social rank and hierarchy.

 (or azuki-iro) is a deep red derived from a bean used in many Japanese

dishes and treats.

 In 2010, ITmedia reported that Nintendo chose azuki red for reasons unre-

lated to cultural allusions. Like the hardwired cords, white and azuki red were

simply the least expensive options for colored plastic. However, a Nikkei Elec-

tronics retrospective profile of the Family Computer ’ s development reports that

President Yamauchi picked the colors from an advertisement. While commut-

ing with Uemura, the president pointed toward a billboard for DX Antenna and

said, “ That ’ s a good color. ” Despite the apocryphal tone of the account, the

similarities between DX Antenna ’ s package design and the Famicom ’ s color

scheme are striking. Even the DX logo ’ s diagonal stripe is reminiscent of the

 “ pulse line ” design used on many early Famicom cartridges.

 Uemura later refuted both accounts, stating that the color was “ simply an

order from the president. He had this dark red scarf that he liked to wear a lot;

it was just a color that he liked. For an executive like him, the external design is

one of the easier ways to put his mark on the project, so to speak. ”

[356]

 For more information, see Ashcraft, “ Report: Why Does The Nintendo

Famicom Have The Color Red? ” , Masaharu (trans. Tanner), “ Part 8 -

Synonymous With the Domestic Game Console, ” and Gifford, “ Masayuki

Uemura and the Family Computer project. ”

 34. Many Nintendo products (and unofficial knockoffs) since 1983 feature the

Family Computer color scheme, including a special Japan-exclusive edition of

the Game Boy Advance SP, painted to mimic its elder console.

 35. See “ Magnavox Odyssey TV Commercial - February 1973, ” “ Fairchild Channel

F Commercial [1976], ” and “ Coleco Telstar 1976. ”

 36. The wired controllers ran into the rear of the console, threaded across the

length of its interior, and connected to the front of the motherboard. The con-

necting cable was short — roughly 75cm long, with an additional 20cm wound

inside the Famicom — keeping players on a short leash. The wired design proved

troublesome in practical use. Since players could not easily replace faulty con-

trollers, they had to send their entire console to Nintendo for repair. On the

motherboard, the expansion port and controller connections share the same

edge, so Nintendo could have run the cords directly into the front of the

Famicom. In fact, Nintendo initially considered detachable controllers, but

ultimately axed them to cut costs. Masaharu (trans. Tanner), “ Part 8 - Synony-

mous With the Domestic Game Console. ”

 37. Katayama, Japanese Business into the 21st Century , 167 – 8.

 38. Nintendo of America Inc, “ Iwata Asks - Club Nintendo: Game & Watch, ” Section

2.

 39. The dual-screen portable format would return twenty-five years later as the

Nintendo DS handheld.

 40. V., “ Nintendo Ultra Hand (ウ ル ト ラ ハ ン ド , 1966). ”

 41. For these and other Gunpei Yokoi gadgets, see V., “ Label: Gunpei Yokoi. ”

 42. Crigger, “ Searching for Gunpei Yokoi. ”

 43. Inoue, Nintendo Magic , 125.

 44. Ibid., 123. Also see BOCTOK Co., Ltd., Bit Generation 2000 “ TV Games. ” , 58 – 9.

 45. Johnstone, We Were Burning , 58 – 9.

 46. Inoue, Nintendo Magic , 123.

 47. During Yokoi ’ s career, he oversaw the Donkey Kong arcade conversion, the

Virtual Boy, Dr. Mario, Yoshi ’ s Cookie, Duck Hunt , and the Robotic Operating

Buddy.

 48. The exceptions either used the buttons for non-directional purposes, as in

 Flagman (1980), or for two-player simultaneous play, as in Judge (1980) and

 Lion (1981).

 49. Masaharu (trans. Tanner), “ Part 8 - Synonymous With the Domestic Game

Console. ”

 50. Ibid.

 51. Ibid.

 52. Two of the microphone ’ s notable implementations come from the Family Com-

puter Disk System versions of ゼ ル ダ の (aka The Legend of Zelda) and

 パ ル テ ナ の (aka Kid Icarus). In the former, players may yell into the

microphone to defeat the large-eared Pols Voice; in the latter, the microphone

is used to “ bargain ” for shop discounts.

 53. “ Famicom History Part 2: Japanese Famicom Slang 101, ” Famicomblog .

Notes [357]

 54. This same griefing technique is possible in the NES version as well. In fact, even

though player 2 has their own Start button, pressing it does not pause the game.

 55. Katayama, Japanese Business into the 21st Century , 165.

 56. The TurboGrafx-16, for instance, despite being touted as a 16-bit system, still

contained an 8-bit Z80 CPU. The 16-bit designator described its dual GPUs

(and clearly sounded more impressive than a TurboGrafx-8).

 57. Throughout the book, I follow programming convention and use a “ % ” prefix

to indicate binary values.

 58. See iFixit, “ Nintendo Family Computer (Famicom) Teardown. ”

 59. PAL systems contain the RP2A07G chip, which has minor (but important)

timing differences.

 60. As noted previously, the 6502 ’ s low-cost competitor, the Zilog Z80, shared

the dominance of the 8-bit era. The Z80 powered the ColecoVision, Tandy/

RadioShack TRS-80 Model I, Sega SG-1000, Sequential Circuits Prophet 5,

Roland Jupiter-8, Amstrad CPC, MSX, and the Sega Master System, among

other platforms.

 61. In most Famicom game source code, one can find the assembly mnemonic

CLD (CLear Decimal flag) in the system initialization routines. This disables

the console ’ s decimal mode, despite there being no need to do so. This

 “ safeguard ” is a vestigial holdover from coding practice on other 6502-based

systems.

 62. Bagnall, On the Edge , 155, 296 – 297.

 63. Ibid., 467 – 8.

 64. Gifford, “ Tetris … forever. ”

 65. Also see Quietust, “ Chip Images. ”

 66. Peddle, Charles et al., “ Integrated circuit microprocessor with parallel binary

adder having on-the-fly correction to provide decimal results. ”

 67. “ 6502 DecimalMode, ” visual6502.org .

 68. This explains why the decimal-related 6502 instructions (e.g., ADC, SBC) still

set the proper Decimal flag when executed on the Famicom.

 69. The truth is in the details, as the ColecoVision VDP ’ s read-only status register

functioned remarkably similar to the Famicom ’ s PPU Status Register ($2002).

Bit 7 of the VDP Interrupt Flag triggered “ at the end of the raster scan of the last

line of the active display, ” effectively marking the beginning of VBLANK. The

same bit in $2002 monitored whether the PPU was currently in VBLANK or not.

The VDP status register ’ s bit 6 was the Fifth Sprite Flag (5S), signaling when

five or more sprites were concurrent on a single scanline. Bits 0 – 4 then stored

the sprite flag that triggered 5S. Bit 5 of $2002 also recorded sprite overflow,

although the Famicom had a higher maximum (8) and kept no record of which

sprite had exceeded the limit.

 Finally, bit 5 of the VDP status register recorded the “ Coincidence Flag, ”

a catch-all collision detection that triggered if any two sprites onscreen

shared an overlapping pixel. This limited functionality worked for only a

small range of gameplay types where coincidence events were discrete. In cases

where multiple collisions might happen simultaneously, its use was less

practical.

 The Famicom had a coincidence flag of a different sort, governed by the

status of sprite 0, the first entry in Object Attribute Memory. When a

[358]

non-transparent pixel of sprite 0 overlapped with a non-transparent pixel of a

background tile, bit 6 of $2002 set. Like the VDP ’ s limited collision detection,

sprite 0 had little practical import for conventional object collisions, but proved

useful for scanline timing and raster effects (chapter 4).

 For more details on the ColecoVision VDP, see Texas Instruments,

 “ TMS9918A/TMS9928A/TMS9929A Video Display Processors. (Microproces-

sor Series). ”

 70. Montfort and Bogost, Racing the Beam .

 71. Cartridges may also contain PRG-RAM or CHR-RAM, both of which may be

rewritten at runtime (chapter 6).

 72. The address space of a CPU is similar to geographic addresses, though much

more rigid and uniform. We use a combination of street numbers, city names,

and zip codes to locate individual houses in a neighborhood. In CPU space, all

houses are equal in size and numbered in sequence from zero to the maximum

possible number the address bus can handle — in this case, $FFFF. In decimal

notation, the number of available addresses between $0000 to $FFFF equals

65,536, which when divided by 1,024 equals 64. Alternatively, we can express

the 16-bit address bus in base 2 nomenclature: 2 16 = 65,536. If you are curious

how 65,536 “ rounds down ” to 64KB, this is a convention of byte counting in

computational contexts, reflecting the asymmetry of base-2 and base-10 num-

bering systems. 1KB equals 1,024 bytes rather than 1,000.

 73. Technically, the 2KB of memory reserved for name and attribute tables are not

internal to PPU, but are resident in Character Internal RAM (CIRAM). However,

Color Generator RAM (CGRAM), which stores palette data, is internal to the

PPU.

 74. In Japan, the Tennis/Super Mario Bros. swap is known as the “ undercover trick. ”

For more details, see Mandelin, “ Legends of Localization: Super Mario Bros. ”

and Altice, “ The Famicom Cart Swap Trick. ”

 75. I performed the cart swap trick on a top-loading NES-101 rather than a Famicom.

The trick is not possible on an unmodified NES-001 due to the CIC lockout

mechanism (chapter 3).

 76. Since palettes are mirrored, actual palette memory is wider than 32 bytes. See

 “ PPU memory map, ” NesDev Wiki.

 77. Certain hardware tricks, such as timed mid-screen palette swaps, can push past

the twenty-five color limit.

 78. See Korth, “ Everynes: Everything about NES and Famicom ” and NesDev Wiki ,

 “ PPU palettes. ”

 79. The Famicom also has a few other hardware tricks that can increase (or decrease)

its color range. Three bits in the PPU control register located at $2001

(PPUMASK) are known as the color emphasis bits . Setting each bit causes the

entire palette to intensify in either red, green, or blue, while darkening the

other colors. In general, programmers used color emphasis to create special

lighting effects or subtle transitions between screens. Another bit in PPUMASK

sets the Famicom PPU to grayscale mode. When the bit is set, all four lower bits

of a palette color entry are treated as zero, effectively narrowing the range of

colors to three: two identical whites, gray, and light gray. Thus the Famicom

grayscale has only two gray values and no black. Furthermore, when a color

emphasis bit is set while in grayscale mode, the overall tint still changes. For

Notes [359]

more information, see Covell, “ NES Technical/Emulation/Development FAQ

[ver. 1.7]. ”

 80. Palette value $0D is considered “ blacker than black ” since its voltage oscilla-

tions dip below NTSC ’ s black level. Though uncommon, some televisions can

misinterpret the color as a sync signal, causing the display to malfunction. See

Korth, “ Everynes ” and Horton, “ NES Video Voltage Levels. ” Despite the glitch

potential, a few commercial games, such as Immortal and The Three Stooges , used

$0D as their black value.

 81. Montfort and Bogost, Racing the Beam .

 82. McCallum, “ Memory Prices (1957-2013). ”

 83. Later, the FDS and cartridge mappers would allow programmer control of

mirroring (chapter 5), as well as new arrangements like one-screen mirroring,

four-screen mirroring, and a few other exotic varieties (chapter 6).

 84. Furthermore, Nintendo ’ s decision to cut name table RAM by half would create

other design concessions, since scrolling in multiple planes became much more

challenging than exclusive vertical or horizontal scrolling (chapter 6).

 85. Figure 4.3 in chapter 4 gives a better approximation of the attribute table

borders, since a grid is overlaid atop the Super Mario Bros. screen to show how

objects are placed.

 86. The visible area may be slightly tighter, depending on the region. Overscan may

clip up to sixteen total scanlines from the upper and lower borders of an NTSC

CRT but only a single scanline from a PAL display. The discrepancy creates

divergent programming concerns according to the region: for NTSC games,

important player information such as status bars should not be placed too close

to the edges, lest it be cropped by the television; for PAL games, any sprites that

need to be temporarily hidden should be properly placed beyond the PPU ’ s

boundaries, not simply within the presumed overscan area. See “ Overscan, ”

 NesDev Wiki .

 87. Today, many emulators give players control over how much of the frame to

reveal and in many cases default to full-frame presentation, making border

clipping more noticeable. Setting Nestopia ’ s “ Trim Border Area ” preference,

for instance, makes sprite wraparound in Mario Bros. look more convincing.

 88. See Watkinson, Television Fundamentals , 10 – 14.

 89. See Herrick, Television Theory and Servicing , 355 – 88.

 90. Watkinson, Television Fundamentals , 60.

 91. See “ Ferry-Porter law ” in Roberts, Dictionary of Audio, Radio and Video , 86.

 92. France also received the PAL NES, but it contained a unique internal PAL-to-

RGB decoder that made it compatible with SECAM televisions. See alex, “ Com-

posite out of a french PAL NES. ”

 93. See NesDev Wiki , “ Clock Rate. ”

 94. We only count to 15 in a base 16 system because computers traditionally start

counting from 0 rather than 1.

 Chapter 2

 1. Masaharu (trans. Tanner), “ Part 6 - Making the Famicom a Reality. ”

 2. The game ’ s name is often cited as Radarscope , though the arcade ’ s title screen

clearly displays “ RADAR SCOPE, ” with a space. The error likely derives from

[360]

the marquee title, where the space between the two words is slender (but

legible).

 3. “ Radar Scope (1980), ” The Arcade Flyer Archive. .

 4. The Radar Scope flyer featured the game screen superimposed behind a first-

person view of the player ’ s hands manning the ship ’ s gun turret. The text below

read, “ YOU ARE HERE. ” Additionally, one version of the arcade cabinet was a

partially-enclosed “ cockpit ” type, meant for players to sit inside.

 5. Ostermayer, The Radar Scope Pages .

 6. See Kent, The Ultimate History of Video Games , 157.

 7. Arakawa blamed part of Radar Scope ’ s failure on the shipping time from Osaka

to New York. Soon after, Nintendo of America relocated to a 60,000 square foot

office in Seattle, reducing the shipping time to one week. See Firestone, Nin-

tendo: The Company and Its Founders , 52 – 3.

 8. After Donkey Kong ’ s success, King Features was less reticent about a licensing

deal. Nintendo later released Popeye as a Game & Watch handheld (1981), arcade

title (1982), and Famicom launch game (1983).

 9. “ Gunpei Yokoi talks Donkey Kong in ‘ Gunpei Yokoi’s House of Games, ’ ” The End

of Deep Layer . Note that Yokoi retcons Princess Peach, Mario ’ s damsel in distress

from Super Mario Bros. , into Pauline ’ s place.

 10. Ibid.

 11. “ A Dream Walking: Popeye The Sailor #14. ”

 12. Kohler, Power-Up , 39.

 13. Lacey, “ Novelty Games - Cute is Crucial. ”

 14. Bloom, Video Invaders , 181.

 15. Kohler, Power-Up , 2 (emphasis in the original).

 16. Napier, From Impressionism to Anime , 3.

 17. Patten, Watching Anime, Reading Manga , 55 – 57.

 18. An October 1977 bulletin for a C/FO meet-up features a fan-made illustration

of intermingling American and Japanese cartoon characters. In the foreground,

none other than Popeye grins and rests his hand on Astro Boy ’ s shoulder.

Patten, Watching Anime, Reading Manga , 58.

 19. Patten, Watching Anime, Reading Manga , 22 – 43.

 20. Levi, Samurai from Outer Space , 8.

 21. Kohler, Power-Up , 11.

 22. Ibid., 18, 24, 207, 11.

 23. Levi, 19.

 24. Patten, 58.

 25. Ironically, Atari is a Japanese word that founder Nolan Bushnell lifted from the

game Go.

 26. The only source I ’ ve found that notes this cinematic allusion is Herz, Joystick

Nation .

 27. For detailed accounts of the Nintendo / Universal litigation, see Sheff, 116 – 127

and Kent, 210 – 218.

 28. United States Court of Appeals. “ 746 F.2d 112: Universal City Studios, Inc.,

Plaintiff-appellant, v. Nintendo Co., Ltd., Nintendo of America, Inc., Defen-

dants-appellees. ” Quote edited for clarity.

 29. Sheff, 48 – 9.

 30. Kent, 158.

Notes [361]

 31. Gross, “ Nintendo seeks to trademark ‘ On like Donkey Kong. ’ ”

 32. The closest analogy we see to the platform opulence of yesteryear is in the

mobile space, where several platform players compete (e.g., iOS, Android,

Windows, Blackberry, Symbian, etc.).

 33. Kean, Crash 1 (Feb. 1984): 51 – 2.

 34. See the “ Clones ” section of Wikipedia , “ Donkey Kong (video game). ”

 35. Oddly, Nintendo licensed Donkey Kong to Japanese corporation Falcon Inc.,

granting them rights to produce an official clone: “ In September 1981, Nin-

tendo Co., Ltd. entered into a licensing agreement in Japan with Falcon, Inc.,

another Japanese corporation. This agreement authorized Falcon to produce a

game called Crazy Kong which was to be identical or similar to Donkey Kong .

Nintendo Co., Ltd. supplied stickers to Falcon to attach to the printed circuit

boards used in the Crazy Kong game. The stickers were printed in the English

language and indicated that the Crazy Kong circuit board was manufactured

under a license from Nintendo Co., Ltd. Falcon paid a royalty of 10,000 yen to

Nintendo Co., Ltd. for each game manufactured by Falcon. The license agree-

ment expressly limited the right of Falcon to sell or use the Donkey Kong game

under the name Crazy Kong to the territories of Japan. It prohibited Falcon from

importing or exporting these machines or any similar machine and from having

any third party produce or sell any such machine. It also prohibited Falcon from

importing or exporting Donkey Kong or Crazy Kong circuit boards into the United

States or anywhere outside of Japan. The license agreement was terminated on

January 29, 1982. ” See United States District Court, “ Nintendo of America, Inc.

v. Elcon Industries, Inc. ”

 36. Sheff, 116 – 17.

 37. Commodore missed the first-mover advantage on the Nintendo arcade license.

CEO Jack Tramiel called a last-minute halt to the contract due to a competing

agreement with Bally-Midway. See Bagnall, On the Edge , 218.

 38. Kent, 209 – 210.

 39. Atari eventually brought Donkey Kong ’ s development in-house, delivering ports

for the Atari 400/800, as well as the XL and XE series. Atari engineer Landon

Dyer was responsible for those superior adaptations.

 40. Nintendo of America Inc., “ Donkey Kong Operation Manual [Model No: TKG4-

UP], ” 17.

 41. See Fromm, “ Troubleshooting Flow Charts for Monitors. ”

 42. Nintendo of America Inc., “ Donkey Kong Operation Manual [Model No:

TKG4-UP], ” 22.

 43. Ibid., 5.

 44. There are exceptions, most notably the Vectrex, whose embedded (vertical)

monitor was a necessity; as its name suggests, it used vector- rather than

raster-based graphics. Handheld and portable consoles are the other obvious

exceptions.

 45. See Carter, Susan B., Scott S. Gartner, Michael R. Haines, et al., eds., “ Radio

and Television ” in Historical Statistics of the United States , Table Dg117 – 130 and

Television Bureau of Advertising, “ TV Basics. ”

 46. See Katayama, 165: “ ‘ By the late seventies, color televisions had already reached

a 95 per cent penetration rate in Japan... ”

[362]

 47. If there was any manufacturer identification, it was often a utilitarian white

stamp with the game ’ s ID followed by a number (e.g., “ DK 223583 ” for Donkey

Kong).

 48. See NesDev Wiki , “ Overscan. ”

 49. For many of Nintendo ’ s early titles, there is a simple trick to determine which

onscreen elements are sprites and which are background tiles: pause the game.

A few seconds after pausing, all sprites will vanish, thanks to the programmers

toggling a bit in the PPU ’ s second control register ($2001) that masks, or

hides, all sprites. Nintendo likely added this “ feature ” either to keep players

from studying stage layouts (an impossibility in arcade Donkey Kong) or to

indicate visually that the game was paused (rather than locked up due to a

malfunction).

 50. Parallel girders would also preclude Kong ’ s introductory show of strength, as he

stomps the girders into their angled positions. This seems like a negligible

detail, but consider its narratological and instructional purposes: for unfamiliar

players, Kong is quickly established as the foe, and a formidable one to boot.

 51. The title screen letterforms have minor variations between platforms: the

Famicom version has a wider “ D, ” one shifted tile in the “ K, ” a simpler “ G, ” and

thinner letters on the bottom row. The letters are also better proportioned in

the port. Both lines are center-justified and “ KONG ” has symmetrical four-tile

columns of space on either side. The arcade version has an extra tile column on

the left and two tiles for a trademark (™) crowding the right gutter, along with

Donkey Kong ’ s sprite sneering menacingly below. The port drops the trade-

mark, the upper hi-score display, and Kong himself — due both to disparities in

vertical space and the need to list the range of selectable game modes for home

play.

 52. On power-up, the cycle is abbreviated: the hi-score table displays first, then

demo play. After that first iteration, the game locks into the loop described.

 53. Arcade Donkey Kong ’ s character set, scoreboard, and upper HUD are residual

evidence of its conversion heritage. The typeface, unsurprisingly, is identical to

 Radar Scope ’ s. The upper HUD, save for its palette differences, also shares Radar

Scope ’ s configuration, down to the character spacing between lines. Stranger

still are the shared default values for the current 1UP (“ 003700 ”) and HIGH

SCORE (“ 007650 ”). In fact, all five default leader board entries, as well as the

leader board screen itself, are identical in both games. It is likely that Nintendo

used a common character set across several arcades games in order to save time

during development, a practice befitting their long corporate tradition of reuse.

 Donkey Kong ’ s ancestry is visible outside the screen as well. The first few

thousand converted units have Radar Scope ’ s distinctive red side panels instead

of the blue that was later used. The red Kong cabinets are consequently much

rarer and command higher prices from collectors.

 54. By my count, the following letters are unnecessary: F, H, K, Q, S, U, W, X and Z.

 55. Due to Donkey Kong ’ s relative difficulty, many players mistakenly think the

elevator level is stage 2, since the cement factory does not appear in the first or

second level cycle in the American version.

 56. This is unsurprising, since the C64 could support eight, massive 24x21-pixel

sprites onscreen simultaneously. See “ Chapter 6 - Sprite Graphics ” in Com-

modore Computer, Commodore 64 User ’ s Guide .

Notes [363]

 57. Kemps, “ Europe gets exclusive ‘ perfect version ’ of NES Donkey Kong in its

Mario 25th Anniversary Wiis. ”

 58. Why the date amendment after nearly thirty years? We now know that Nintendo

did not develop Donkey Kong in-house. Miyamoto designed under Yokoi ’ s

supervision, but the programming and circuit production subcontracted to

Ikegami Tsushinki Co., Ltd. This partnership was largely unknown until Ikegami

sued Nintendo over the right to Donkey Kong ’ s source code. By 1981, Nintendo

had become heavily involved in their arcade design, though Ikegami still

handled programming, development, and manufacture. Post – Donkey Kong ,

Nintendo no longer required Ikegami ’ s partnership, as they had reverse engi-

neered — and in some cases copied — its source for use in Donkey Kong Jr. Ikegami

claimed copyright infringement and sued for damages. Though the outcome of

the claim settlement was never released to the public, there is evidence of the

partnership in Donkey Kong ’ s character data: a small, turquoise logo with the

letters “ ITC ” set in the center — Ikegami ’ s logo. The soured partnership also

explained the minor modification to the Wii ROM ’ s title screen. Since Nintendo

could no longer claim copyright for the arcade original, they shifted their copy-

right date to the Famicom debut. For more information, see Game Developer

Research Institute, “ Company:Ikegami Tsushinki ” and Rard, “ The Battle of

Donkey Kong. ”

 59. ArnoldRimmer83, “ Donkey Kong Original Edition. ”

 60. Ibid.

 61. Kulczycki, “ Technical: What ’ s with the Kill Screen? ”

 62. For a lengthier technical discussion of the kill screen port, see Altice, “ Porting

the Kill Screen. ”

 63. The same behavior occurs in Super Mario Bros. when the total store of lives

exceeds nineteen. See chapter 4.

 Chapter 3

 1. See Kline et al., Digital Play , 103 – 8; Kent, The Ultimate History of Video Games ,

219 – 40; Donovan, Replay , 95 – 109.

 2. See Williams, “ A (Brief) Social History of Video Games, ” 3; Stern, “ Unloading

ROMs: illegal piracy, an unfair trick, or free competition?, ” 86; Hemnes, “ The

Adaptation of Copyright Law to Video Games, ” 171.

 3. Williams, 3.

 4. Bogost and Montfort, Racing the Beam , 76 – 9, 127.

 5. Kline et al., 105.

 6. Donovan, 95.

 7. Kline et al., 105.

 8. “ Computer or Video Games, ” nytimes.com .

 9. Kent, 286.

 10. Sheff, Game Over , 160.

 11. Documentation of many pre-NES prototypes is available at Nielson, “ The Nin-

tendo Entertainment System. ”

 12. The initial run of Famicom joypads were manufactured with rubber, square-

shaped action buttons. Nintendo soon discovered that, after prolonged use,

avid players wore their buttons away. As a result, Nintendo quickly switched to

sturdier circular buttons molded from plastic.

[364]

 13. Since the keys were hidden in the concept drawing, it is unclear whether a

keyboard was meant to slide out or simply unstack when needed. Based on the

final prototype, the latter is likely true, though the stacking design was probably

scrapped because the keys would be hard to type on if the keyboard component

were flat.

 14. Margetts and Ward, “ Lance Barr Interview. ”

 15. Electronic Games Magazine summed up the games industry response with a short

feature in their March 1985 issue titled “ Nintendo ’ s Final Solution ” : “ Nintendo

has decided to distribute the AVS here, perhaps as early as this spring. Consid-

ering that the videogame market in America has virtually disappeared, this

could be a miscalculation on Nintendo ’ s part. ” From Bloom, ed., “ Nintendo ’ s

Final Solution. ”

 16. Sheff, 162.

 17. As with most of their failed experiments, Nintendo would not abandon wireless

peripherals, but repurpose the idea for later consoles. The most contemporary

example is, of course, the wireless Wii remote.

 18. Semrad, “ New Nintendo system way ahead of the field. ”

 19. The Fairchild Channel F and the Intellivision used card edge connectors, but

their cartridges loaded horizontally, similar to 8-track cassettes.

 20. It was so unlike other console designs that Nintendo received a patent for

the mechanism. See Yukawa, “ Front Loading Apparatus for a Memory Cartridge

Utilized for a Data Processing Machine. ”

 21. Margetts and Ward, “ Lance Barr Interview. ”

 22. Edwards, “ No More Blinkies: Replacing the NES ’ s 72-Pin Cartridge

Connector. ”

 23. Likewise, the NES ’ s unofficial nickname — the “ toaster ” — derives from the ZIF ’ s

function: cartridges are both loaded into the NES horizontally like slices of

bread into a toaster oven and locked into place with a spring-loaded catch like

a conventional “ top-loading ” toaster. It is a confused metaphor, but one that

has stuck.

 24. Nakagawa, “ Recordable Data Device Having Identification Symbols Formed

Thereon and Cooperating Data Processing System Having Registering Symbols. ”

 25. “ NES expansion port pinout, ” NesDev Wiki .

 26. While initial runs of the NES had an easily accessible expansion port, later revi-

sions covered the port with a plastic hatch that to be forcibly broken to access.

With the introduction of the top-loading NES-101, Nintendo dropped the port

altogether.

 27. Pichugan, “ Steepler н а ч а л п р о д а в а т ь Dendy (Steepler starts sales of Dendy). ”

Also note that the Dendy is still commercially available in Russia to this day.

 28. For the exact technical differences, see NesDev Wiki , “ Clock rate. ”

 29. Also see Altice, “ Dendy: The Unofficial Official Famicom of Russia. ”

 30. Thanks to its innovative marriage of hardware and software, Nintendo received

two patents for their authentication systems in 1989. See Nakagawa, “ External

memory having an authenticating processor and method of operating same, ”

and Nakagawa, “ System for determining authenticity of an external memory

used in an information processing apparatus. ”

 31. Segher, “ The weird and wonderful CIC. ”

 32. See “ CIC lockout chip ” and “ CIC lockout chip pinout, ” NesDev Wiki .

Notes [365]

 33. O ’ Donnell, “ Production Protection to Copy(right) Protection, ” 54.

 34. Ibid., 61. Note that O ’ Donnell conflates (or at least is unclear about) the lockout

chip ’ s program and its hardware. Throughout, he calls the CIC the “ 10NES

chip. ” However, 10NES is the program that runs on the CIC, not the chip itself.

The patent text he cites (55) refers to 10NES as distinct from the CIC, but

O ’ Donnell never makes the distinction in his article.

 35. Donovan, 174.

 36. Associated Press, “ Nintendo Charged With Monopolizing Market. ”

 37. See Olmos, “ Chip Shortage Strains Computer Makers ” and Pollack, “ Shortage

of Memory Chips Has Industry Scrambling. ”

 38. McGill, “ The ultimate video game: Nintendo vs Atari. ”

 39. “ Chip Problems Strangle the Video Game Industry, ” Electronic Game Player 1.4

(Sept./Oct. 1988): 25.

 40. United States Court of Appeals, “ Atari Games Corp. v. Nintendo of America

Inc. ”

 41. Ibid.

 42. Atari/Tengen programmer Ed Logg says that while Atari ’ s lawyers did obtain the

10NES patents under false pretenses, the information was not used in the pro-

duction of the Rabbit chip:

 Kevin Gifford: Yeah, Game Over painted Tengen as basically stealing the

patents for the lockout chip.

 Ed Logg: The trouble was it was already done before we saw it. We had already

done the Rabbit chip long before we had seen it. So it ’ s already done, and we see

this and we ’ re like “ Oh shit. ” (laughs)

 KG: So you know for a fact the Rabbit was 100% original?

 EL: Yeah. I walked into the lab and they were reverse engineering the chip,

and I asked what they were doing and they said, “ Don’t ask. ” (laughs) So I know

the company was doing it, and I knew the people involved doing it.

 KG: Was this a major undertaking, the engineering?

 EL: It was basically three people. And they were certainly looking at the chip,

let ’ s put it that way. I’m sure they did a lot more that I didn ’ t see. Tweaking the

signals, seeing what comes out, that kind of stuff. And I was working on the FC

at the time. We had reverse engineered the Famicom and I was already develop-

ing on it.

 See Gifford, “ Tetris … forever. ”

 43. United States Court of Appeals, “ Atari Games Corp. v. Nintendo of America

Inc. ”

 44. Valesh, “ Nintendo, America! ”

 45. The Japanese version of R.O.B., released three months prior to the NES version,

was called the Family Computer Robot and matched the Famicom ’ s color

scheme.

 46. Cifaldi, “ In Their Words: Remembering the Launch of the Nintendo Entertain-

ment System. ”

 47. “ First Nintendo Commercial. ”

 48. Nintendo of America, “ VIDEO ROBOTS. ”

 49. Due to R.O.B. ’ s early demise and minuscule software support, “ big box ” ver-

sions of Gyromite and Stack-Up (with included accessories) command high

prices among collectors.

[366]

 50. My thanks to Tursi and x87bliss at AtariAge for decoding R.O.B. ’ s behavior

through careful reverse engineering and experimentation. See godslabrat, “ Any

interest in NES ROB homebrews? ”

 51. The precise color values are not critical, merely the contrast of light and dark.

See ibid.

 52. Only the NES port of Zelda uses sprite 0 for its screen split. The original disk

version uses an IRQ scanline counter native to the Disk System.

 53. Cifaldi, “ In Their Words: Remembering the Launch of the Nintendo Entertain-

ment System. ”

 54. A further irony in light of Nintendo ’ s initial marketing was R.O.B. ’ s platform

agnosticism. Since the robot has no direct interface with the NES, it is possible

to issue commands via any console that can replicate the proper sequence of

screen flashes. Once R.O.B. ’ s flicker sequences were decoded, for instance,

AtariAge community member Pioneer4x4 wrote a simple program to control

the robot with an Atari VCS. See Pioneer4x4, “ I got my Atari to control my

Nintendo R.O.B. Robot! ”

 55. Light gun technology was actually Nintendo ’ s first, inauspicious entry into the

American videogame industry: “ In 1971, Nintendo had — even before the mar-

keting of the first home console in the United States — an alliance with the Amer-

ican pioneer Magnavox to develop and produce optoelectronic guns for the

Odyssey (released in 1972), since it was similar to what Nintendo was able to

offer in the Japanese toy market in 1970s. ” Picard, “ The Foundation of Geemu :

A Brief History of Early Japanese video games. ”

 56. See V., Eric, “ Nintendo Kousenjuu Duck Hunt (ダ ッ ク ハ ン ト , 1976). ”

 57. Electronic Code of Federal Regulations, “ PART 1150 — MARKING OF TOY,

LOOK-ALIKE AND IMITATION FIREARMS, ” § 1150.3 - Approved markings.

 58. Note that some early NES technical documents have the Zapper flags reversed

(e.g., Chadwick, “ Nintendo Entertainment System Documentation Version:

2.00 ”).

 59. The four NES light gun launch titles were Duck Hunt, Gumshoe, Hogan ’ s Alley,

and Wild Gunman.

 60. “ Wild Gunman (1974), ” Internet Arcade Museum.

 61. Okada received a U.S. patent for the technique. See Okada, “ Video Target

Control and Sensing Circuit for Photosensitive Gun. ”

 62. “ Question about coding for NES zapper, ” NesDev .

 63. Cifaldi, “ In Their Words: Remembering the Launch of the Nintendo Entertain-

ment System. ”

 64. The games included a SAVE option, but no on-cart memory to do so. The origi-

nal cartridges used the optional Famicom Data Recorder to save levels. Though

the peripheral was never released outside Japan, the menu options were never

deleted in localization.

 65. bootgod, “ Family BASIC (Revision A1). ”

 66. See “ Pulse Line Cartridges, ” Famicom World .

 67. Feldman and Walters, “ Konami Box Art. ”

 68. However, Nintendo did have their favored licensees. Top-shelf developer

Konami, for instance, were able to circumvent restrictions by creating a sub-

sidiary company, Ultra Games. When Konami reached their yearly ceiling for

game releases, they could then transfer publishing credit to Ultra.

Notes [367]

 69. Donovan, 168.

 70. NES game paks had 72 pins, versus the Famicom ’ s 60. Ten were wired to the

NES ’ s unused expansion port. The remaining two connected to the CIC.

 71. See bootgod, “ Gemfire. ”

 72. Worldwide, box styles varied by region. In Great Britain, Canada, and France,

Nintendo largely used the standard extended box design. The enhanced pix-

elated cover artwork was also identical. Minor variations included a line of

text (“ GAME OF ”) to prefix the title, along with the relevant regional transla-

tion. The French cover for Hogan ’ s Alley , for instance, said, “ GAME OF / JEU DE

HOGAN ’ S ALLEY. ” The Seal of Quality was similarly duplicated and translated.

In regions where Mattel distributed the NES, their corporate logo was affixed

to the front cover near the Seal of Quality.

 In Spain, covers were altered more significantly. The pixelated artwork was

replaced by the cartoon illustration style of the Famicom originals. The Nintendo

logo, updated to the more modern red and white version, was moved to the lower

left and subtitled “ VERSION ESPA Ñ OLA. ” The series icon was deleted and

replaced with a translated text version. For example, Balloon Fight , now in a silver

box, had the text “ SERIE ACCION ” directly beneath the title.

 The greatest international divergence in box design came from the “ short

box ” variants released in certain Asian and European markets. In these regions,

Nintendo eliminated the styrofoam risers and shrunk the boxes to fit the actual

height and width of the game paks.

 73. As a result, the screw count and plastic surface along the pak ’ s upper edge is a

quick visual cue to approximate the game ’ s production date (and has since

become a variant sought by collectors).

 74. Yukawa, “ Cartridge for Game Machine. ”

 75. There were a few notable variations of the NES game pak: the yellow test carts

used in Nintendo ’ s authorized service centers, black carts used in Famicom

game kiosks in hotels, and the holy grail of NES collectors — the gold Nintendo

World Championship cart awarded to contest winners.

 76. Unlicensed distributors could not copy the Nintendo seal ’ s text, but they could

brand their own. HES boxes, for example, had their own circular serrated seal,

appropriately free of any quality claims: “ H.E.S. CARTRIDGE FOR NINTENDO.

Use with a Nintendo cartridge. (Instruction enclosed). ”

 77. Among Retrozone ’ s cartridge reproductions (viewable at retrousb.com) is

the updated version of Donkey Kong with the “ pie factory ” level reinstated

(Chapter 2).

 78. McCullough, “ Nintendo ’ s Era of Censorship. ”

 79. Wirth, “ Spotlight: Earthbound. ”

 80. W., “ Interview with Shigeru Miyamoto Volumes 1 and 2. ”

 81. Kohler, “ The Secret History of Super Mario Bros. 2. ”

 82. To disambiguate the U.S. and Japanese titles of the same name, the NES version

of Super Mario Bros. 2 was eventually ported back to the Famicom as Super Mario

USA (1992).

 83. “ Might and Magic: Oddities, Theories, and Unused Content, ” Flying

Omelet.

 84. Might & Magic is a conspicuous example of double translation. Instead of porting

the native English PC version directly to the NES, it was refracted through

[368]

both the Japanese language and Nintendo ’ s content regulations before U.S.

release.

 85. For those who might miss the 1980s food references, the final three games

featured characters representing McDonald ’ s, 7-Up, and Domino ’ s Pizza,

respectively.

 86. Kohler, Power-Up , 207.

 87. See Fieldsted, “ Category Archives: Cultural Anxiety. ”

 88. Rockman is one of the most notorious examples of NES artwork localization. The

lively anime-inspired Famicom box art closely matched the look of the in-game

sprites. The U.S. version, titled Mega Man , was an artistic train wreck of dis-

jointed perspectives, improbable anatomy, and questionable characterization

that bore little resemblance to the game advertised. “ Box art Mega Man ” has

since become part of NES lore, even resurfacing as a playable character in 2012

fighting game Street Fighter X Tekken .

 89. See “ Strafgesetzbuch section 86a, ” Wikipedia .

 90. “ The Bionic Commando Database, ” The Almighty Guru .

 91. In the years since Bionic Commando ’ s release, Hitler ’ s exploding head has

metamorphosed from censorship oversight to NES cultural lore. The graphic

animation continues to propagate, both as Internet meme (such as the

J-Pop-infused web animation “ OMG Hitler ’ s Exploding on Bionic Com-

mando! ”) and in videogame adaptation (it was faithfully “ remastered ” in the

2008 HD remake of the NES game, Bionic Commando: Rearmed). See “ YTMD -

OMG, Hitler ’ s Exploding on Bionic Commando! ” and “ Bionic Commando Re-

Armed: Exploding Hitler Head, ” poeTV.

 Chapter 4

 1. Miyamoto recalls that the team included seven or eight members. See W.,

 “ Interview with Shigeru Miyamoto Volumes 1 and 2. ”

 2. In most cases, I will opt for the “ platformer ” name in an effort to distinguish

the genre from a general computational platform.

 3. In Mario Bros. , the turtles are called “ Shellcreepers, ” while in future Mario

games they are called “ Koopa Troopas. ”

 4. See “ Platform game, ” Wikipedia .

 5. See the “ Manuals ” section of MatoTree, “ Legends of Localization: Super Mario

Bros. ”

 6. See Sarkeesian, “ Damsel in Distress: Tropes vs Women in Video Games. ”

 7. See “ Names ” in MatoTree, “ Legends of Localization: Super Mario Bros. ”

 8. See Papp, Anime and its Roots in Early Japanese Monster Art .

 9. Nintendo of Europe GmbH, “ Iwata Asks: Volume 8 - Flipnote Studio - An

Animation Class. ”

 10. Ibid.

 11. W., et al., “ Mario in Japan. ”

 12. W., et al., “ Super Mario Bros. - From Japanese to English. ”

 13. See “ Names ” in MatoTree, “ Legends of Localization: Super Mario Bros. ”

 14. Nintendo of America Inc., “ Iwata Asks - New Super Mario Bros.: Volume 2. ”

 15. The mushroom-induced size change was originally attributed to Alice in Won-

derland (Sheff, Game Over , 51; Kohler, Power-Up , 58), but Miyamoto has said that

Notes [369]

there was no overt influence from the Lewis Carroll tale. See Nintendo of

America Inc., “ Iwata Asks - New Super Mario Bros.: Volume 1, ” Section 4.

 16. Gifford, “ Super Mario Bros. ’ 25th: Miyamoto Reveals All. ”

 17. Nintendo of America Inc., “ Iwata Asks - New Super Mario Bros: Volume 2, ”

Section 6.

 18. Nintendo of America Inc., “ Iwata Asks - New Super Mario Bros: Volume 1, ”

Section 3.

 19. Chaplin and Ruby, Smartbomb, 66 – 9. The same childhood landscape would

inspire the caves of Hyrule in The Legend of Zelda .

 20. Nintendo of America Inc., “ Iwata Asks - New Super Mario Bros: Volume 2, ”

Section 5.

 21. Snider, “ Q & A: ‘ Mario ’ creator Shigeru Miyamoto. ”

 22. “ Area objects ” and “ enemy objects ” are labels coined by doppelganger, not

official source comments from Nagako, Miyamoto, or the rest of the SMB team.

 23. Unless otherwise noted, terminology and source code excerpts from Super

Mario Bros. are drawn from doppelganger, “ SMBDIS.ASM - A Comprehensive

Super Mario Bros. Disassembly. ” Specific code segments are cited with the line

numbers from the disassembly. I also adopt many of doppelganger ’ s naming

conventions for objects, subroutines, variables, etc. to maintain consistency for

readers.

 24. Galoob, Game Genie Programming Manual and Codebook , 141.

 25. Nintendo ’ s own Paper Mario (2001) series adopted a similar visual style. The

2007 Wii sequel Super Paper Mario was ostensibly a 2D platformer with a literal

3D twist: the player could rotate the perspective along a vertical axis, permitting

them to see hidden routes, retrieve power-ups, and pass obstacles that appear

insurmountable in 2D.

 26. doppelganger, “ SMBDIS.ASM, ” line 4956 – 67.

 27. Certain levels share identical area object data: 1 – 4/6 – 4, 1 – 3/5 – 3, 2 – 2/7 – 2,

2 – 4/5 – 4, and 2 – 3/7 – 3. However, their enemy object placement varies.

 28. Nintendo of America Inc., “ Iwata Asks - Volume 1: Shigesato Itoi Asks in Place

of Iwata, ” Section 9.

 29. See “ Nibble, ” Wikipedia.

 30. doppelganger, “ SMB disassembly. ” Though the data tables and illustrations are

mine, I am indebted to doppelganger ’ s personal correspondence. He explained

in exhaustive detail how the byte encoding worked.

 31. doppelganger, “ SMBDIS.ASM, ” line 3472 – 3529.

 32. The Legend of Zelda has a similar spatial maze within the Lost Woods. Sur-

rounding trees outline four conjoined paths that branch to each of four cardinal

directions. If Link heads east, he returns to the prior screen. However, moving

north, west, or south returns Link to the same screen in an apparent infinite

loop. Like SMB ’ s castles, only a certain pattern of path choices (north, west,

south, west) will lead Link out of the Lost Woods and into the adjoining Grave-

yard. Both games ’ mazes produce unmappable cartographies that can only be

represented through movement vectors.

 33. Excluding the FDS version of Super Mario Bros. 2 , which used a nearly identical

engine as the original.

 34. Nintendo of America Inc., Super Mario Bros. / Duck Hunt Instruction Booklet , 19.

Bracketed words are small illustrations in the original.

[370]

 35. Nintendo of America Inc., “ Iwata Asks - New Super Mario Bros: Volume 2, ”

Section 6.

 36. My thanks to Damian Yerrick for explaining the technical details (and providing

the name) for this PPU rendering quirk.

 37. Note that future iterations of Mega Man dropped score tracking.

 38. Ironically, the console ’ s shortcomings are now part of the Mega Man franchise ’ s

trademark style. In 2008 ’ s “ retroboot ” of the series, Mega Man 9 , simulated

sprite flicker and engine slowdown were selectable features via the game ’ s

 “ Legacy Mode. ” See Webster, “ Mega Man 9 to feature intentional, optional

glitches. ”

 39. The instruction manual explains the camera ’ s shifting roles. In the “ Camera

Options ” section, it reads, “ One of the tricks of this game is to use the

camera skillfully. You are not just the player, but the cinematographer, too! ” A

page later, in “ Camera Operation Mode, ” it reads, “ During the game, depending

on the scene, the Camera Mode will automatically switch to the ‘ recommended ’

view. ” See Nintendo of America, Super Mario 64 Instruction Booklet , 20 – 1.

 40. Note that this and subsequent coordinates describe the upper left pixel of the

upper left sprite in Mario ’ s metatile, a point located a few pixels to the left

of his cap.

 41. See Anthropy, “ level design lesson: to the right, hold on tight. ”

 42. Steve Swink provides an excellent but slightly “ higher-level ” take on Mario ’ s

physics and camera interaction in Swink, Game Feel , 206 – 220.

 43. See BOCTOK Co., Ltd, Bit Generation 2000 “ TV Games, ” 89; Gifford, “ Mario

Mania I (1985-6) ” ; and Gifford, “ More on Tokuma ’ s Mario Guide. ”

 44. Gifford, “ Mario Mania I (1985-6). ”

 45. Nintendo Power ’ s inaugural issue outlines the 3 – 1 trick in the “ Counselor ’ s

Corner ” section. They tell players, “ You may want to stop building lives at

around 100. If you get too greedy, the program has a built-in ‘ Game Over. ’ ”

Nintendo of America, Inc., “ Counselor ’ s Corner - Super Mario Bros. ” Nintendo

Power 1 (July/Aug. 1988): 52.

 46. Also see Kaluszka, “ How the Super Mario Bros. extra lives system works

(I think). ”

 47. Nintendo of America, Inc., “ Classified Information - Explore the mysterious

minus world. ” Nintendo Power 3 (Nov./Dec. 1988): 55.

 48. doppelganger, “ the minus world explained v2.0. ” doppelganger ’ s document, at

over 4000 words, is the most detailed description of the minus world behavior,

based on his thorough disassembly of the SMB source.

 Chapter 5

 1. “ Famicom Disc System CM (English), ” Trans. Clyde Mandelin (aka matotree).

Observant Zelda fans may note that the metallic surface featured in the com-

mercial is patterned with Triforce shapes.

 2. Taylor, “ Famicom Disk System technical reference. ” Booting the FDS triggered

a short fanfare as a large flashing banner emblazoned with the Nintendo scrolled

into view from the top of the screen. If there was no disk loaded, the bottom of

the logo read “ PLEASE SET DISK CARD. ” Then, both Luigi and Mario (in their

Notes [371]

original Mario Bros. attire) appeared in turn, competing to flip a light switch

hanging from the bottom of the banner. It was a simple animation, but it showed

that the RAM adapter itself had executable code onboard, functioning as a sur-

rogate cartridge.

 3. The ROM BIOS mapped directly to CPU memory space in an 8K block spanning

$E000 to $FFFF.

 4. Theoretically, an FDS disk card can hold 65,500 bytes per side, but a fraction

of that available space is filled with zeroed “ gaps ” and 16-bit cyclic error-

correcting codes (CRCs) bookending data blocks, as well as the disk ’ s requisite

header data. See NesDev Wiki , “ Family Computer Disk System ” for more

details.

 5. For a detailed history of the floppy disk ’ s development, see Pugh, et al., 510 − 21.

 6. See Sheff, 75 and McFerran, “ Slipped Disk - The History of the Famicom Disk

System. ”

 7. The blue contest disks were much scarcer than yellow. Rarest of all were white

prototype disks used internally for FDS development. See Famicom World,

 “ Nintendo ’ s Development Disks. ”

 8. See Famicom World, “ Holy Grails. ”

 9. Taylor, “ Famicom Disk System technical reference. ”

 10. Famicom Disk System, “ Disks. ”

 11. Famicom World, “ FDS Power Board Modifications. ”

 12. Taylor, “ Famicom Disk System technical reference. ” The distinction between

blocks and files is unclear and inconsistent in much of the FDS documentation.

I use block to designate a discrete section of related bytes, such as the header.

A file is composed of several blocks, namely the header, data, and CRC.

 13. The full byte was not necessary. The FDS only looked for a single bit flip from

zero to one to indicate the end of a gap and the start of a new block. The FDS

read disks in reverse bit order, so the binary value of $80 indicated a string of

zeroes ending with a 1 (%10000000).

 14. NesDev Wiki, “ Famicom Disk System. ”

 15. The 14-byte string is 2A 4E 49 4E 54 45 4E 44 4F 2D 48 56 43 2A, which can be

read from the header of FDS ROMs in a hex editor.

 16. Famicom Disk System, “ Disk Copy. ”

 17. Gifford, “ Hacker International ’ s head speaks. ”

 18. DvD Translations, “ ReadMe-DvD_Translations-BodyConQuest_I-Girls

_Exposed-revA.txt. ”

 19. The FDS ’ s seven other launch games were largely cross-ports of Famicom

sports cartridges like Baseball and Tennis .

 20. Nintendo of America Inc., “ Iwata Asks - New Super Mario Bros: Volume 2. ”

Nintendo ’ s two Famicom-based arcade platforms were the Vs. UniSystem and

the PlayChoice-10.

 21. There were third-party VS ports as well, such as Vs. Castlevania, Vs. Goonies, Vs.

Platoon, Vs. Gradius, etc.

 22. Korth, “ Everynes: Everything about NES and Famicom. ”

 23. “ Nintendo Vs. Unisystem, ” John ’ s Arcade .

 24. Both the FDS and NES version of The Legend of Zelda contain staff credits, albeit

in pseudonym form. However, the original prototype listed the contributors ’

[372]

real names, with the exception of “ Ten Ten ” (Tezuka) and “ Konchan ” (Kondo).

See The Cutting Room Floor , “ Proto: The Legend of Zelda. ”

 25. Nintendo of America Inc., “ Iwata Asks - New Super Mario Bros: Volume 2. ”

 26. “ How ‘ Adventure Mario ’ became The Legend Of Zelda, ” CVG .

 27. “ Zelda no Video History of Zelda Documentary. ”

 28. See Edge Staff, “ THE MAKING OF … Japan ’ s First RPG ” and Parkin, “ The

Dragon Invasion. ”

 29. Though Ultima I obviously preceded Ultima II in the West, the former did not

receive a port to the PC-8801 until 1988. Ultima II , however, was ported to the

PC-8801 and Fujitsu FM-77 (among other platforms) in 1985.

 30. Sopalin, “ Miyamoto, la Wii U et le secret de la Triforce. ”

 31. Hamman, “ The Tower of Druaga: Item Guide (v.1.11). ”

 32. Zelda ’ s creature and item menageries likewise shared a number of uncanny

resemblances to Druaga ’ s sprites. Both had red/blue rings and candles, three

levels of swords, red/blue elixirs, a blue wand, a spell book, shield-bearing

knights, fidgeting slimes, teleporting wizards, and circular floating spirits.

Viewed side by side, the two games ’ sprites are strikingly similar.

 33. Unseen64staff, “ The Legend Of Zelda [NES - Beta / Concept]. ” Also see Thorpe,

 The Legend of Zelda: Hyrule Historia, 2. Nintendo ’ s internal development teams

had experimented with player-constructed levels in earlier titles Excitebike ,

Wrecking Crew , and Mach Rider . Each game had a design mode that allowed

players to place game objects within a level. Since all three were NROM car-

tridges, players had to save and load their designs to cassette via the Family

Computer Data Recorder peripheral.

 34. Adventure uses its spatial discontinuity to great effect, since many of its screens

do not adhere to logical geometries. An eastern tunnel from one screen, for

instance, can lead the player to the northern entrance of a non-adjacent screen.

 35. Nintendo of America Inc., “ Iwata Asks - New Super Mario Bros: Volume 2. ”

 36. Dungeon screens are truncated by four metatiles because their bordering walls

and doors are handled separately by the rendering engine.

 37. My thanks to NesDev member snarfblam for describing and explaining Zelda ’ s

metatile engine and compression technique. See NesDev , “ Zelda FDS (and

general disk-related questions) ” for our discussion.

 38. In addition, the data stream can describe multiple “ overlapping ” strips depend-

ing on where one enters it. See ibid.

 39. Indeed, Zelda ’ s original design documents show that the team plotted the

dungeon layouts as if solving a block puzzle. Tezuka pencilled two 16x8 grids

on graph paper and shaded in each dungeon ’ s layout with colored pencils.

Miyamoto used the same technique to design Hyrule ’ s overworld.

 40. The second quest was meant to extend the life of the game and offer advanced

players additional challenges. Players could unlock the second quest by either

completing the game or entering “ ZELDA ” as their name in the player registra-

tion screen.

 41. Nintendo of Europe GmbH, “ Iwata Asks: Zelda Handheld History. ”

 42. Name tables do not “ move. ” Toggling mirroring simply updates which name

table data is duplicated at which address.

 43. Internally, the four name tables starting locations reside at the following PPU

addresses: $2000, $2400, $2800, and $2C00.

Notes [373]

 44. Note that the status bar remains static throughout the engine ’ s scrolling routine.

This is achieved differently on different platforms: disk Zelda uses the FDS ’ s

scanline IRQ to time the screen split; cartridge Zelda uses sprite 0, whose bomb

pattern mimics the counter in the status bar.

 45. The reality is slightly more complex than setting bit 3 of $4025 to 0. $4025 is

a disk control register that also handles a number of low-level disk drive

functions, including turning the motor on and off. To ensure that updating

mirroring settings does not conflict with the physical operation of the disk,

the BIOS also provides several “ pseudo-registers ” to permit safe access to the

mirroring status. During horizontal screen transitions, Zelda first updates

$4025 ’ s pseudo-register, $00FA, then the actual register.

 46. We can only speculate why Nintendo opted to cut battery saves from Metroid and

 Kid Icarus . Both boards looked identical to the Zelda MMC1 save for an auspi-

cious blank spot on the upper left corner of the PCB labeled “ Batt CR2032, ”

clearly indicating where the battery would have been clipped. Both boards also

included a superfluous 8KB of SRAM. Stranger still is an unused region of

memory ($77FE-$782D) left in the Metroid source code that stored save data

in the disk version but had no use with a password system in place (See

 “ MetroidDefines ” in Dirty McDingus, “ Metroid Source Code Expanded. ”).

Perhaps Nintendo decided the additional cost of the battery was not a worth-

while expenditure at the time. Perhaps the two games were riskier in the Western

marketplace; Zelda had proven to be a massive hit in Japan, but an opaque sci-fi

exploration game with a female protagonist and a Greek mythology-centered

platformer were less of a sure bet.

 47. Nintendo was hedging its bets, but it turns out they undersold the battery.

Anecdotally, its shelf life has proven to be much longer, as many original Zelda

carts still maintain their save data after twenty-five years (including the author ’ s

two personal copies).

 48. See whicker ’ s reply in “ Static RAM in the SNES carts ” (FistOfFury), ZSNES

Board ; NesDev Wiki , “ MMC1 ” ; and “ Why DO you have to hold reset while turning

power off? ” (Protoman), Famicom World .

 49. The instruction booklet warning also showed an updated screen shot displaying

the new in-game warning. See Nintendo of America, Inc., The Legend of Zelda

Instruction Booklet , 1987: 13 – 14.

 50. Paumgarten, “ Master of Play ” and “ Spelunking in Sonobe. ”

 51. Sheff, 45.

 52. “ Nintendo Online Magazine Shigeru Miyamoto Interview - August, 1998, ”

 ZeldaDungeon.net.

 53. Scott, “ Miyamoto: ‘ I am lazy. ’ ”

 54. The original reads: を ぶ と い う で は ど っ ち も な ん で す よ じ

よ う に の よ う な が あ っ て じ よ う に を し て い く と い う

 Trans. Aria Tanner, personal correspondence.

 55. Lee, The Compact Culture, 156.

 56. Ibid., 75.

 57. Katayama, 168.

 58. Kerr, Dogs and Demons , 14.

 59. Kerr, 232.

[374]

 60. Smith echoes Kerr ’ s sentiments in Japan: A Reinterpretation : “ The construction

state lies at the core of the postwar system. It helps to account for Tokyo ’ s

deranged pursuit of economic growth at any cost … And it is why we sometimes

picture Japan as a machine with no one at the levers, a machine out of control. ”

Smith, Japan: A Reinterpretation , 180.

 61. Kerr, 35.

 62. Watanabe, “ The Conception of Nature in Japanese Culture, ” 187, 190.

 63. Ibid., 192.

 64. Ibid., 193.

 65. Kerr also highlights the cultural tension at play between the image of “ Japan as

the land of the miniature ” and the reality of “ Japan ’ s modern gigantism, the

insistence on the biggest and the longest, the taste for the bombastic. ” Kerr,

228 – 35.

 66. Bogost and Montfort, Racing the Beam , 146.

 67. Sample, “ What Comes before the Platform: The Refuse of Videogames. ”

 68. Nintendo of America Inc., “ Iwata Asks - New Super Mario Bros: Volume 1. ”

 69. Sheff, 76.

 70. The Disk System also spawned a notable hardware variation. Nintendo contin-

ued its longstanding partnership with Sharp and sanctioned the Sharp Twin

Famicom (ツ イ ン フ ァ ミ コ ン), a hefty console hybrid that combined the Famicom

and FDS into a single integrated enclosure. Sharp adopted many of its design

cues from Nintendo ’ s console: carts top-loaded, disk cards inserted in the

front, hardwired controllers docked on the console (although along the back,

rather than the sides), and a dedicated lever popped carts out of the system.

However, a special sliding lock ensured that carts and disks could not play

simultaneously, physically blocking disk card insertion when the other format

was engaged in some models, and vice-versa in others. Along the unit ’ s right

side were two expansion ports: one was the standard 15-pin port used for con-

necting peripherals, while the other was, perplexingly, an interface that allowed

a second Famicom to use the Twin ’ s disk drive. The Twin also diverged in its

palette, offering two hardware colors (each with its own later revision). Though

one Twin variation came in red, its hue was softer than Famicom maroon. More

importantly, the Twin upgraded the Famicom ’ s visual output, providing a com-

posite A/V port in addition to the stock RF connection.

 Chapter 6

 1. See Editorial & Business Headquarters, “ Game Makers Plan Future. ” My thanks

to Zach Whalen for this reference.

 2. Slade, Made to Break , 5.

 3. Also see Whalen, “ Channel F for Forgotten. ”

 4. See Weil, “ No Bad Memories (Or, Video-game nostalgia and the academic and

popular discourses that shape it). ”

 5. Picard, “ The Foundation of Geemu : A Brief History of Early Japanese video

games. ”

 6. Ibid.

 7. Smith, “ Feature: What ’ s in a Name? ”

 8. Iwamoto, Japan on the Upswing , 200.

Notes [375]

 9. Ibid., 200.

 10. “ List of Enix home computer games, ” Wikipedia .

 11. Iwamoto, 200.

 12. Like Nakamura, Horii would eventually adopt his own company name, Armor

Project.

 13. “ ド ア ド ア , ” Wikipedia Japan .

 14. Its NEC PC-6001 predecessor, released two years prior, was one of the first

Japanese graphical adventure games. See “ Early Japanese Adventures (1982 –

 1986) ” in “ Adventure Game, ” Wikipedia .

 15. For an overview of the adventure genre, see Wolf, The Video Game Explosion ,

pp. 81 – 90.

 16. While Nintendo offered a keyboard attachment for the Famicom, they only sup-

ported it with two software titles, both versions of the programming cartridge

Family BASIC.

 17. For photos and news reports of Portopia ’ 81, see Cotter, “ Portopia ’ 81. ”

 18. “ Japanese Flock to Exhibit Focusing on the Future, ” nytimes.com.

 19. In light of Kerr ’ s indictment of Japan ’ s environmental policies (chapter 5),

there is an added irony that Kobe ’ s government would mine their natural

resources to raise an artificial island out of the sea and enshrine it in concrete.

See Kerr, 37.

 20. Nonetheless there is a strong tradition of text mode games. Two of the most

revered, even today, are Rogue and Nethack , both of which use the ASCII char-

acter set to represent their in-game “ graphics. ”

 21. The slow rendering times were likely a by-product of the game being pro-

grammed in BASIC.

 22. Enix, Inc., “ The Portopia Serial Murder Case Suspense Adventure Game

Instruction Booklet (How to play), ” Trans. harmony7.

 23. Ibid.

 24. Investigating the crime scene in an emulator reveals that the chalk outline is

drawn with background tiles — with one exception: a single sprite is used to draw

a portion of the victim ’ s head. DvD Translations speculates that the sprite might

be evidence of a coverup of the blood from the original game. The mystery

remains unsolved.

 25. DvD Translations, “ ReadMe-DvD_Translations-The_Portopia_Serial_Murder

_Case-revB2.txt. ”

 26. European releases dropped the plural “ Ghosts, ” so the title was Ghost ’ n

Goblins .

 27. Due to the spotty documentation of many Famicom and NES releases, a precise

history of cartridge mappers is difficult to determine. NesDev ’ s “ Cartridge and

mappers ’ history ” provides one of the best summaries, nominating Jaleco ’ s City

Connection (Sept. 1985) as the “ first game to use hardware other than 2 ROMs. ”

CNROM appears by April 1986, with UNROM following soon after in June

1986.

 28. NesDev Wiki, “ Mask ROM Pinout. ”

 29. NesDev Wiki, “ CHR ROM vs. CHR RAM. ”

 30. NesDev Wiki, “ Cartridge and mappers ’ history. ”

 31. See the entry for “ Makaimura ” in bootgod, NES Cart Database .

 32. Sheff, 42 – 3.

[376]

 33. The Japanese technology industry has a complex history of competition and

cooperation among corporations. See Anchordoguy, Reprogramming Japan

and Johnstone, We Were Burning .

 34. See Nakagawa, Katsuya and Yoshiaki Nakanishi, “ Memory cartridge having a

multi-memory controller with memory bank switching capabilities and data

processing apparatus ” and Nintendo of America, Inc., “ Why Your Game Paks

Never Forget, ” Nintendo Power 20 (Jan. 1991): 28 – 31. In the latter source, Nin-

tendo reassigned the MMC acronym to “ memory management controllers. ”

 35. Most important to duplicate were the three interrupt vectors used to direct

code after console reset, NMI, or IRQ. See NesDev Wiki , “ Programming

UNROM. ”

 36. CHR-RAM animation functioned similarly to CHR-ROM, though its tile updates

were more granular, since entire banks did not have to swap as a whole. Devel-

oper Rare were especially adept at this method, using CHR-RAM updates to

animate the titular heroes from Battletoads and the player ’ s boat in Cobra

Triangle.

 37. Not to say that NROM games could not contain unused code or graphics. Several,

including Donkey Kong and Super Mario Bros. , have yielded artifacts, just not to

the extent that later ROM-rich games have.

 38. The wiki-driven site The Cutting Room Floor has become a valuable repository of

these programming artifacts, exhaustively cataloguing the binary minutiae

found by combing through cartridge ROM and disk dumps. Some of their more

remarkable entries include the sixteen unused levels in Super Mario Bros. 3 , a

detailed list of the differences between The Legend of Zelda ’ s prototype disk

versus its official release, and Erika to Satoru no Yume Bouken programmer Hide-

mushi ’ s now-infamous hidden diatribe excoriating his co-workers ’ laziness,

hygiene, and sexual behaviors.

 39. Gifford, “ The Road to Dragon Quest. ”

 40. The Wizardry manual made this explicit: “ After you have selected activities for

all the characters … the computer will mediate the combat. ” Sir-Tech Software

Inc., Wizardry (Instruction Manual) , 32.

 41. Wizardry and Ultima were both single-player games, but in the former, one ’ s

party could be up to six members strong, each with their own name, race, class,

ability scores, and equipment. Ultima had the same character customization

options, but restricted the player to a party of one.

 42. Both character naming and a single character class were traits first seen in Black

Onyx . See Parkin, “ The Dragon Invasion. ”

 43. The original Japanese read: は あ な た ゲ ー ム ス タ ー ト に あ な た

の を れ る と や の は そ の で し か け て き ま す Translated

in Kuntz, “ DRAGON QUEST Japanese Game Script and Mini Playing Guide

v5.11. ”

 44. Speirs, “ Dragon Warrior: Names/Stats/Levels FAQ. ” Note that there is a small

error in Speirs ’ growth track table. See ShinerCCC ’ s comment in Optimus-

PriNe, “ Dragon Warrior Run. ”

 45. ラ ダ ト ー ム has varying English translations online, but I have opted for Nin-

tendo ’ s “ official ” pre-release translation of “ Radatome ” found in the Winter ’ 87

issue of Nintendo Fun Club News . However, the names would change for the U.S.

localization two years later: Lars is Lorik, Loto is Erdrick, Radatome Castle is

Notes [377]

Tantagel, and the Dragon King is known as the Dragonlord, who awaits your hero

in Charlock Castle.

 46. Ultima pioneered this use of an overworld view in computer RPGs, but again,

the roots of that visual style traced to tabletop role-playing and beyond that to

centuries of war games, where tokens or figurines would represent armies on a

battle map. In Dungeons & Dragons , the compression and rarefaction of in-game

spaces was common in transitions between towns and dungeons, where player

miniatures were scaled to their environment, and a larger world map, com-

monly gridded with squares or hexagons to quantitatively abstract movements

over great distances.

 47. Nintendo Power 7 (July/Aug. 1989): 40 [photo caption].

 48. “ Iwata Asks: Dragon Quest IX - Part 1: The History of Dragon Quest. ”

 49. Mentzer, Dungeons & Dragons Dungeon Masters Rulebook , 22.

 50. Loogaroo1 provides a color-coded visual breakdown of the game ’ s zones. See,

Loogaroo1, “ Dragon Warrior: Enemy Territory Map. ”

 51. Dragon Warrior Instruction Booklet , 17.

 52. Technically, each grassland tile had either a 1/32 or 1/16 encounter probability,

based on the player ’ s current coordinates. Programmatically, these tiles

had a checkerboard pattern, so each step alternated the probability. See

Ryan8bit, “ Dragon Warrior (NES) Formulas v1.0 ” for more details.

 53. Kuntz, “ DRAGON QUEST Japanese Game Script and Mini Playing Guide v5.11. ”

 54. Artist Akira Toriyama ’ s Blue Slime has since become one of Dragon Quest ’ s most

beloved and enduring characters, spawning his own plush merchandise and

spin-off games.

 55. The spell memorization system served at least two purposes: one, it helped curb

software piracy, since players needed the instruction manual (or an outstanding

memory) to successfully cast spells; and two, it was a technological nod to the

 “ Vancian ” system of magic used in Dungeons & Dragons , where spells were

memorized each day and lost from memory when used.

 56. The MALOR teleportation spell, for example, required room coordinates to

cast. If the player mapped their surrounding incorrectly, they could teleport

into a wall, instantly killing the entire party. Worse still, casting MALOR during

combat teleported the party to a random location, increasing the odds that

your party would be “ lost forever ” within the maze. See Sir-Tech Software Inc.,

 Wizardry (Instruction Manual) , 46.

 57. Technically, eight-way movement would count as “ true ” multi-directional

scrolling. Dragon Quest limits movements to one metatile at a time in one of four

cardinal directions. Diagonal movement requires a more complex scrolling

engine that can update both rows and columns simultaneously.

 58. This is likely a design decision based on where the attribute errors might be

most distracting to players. Mario ’ s newfound flying ability, the centerpiece of

 Super Mario Bros. 3 , might have been dampened if flight was always correlated

with strange color blocks in the skies.

 59. Vic Tokai ’ s Clash at Demonhead (1990) and Hudson Soft ’ s Felix the Cat (1992)

use the same sprite-stacking technique seen in Alfred Chicken . The key trait all

three share is the use of 8x16-pixel sprites. Without the increased height, the

righthand column would use twice as many sprites, sacrificing nearly half of

OAM to a border, an unacceptable expenditure for most games.

[378]

 60. Dragon Quest was not Enix ’ s first collaboration with Toriyama. In 1984, they

released Dr. ス ラ ン プ バ ブ ル for the PC-6001/6601, a shooter starring

Toriyama ’ s character Dr. Slump.

 61. Gifford, “ Dragon Quest Composer Reflects on 24 Years of Games. ”

 62. Gibbons, “ Bip, Bloop, Bach? Some Uses of Classical Music on the Nintendo

Entertainment System. ”

 63. Sugiyama framed his own work in those terms. By 1987, he had already released

the Dragon Quest I Symphonic Suite , performed by the London Philharmonic, and

was organizing a live performance for the Tokyo String Music Combination

Playing Group, embellishing the looped chiptunes of the original with subtle

variations in theme and texture. Sugiyama ’ s transposition of videogame music

to orchestras and CD soundtracks served as a prototype for contemporary vid-

eogame orchestral reviews like Play! and Video Games Live.

 64. The translators cleverly ported the innuendo in the U.S. localization — the same

woman sold tomatoes instead.

 65. BOCTOK Co., Ltd., Bit Generation 2000 “ TV Games, ” 89.

 66. Kuntz, “ DRAGON QUEST Japanese Game Script and Mini Playing Guide

v5.11. ”

 67. In Japan these are known as (giongo) or (gitaigo), used to

describe “ sound effects ” and “ state words, ” respectively. See Kamermans, “ The

giongo/gitaigo dictionary. ”

 68. BOCTOK Co., Ltd., Bit Generation 2000 “ TV Games, ” 92.

 69. For English use in Japan, see Stanlaw, “ ‘ For Beautiful Human Life ’ : The Use of

English in Japan. ”

 70. Dragon Quest ’ s economical hiragana storage also reflects an important affinity

with its predecessor Portopia . Unsurprisingly, both games share nearly identical

syllabary tiles. Nakamura made some minor pixel adjustments to a few charac-

ters like き and ふ , but these appear to be cosmetic enhancements to make

the characters ’ tricky strokes more legible in an 8x8-pixel tile. Otherwise, the

games ’ hiragana are pixel-perfect copies that even share corresponding pattern

table IDs. And due to the radical/diacritic division described above, they also

share the same dialogue spacing seen in figure 6.5 . Considering Dragon Quest ’ s

abbreviated development schedule — roughly three to five months — time-saving

strategies like copying one ’ s own CHR-ROM “ handwriting ” were crucial

(Aoyama and Izushi, 432). Programmatically, matching tile references would

have also made code reuse much simpler.

 71. Carless, “ Interview: Dragon Quest Creator Horii’s Talks Evolving Appeal With

 DQIX . ”

 72. Tanner, “ Discussion Between Miyamoto & Horii. ”

 73. See Iwamoto, 201 and vgchartz.com.

 74. TSR was not the original rights-holder. They acquired the DragonQuest trade-

mark and copyright from SPI in 1983. See Wizards of the Coast, “ The History of

TSR. ”

 75. Nintendo of America, Inc. Nintendo Fun Club News 1.4 (Winter 1987): 14.

 76. The coverage included an 8-page leveling guide, a 36-page pull-out Tip Book,

an extended backstory, and an odd 4-page text adventure version of the game

along with a pull-out map.

Notes [379]

 77. Cifaldi, “ Nintendo Power: Remembering America ’ s Longest-Lasting Game

Magazine. ”

 78. Dragon Warrior ’ s months-long absence from the Players ’ or Dealers ’ Picks sec-

tions shows that two key audiences — players and retail buyers — had little interest

in the game. There was also no exposure in the Counselor ’ s Corner or Classified

Information sections, where Nintendo of America ’ s in-house counselor team

doled out hints and responded to players ’ letters. Dragon Warrior ’ s first of only

two appearances in those sections was notably odd: the Nov./Dec. ’ 89 issue had

a generic “ Role Playing Games ” question (“ How do I defeat the most difficult

enemies? ”) that gave general tips for RPG leveling. Though no specific game

was mentioned — an anomaly for the magazine — the included screenshot was

from Dragon Warrior . By spring 1990, Dragon Warrior would finally gain some

traction among players, peaking at #7 in the Players ’ Picks.

 79. Quartermann, “ Gaming Gossip, ” Electronic Gaming Monthly 3 (Sept. 1989):

28.

 80. Nintendo of America, Inc. Nintendo Power 6 (May/June 1989): 53.

 81. Nintendo of America, Inc. Nintendo Power 50 (July 1993): 39.

 82. Mega Man is also forcibly aligned to the sprite blocks if he does not land in their

direct center.

 83. Pickford, “ Ironsword Eagle working. ”

 84. Pickford, “ Ironsword title screen working. ”

 85. Pickford, “ Ironsword Dragon King concept art. ”

 86. Codemaster categorized their codes by type and labeled them with icons.

The most interesting effects fell under the “ Mystery/Weird/Special/Defies

Categories ” label. See Galoob, Game Genie Programming Manual and Codebook ,

15.

 87. Galoob, Game Genie Programming Manual and Codebook , 14.

 88. Ibid., 12.

 89. The Mighty Mike Master, “ NES Game Genie Technical Notes. ”

 90. I have adapted this decoding chart from Benzene, “ NES Game Genie Code

Format DOC v.0.71. ”

 91. NesDev , “ Docs on game genie hardware? ”

 92. Hughes, “ ‘ Super Mario Bros NES ’ R.Eng project, ” line 009069.

 93. United States Court of Appeals, “ 16 F. 3d 1032 - Nintendo of America Inc v.

Lewis Galoob Toys Inc. ”

 94. United States District Court, “ Lewis Galoob Toys, Inc. v. Nintendo of America,

Inc. ”

 95. Ibid.

 96. Ibid. When Nintendo could not defend themselves through litigation, they

responded through manufacturing. Just as they had made internal revisions to

the Disk System to thwart piracy and to the NES to disrupt CIC circumventions,

Nintendo subtly changed the NES ’ s cartridge port on the top-loading NES-101.

Since the Game Genie was customized for the NES ’ s front-loading shape, the

peripheral no longer fit. Galoob responded with a slim black adapter, mailed

to customers for free, that restored compatibility. And of course Nintendo ’ s

retaliation had no impact on the thirty million plus consumers who owned the

original console.

[380]

 97. Pack-in title Dizzy the Adventurer is the sole exception; it was only released as a

Compact Cartridge.

 98. Donovan ’ s Replay is a notable exception to the U.S.-centric model. He has

several excellent sections on industry developments in France, England,

Australia, and eastern Asia.

 99. Donovan, 113.

 100. Ibid., 113.

 101. Ibid., 125 – 137.

 102. The Games Machine: Computer and Electronic Entertainment 1 (Oct./Nov. 1987):

36.

 103. Hayes and Dinsey, Games War, 89 – 90.

 104. Ibid., 17.

 105. Ibid., 18.

 106. Regarding the successful NES/ Teenage Mutant Hero Turtles bundle, Hayes

and Dinsey write that the UK was “ the first market in the world where a

standard NES bundle was outsold by a unique market bundle. ” Hayes and

Dinsey, 62.

 107. Nintendo ASIC mappers took on the MMC “ brand, ” so it has become customary

to designate games that use ASIC mappers according to their IC name versus

their board name. MMC3 actually describes several boards — e.g., TKSROM and

TLSROM — each of which may have different bank numbers or capacities. A

single MMC group may also encompass multiple boards revisions. MMC1, for

instance, includes eighteen distinct boards, including SAROM, SGROM,

SL1ROM, SNROM, and so on. When multiple boards share the same prefix, they

are categorized by a single generic group name, such as SxROM or TxROM,

where x designates a sub-type. Even NROM, which up to this point we have used

as a single moniker to describe any cartridge without a mapper up to 40K in

capacity, includes multiple boards manufactured for both the Famicom and the

NES: HVC-HROM, HVC-RROM, HVC-SROM, NROM-128, and NROM-256.

Though functionally identical, their board IDs differ.

 108. Iz-Tavares and Chang, “ Programming M.C. Kids [1992]. ”

 109. According to bootgod ’ s “ Top 10 PCBs list, ” the various board variations of the

MMC3 appear in roughly 17.4% of all NES paks, with MMC1 trailing closely at

15.9%. CNROM and UNROM follow with 4.3% and 2.4% respectively. The

Famicom had a wider distribution of PCB types and thus a slightly different

 “ leader board. ” MMC1 ’ s 8.1% leads MMC3 ’ s 4.9%, while NROM, UNROM, and

CNROM round out the top five. See bootgod, “ Top 10 PCBs & mappers, ” NES

Cart Database .

 110. NesDev Wiki, “ iNES Mapper 005. ”

 111. NesDev Wiki, “ MMC5. ”

 112. NesDev Wiki, “ iNES Mapper 005. ”

 113. bootgod ’ s NES Cart Database lists only 23 MMC5 games, and many of those are

multiple regional releases of the same title.

 114. Bootlegs are notorious for over-exaggerating their cartridges ’ game capacities.

Titles like 10,000-in-1 are common, even when the cartridge contains only a few

dozen games.

Notes [381]

 Chapter 7

 1. 2A03 Puritans is available online at http://bitpuritans.bandcamp.com/album/

2a03-puritans

 2. Collaborators NO CARRIER and Alex Mauer, for instance, pushed authenticity

to its practical extreme, releasing their 2007 albums Vegavox and Color Caves

on playable NES cartridges. For an overview of NO CARRIER ’ s programming

work, see http://www.no-carrier.com . Alex Mauer ’ s music is available at http://

alexmauer.bandcamp.com .

 3. Throughout this chapter, I will refer to the APU and 2A03 interchangeably.

Technically, the 2A03 is distinct from the PAL 2A07, but I only reference the

former for the sake of convenience unless the NTSC/PAL timing differences are

of special note.

 4. See Pinch and Trocco, Analog Days , 58 – 62.

 5. See Analog Days , 43 – 5.

 6. The Skrasoft Dev Blog has a nice practical explanation of the difference: “ With

a sound chip like the POKEY or a SID, getting sound out is as simple as updating

a few memory spaces directly. That is, put some signals on input pins, trigger a

write, and repeat ad nauseum . With the 2A03, it is not so simple. Being a CPU,

it only accepts program code. Also, as a CPU it expects certain timings. While a

POKEY just needs to be given data when something changes, the 2A03 needs

continuously generated program code. It never ceases to demand, lacking any

sympathy or respect for its gracious host. ” See “ 2A03 Synth Status, ” Skrasoft Dev

Blog .

 7. NesDev Wiki, “ CPU. ”

 8. As a result, the APU is considered a direct digital synthesizer : “ Direct digital

synthesis (DDS) is a technique for using digital data processing blocks as a

means to generate a frequency- and phase-tunable output signal referenced to

a fixed-frequency precision clock source. In essence, the reference clock fre-

quency is ‘ divided down ’ in a DDS architecture by the scaling factor set forth in

a programmable binary tuning word. ” Analog Devices, Inc., A Technical Tutorial

on Digital Signal Synthesis.

 9. Slocum, “ Atari 2600 Music And Sound Programming Guide. ”

 10. Amplitude may be either positive or negative. At zero amplitude, air molecules

are at their rest state. Amplitudes above zero indicate a compression of

molecules, while negative values indicate a rarefaction. Perceptually, our ears

interpret the intensity of pressure changes as loudness.

 11. The sole difference between the pulse channels is a minor discrepancy in pulse

1 ’ s sweep unit. See NesDev, “ APU Sweep ” for technical details.

 12. The pulse channels ’ 11-bit programmable timers are sent to identical duty cycle

generators, so both produce frequencies between 54.6Hz and 12.4kHz. The

triangle channel has its own 5-bit step generator, so it covers a wider frequency

range, dipping as low as 27Hz, near the threshold of human hearing. See Taylor,

 “ 2A03 Technical Reference. ”

 13. Famicom sound designers usually chose to implement their own software

envelopes, which could be as flexible or rigid as they desired.

[382]

 14. Though 25% and 75% are inversely proportional, they sound the same. Thus

there are only three perceptually distinct duty cycle timbres for either pulse

channel.

 15. APU pulses are often referred to as square waves, but the former appellation is

more technically accurate. While all square waves are pulses, the inverse is not

true. A proper square wave has a 50% duty cycle, meaning its positive and nega-

tive pulses are symmetrical in width. But lengthening either side proportionally

shortens the other, changing the pulse ’ s shape and, more importantly, its tonal

character.

 16. Tumblr site Retro Game Audio has an excellent audio/video analysis of duty

cycle modulation. See bucky (aka explod2A03), “ NES Audio: Duty Cycle

Modulation. ”

 17. A related trick that sounds similar to duty cycle modulation was imported from

the work of influential Commodore 64 composers like Rob Hubbard. The SID

chip had fewer voices than the 2A03, though its impressive range of filters,

selectable waveforms, and modulation effects gave it a unique character that had

no direct equivalent on the Famicom. Yet with only three voices, C64 composers

had difficulty constructing chords. Devoting one voice to lead, one to bass, and

the last for percussion left no room for harmonization. To compensate, C64

composers used arpeggios played at rapid speeds on a single voice to simulate

chords.

 18. Dean, The Drum , 299 – 300.

 19. Brown, Sanner, et al., “ Delta Modulation. ”

 20. National Programme on Technology Enhanced Learning, “ Lecture - 3 Quantiza-

tion, PCM and Delta Modulation. ”

 21. See NesDev Wiki, “ APU DMC. ”

 22. Composer Akito Nakatsuka also uses DMC samples for Soda Popinski ’ s and Bald

Bull ’ s taunting laughter, a sound later recycled for Ganon ’ s laugh during Zelda

II ’ s Game Over screen. In fact, there are numerous sound effect similarities

between the two games, e.g., colliding with an enemy in the overworld in Zelda

II and executing a Star Punch in Punch-Out!! .

 23. Register $4010 reserves four bits for a rate index value between $0 and $F. The

highest index $F produces a (NTSC) period of 33.14kHZ, though again the 1-bit

delta modulation regulates the overall sound quality more than the period value.

Each index value ’ s corresponding frequency differs for PAL consoles. See

 NesDev Wiki, “ APU DMC ” for more details.

 24. See NesDev Wiki, “ APU DMC. ”

 25. Keep in mind that the listed pitches only describe frequency relationships , not

preset sample tunings. In other words, setting the rate index to G10 for a flute

recorded playing an A# does not tune the base sample by a semitone automati-

cally. Rather, one can only rely on the pitch table if the instrument ’ s sampled

pitch matches the rate index note.

 26. The DMC address register ($4012) is 16-bits wide but has only ten significant

bits. The two highest bits are hardwired to 1, and the programmer supplies the

subsequent byte, limiting the DMC ’ s starting address to values between $C000

and $FFC0. All DMC binary data must begin in this range.

 27. NesDev , “ Big Bird’s Hide and Speak sample compression. ”

 28. Parish, “ An interview with Konami’s Hidenori Maezawa. ”

Notes [383]

 29. bucky (aka explod2A03), “ NES Audio: Sunsoft Bass and Melodic Samples. ”

 30. Ibid.

 31. Intellivision Productions, Inc., “ Intellivoice. ”

 32. Due to the Famicom ’ s close relationship with the ColecoVision (chapter 1), it is

notable that the Intellivoice project was nearly implemented in Coleco ’ s

console. Thanks to the Intellivoice flop, Mattel realized it was cheaper to

include speech hardware in each cartridge rather than build an external module.

Their engineers pitched the idea to Coleco along with a prototype demon-

stration, but due to the unfortunate timing of internal layoffs at Coleco, the

 “ ColecoVoice ” project never took off. A few years later, Nintendo would use

the same in-cart strategy for their mappers, including those that supported

additional audio channels. See Intellivision Productions, Inc., “ M Network

Colecovision. ”

 33. For several examples, see Benvenutti, Diogo Andrei, “ Nintendo 8 Bits Voice

Samples (2A03). ”

 34. In some cases, sound designers faked speech by cleverly manipulating one of

the waveform channels. In Mike Tyson ’ s Punch-Out!!, for example, referee Mario

announces rounds, gives counts, and announces knockouts, all using pitched

square waves. By correlating these tones with an onscreen text bubble, the pro-

grammers made our ears hear words that were not really there.

 35. The noise channel had a second mode that would radically abbreviate the RNG ’ s

output to only 93 bits, altering the channel ’ s standard percussive timbre to a

metallic buzz. Third-party developer Capcom in particular used it for sound

effects in Darkwing Duck (e.g., dialog), Mega Man 2 (e.g., Metal Blade weapon),

and Duck Tales (e.g., entering mirrors). But they also used metallic noise for

several musical tracks, including Duck Tales ’ traveling music, Code Name: Viper ’ s

third level, and Mega Man 2 ’ s Quick Man stage.

 36. Taylor explains the interaction in technical detail: “ These analog outputs require

a negative current source, to attain linear symmetry on the various output

voltage levels generated by the channel(s) (moreover, to get the sound to be

audible). Instead of current sources, the NES uses external 100 ohm pull-down

resistors. This results in the output waveforms having some linear asymmetry

(i.e., as the desired output voltage increases on a linear scale, the actual output-

ted voltage increases less and less each step). ” Taylor, “ 2A03 Technical

Reference. ”

 37. For the NES, Nintendo opted to move the audio input to the expansion port,

which remained unused during the console ’ s life cycle. See chapter 3.

 38. The custom waveform had a 6-bit resolution. Additionally, a second 64-step

waveform could be used to modulate the first, or fundamental, waveform.

 39. Though almost certainly a coincidence, Tone 1 and 3 bear striking resemblances

to the silhouettes of a Pols Voice and Keese, two of Zelda ’ s enemy creatures.

 40. Otocky ’ s designer Toshio Iwai would continue to experiment with music-based

videogames, culminating in his acclaimed sound toy Electroplankton (2005) for

the Nintendo DS.

 41. Parish, “ An interview with Konami’s Hidenori Maezawa. ”

 42. Konami ’ s VRC chips are labeled with roman numerals in-cart, but the home-

brew/chiptune community refer to them by numeric values, i.e., VRC6 and

VRC7. Notably, VRC6 ’ s sawtooth also brought the Famicom to waveform parity

[384]

with the Commodore ’ s SID, though it still lacked the latter ’ s distinctive filters

and modulations.

 43. None of Akumajou Densetsu ’ s tracks used the APU ’ s triangle channel, presum-

ably due to its lack of volume control. Instead, VRC6 ’ s sawtooth channel handled

the bass parts.

 44. Yamaha Corporation of America, Yamaha DX7 Digital Programmable Algorithm

Synthesizer Operation Manual , 23.

 45. Aikin, 72 – 3.

 46. Retro Synth Ads, “ Yamaha GS1 (GS-1) and GS2 (GS-2), Keyboard 1982. ”

 47. For an overview of FM ’ s hardware uptake in videogames, see Barnholt, “ The

Magic of FM Synth. ”

 48. For a sense of the mathematical complexity underlying FM synthesis, see

Schottstaedt, “ An Introduction to FM. ”

 49. Th é berge, Any Sound You Can Imagine , 75 – 7.

 50. Yamaha Corporation of America., Yamaha DX7 Digital Programmable Algorithm

Synthesizer Operation Manual, ii.

 51. Th é berge, 89.

 52. See NesDev Wiki “ VRC7 audio ” and Horton, “ VRCVIII CHIP INFO ” for technical

descriptions of these parameters.

 53. Due to some early ROM naming confusion, the N163 is often mislabeled as

Namco 106.

 54. According to the NesDev Wiki, “ Namco 163 audio, ” the wave length is set accord-

ing to the formula (64 - L) * 4, where L is the 6-bit value set in N163 ’ s sound

RAM. As a result, all waveform lengths are multiples of 4.

 55. NesDev Wiki, “ Namco 163 audio. ”

 56. Composer Hirohiko Takayama, who wrote both soundtracks in 1988, defined

three instruments to populate his channels, but primarily used two: a simple,

sixteen-step sine wave for melodies and a linear sawtooth for bass. The third

instrument, a 32-step “ descending sine wave, ” appeared in only one song.

 57. Several of Jaleco ’ s Moero!! Pro sports games included an NEC D7756C speech

synthesis chip, but its specialized function makes it trickier to classify it as a

 “ proper ” audio mapper. The NES versions of these games (e.g., Bases Loaded,

Racket Attack), as usual, omitted the speech chip.

 58. Tanner, “ Making Mr. Gimmick! ”

 59. Tanner, “ The Music of Mr. Gimmick. ”

 60. Ibid.

 61. Kageyama, Masashi and Naoki Kodaka, Rom Cassette Disc in SUNSOFT.

 62. Accessing Galaxian ’ s sound test, for example, requires players to, “ reset the

game 44 times, hold A + B on Controller 2, and reset again. ” See The Cutting

Room Floor , “ Galaxian (NES). ”

 63. Horton, “ HardNES. ”

 64. Covell, “ NES Music Ripping Guide. ”

 65. “ Yoshihiro Sakaguchi, ” Videogame Music Preservation Foundation.

 66. “ Naohisa Morota, ” Videogame Music Preservation Foundation .

 67. For an exhaustive guide to the eccentricities of Famicom audio engines, see Gil

Galad, “ NSF ripper guide. ”

 68. The Cutting Room Floor , “ Castlevania (NES). ”

Notes [385]

 69. The Cutting Room Floor , “ Gremlins 2 (NES). ”

 70. NSFPlay is available for download at http://rainwarrior.ca/projects/nsfplay/

index.html

 71. Maher, The Future was Here , 194.

 72. BuZz et al., “ Soundtracker History. ”

 73. Collins, Game Sound , 27.

 74. Maher, 36 – 7.

 75. Dahlberg, “ Interview with Karsten Obarski. ”

 76. Reckhard, “ FREQUENTLY ASKED QUESTIONS (FAQ) LIST FOR ALT.BINA-

RIES.SOUNDS.MODS. ”

 77. Matsuoka, “ Tracker History Graphing Project. ”

 78. There was no NerdTracker 1. Iwaniec says, “ Naming it NT2 was just a bit of a

half-joke: At the time NT2 was written, FastTracker2 was the first choice for

making music in the nordic demoscene, while the people who had ever tried the

original FastTracker were few and far apart. So I figured adding a ‘ 2 ’ suffix to it

would be more likely to give it instant fame … ” See NesDev, “ Tracker history ”

(noattack).

 79. Trackers are not the only means to compose on the 2A03. Within the VGM

(Video Game Music) scene — Japan ’ s chiptunes equivalent — one of the most

popular tracker alternatives is the Music Macro Language (MML), a powerful,

compact method of 2A03 composition capable of fine-grained APU timbral and

timing manipulations that are otherwise impossible with graphical trackers. An

MML score is a plain text file that contains macros dedicated to low-level APU

functions and a sequence body that describes each channel ’ s notes, parameters,

and effects during playback. MML files do not play natively; rather they are

compiled and converted via software into NSF files. For more information, see

Manbow-J, “ MCKC: MML > MCK Converter Ver 0.14, ” Coox, “ MML, ” and

nullsleep, “ MCK/MML BEGINNERS GUIDE. ”

 80. To be clear, I make no judgments on musical quality based on an artist ’ s chip-

tune “ authenticity. ” There are wonderful tracks from the entire spectrum of

artists, no matter their compositional technique.

 81. Vreeland, Tweet to author.

 82. Driscoll and Diaz, “ Endless loop: A brief history of chiptunes, ” [1.5].

 83. Ibid., [4.3].

 84. Holmes, “ The Top 10 Chiptune Artists. ”

 Chapter 8

 1. See Andersson, “ Contra_1017 [Contra in 10:17] ” and Carstensen, “ Ninj-

aGaiden_1232 [Ninja Gaiden in 12:32]. ”

 2. “ [HD] TAS: NES Super Mario Bros 3 (JPN) in 11:03.95 by Morimoto. ”

 3. Morimoto, “ NES Super Mario Bros. 3 (JPN) in 11:03.95. ”

 4. Lowood, “ High-performance play: The making of machinima. ”

 5. “ Rules, ” Speed Demos Archive .

 6. “ Super Mario Bros., ” Speed Demos Archive.

 7. “ Guidelines, ” TASVideos .

 8. “ Bizhawk, ” TASVideos .

[386]

 9. “ Tools-Assisted Speedruns - About, ” Doomworld .

 10. “ Rules, ” Speed Demos Archive .

 11. “ Movies Rules, ” TASVideos .

 12. “ Rules, ” Speed Demos Archive.

 13. Cf., Kidder, The Soul of a New Machine, 42 – 3.

 14. Pugh et al., IBM ’ s 360 and Early 370 Systems , 111 – 35.

 15. Ibid., 127.

 16. Haanstra, John W., Bob O. Evans, et al., “ Processor Products — Final Report of

SPREAD Task Group, December 28, 1961. ”

 17. With one exception: the smallest processor model, announced a few months

after the initial System/360 line.

 18. Pugh et al., 159.

 19. Ibid.

 20. Ibid., 131. Slade, Made to Break, 188.

 21. Pugh et al., 161.

 22. Tucker, “ Emulation of Large Systems. ”

 23. Ibid., 754.

 24. Rosin, “ Contemporary Concepts of Microprogramming and Emulation. ”

 25. Marsland and Demco, “ A Case Study of Computer Emulation, ” 113.

 26. Teiser, “ Atari - Nintendo 1983 Deal. ”

 27. The contemporary exception is mobile development. Mobile devices are either

too constrained for native development (e.g., early WAP systems) or vendors do

not allow code to compile on their devices (e.g., Apple).

 28. Mattel ’ s Intellivision is a notable exception: it had a BIOS and a built-in

character set — rarities in the early console era.

 29. Masaharu (trans. Tanner), “ Part 8 – Synonymous With the Domestic Game

Console. ”

 30. Covell, “ The Stars of Famicom Games. ”

 31. Dolan, Hewlett-Packard Journal.

 32. Ibid., 4.

 33. Intellivision Productions, Inc., “ 1983 Intellivision/M Network Catalog. ”

 34. Today, differentiation is more important than generic compatibility. Microsoft

and Sony invest millions of dollars in exclusives — games programmed for their

console solely — in order to draw consumers away from rivals.

 35. The official PasoFami site ’ s hit counter has been active since 8/20/1996. Marat

Fayzullin also notes on the active iNES site that his emulator was released in

1996, after PasoFami was already available. Kun, “ Funny Fantasy, ” also provides

download links to versions of PasoFami up to 2.7a, with a ROM pack dated from

June 27, 1996.

 36. Some sources will also refer to it as PASOWING, though this is a “ translation

error ” related to the DOS filenames being set in caps. The Windows binary was

labeled PasoWinG, as it required the “ WinG ” file to run properly.

 37. Cochems, “ Marcel de Kogel. ”

 38. Nielson, “ The Nintendo Entertainment System (NES) FAQ v.1.12. ”

 39. Fayzullin, “ iNES. ”

 40. Fayzullin, “ iNES.doc (v 0.6). ”

 41. Fayzullin, “ Nintendo Entertainment System Architecture (version 1.4). ”

 42. Altice, “ Interview: Paul Robson, programmer of the NESA emulator. ”

Notes [387]

 43. Roach, “ comp.emulators.misc Frequently Asked Questions (FAQ) [3/3]. ”

 44. Conte, “ cajoNES version 0.99b. ”

 45. “ ASCII codes table - Format of standard characters, ” ascii.cl .

 46. Trainers were a 512-byte code block originally used to hack games into a

particular mapper. Trainers are deprecated and largely ignored by current

emulators.

 47. Dane, “ Help with Nester. ”

 48. Since emulators are largely developed by hobbyists and distributed for free,

dirty ROM compatibility is left to the developer ’ s discretion.

 49. Another important trace is the “ Date Modified ” field common to Windows

Explorer or OS X ’ s Finder. ROMs freely available online are often unmodified

versions of images that have been in circulation since their initial dump. When

I downloaded the well-seeded “ NESRen ” torrent in March 2012, for instance,

it contained hundreds of .nes files with “ Date Modified ” entries predating

2000.

 50. Bloodlust Software, “ NESticle Version 0.41 [README.TXT]. ”

 51. According to Bloodlust ’ s documentation, Sardu based his CPU code on Neil

Bradley ’ s m6502 emulation core, gleaned technical information from Fayzul-

lin ’ s NES.DOC, based the sound emulation on Y0SHi ’ s NESTECH.DOC, and

supported the established iNES header format (with promises to later support

PasoFami files).

 52. goroh, “ Nesticle(ver 0.42) stafile information. ”

 53. And still does. See http://www.zophar.net/savestates/nesticle.html

 54. Sliver X, “ Hacking The Legend of Zelda NESticle save states. ”

 55. The ZELDIT utility, for example, could edit a handful of The Legend of Zelda ’ s

overworld and underworld areas. The dungeon editor was notable for its visual

presentation, as it revealed the tetromino-esque layout of the dungeons in

memory (chapter 5). Players with no prior technical knowledge of the NES could

learn visually how memory constraints dictated the in-game arrangement of

tiles, items, and foes.

 56. Bloodlust Software, “ NESticle Version 0.41 [README.TXT]. ”

 57. Bloodlust Software, “ Official Bloodlust Software NESticle Page. ”

 58. Since an .NSM was simply a state file with appended input data, the resulting

file had built-in “ backward compatibility, ” as Sardu noted: “ Renaming zelda.

nsm to zelda.sta will allow you to load the movie as a normal state file and play

from the movie ’ s beginning point. ” Bloodlust Software, “ NESticle Version 0.41

[README.TXT]. ”

 59. According to NesCartDB , Super Mario Bros. is the most commonly dumped ROM

in all three regions (North America, Europe/Asia, and Japan). See bootgod,

 “ Top 10 dumped games. ”

 60. IKA, “ Rockman No Constancy. ”

 61. GameMakr24, “ Zelda Challenge: Outlands. ”

 62. DahrkDaiz, “ Mario Adventure. ”

 63. Demiforce, “ Final Fantasy 2j English Patch [139readme.txt]. ”

 64. “ FCEUX, ” Zophar ’ s Domain .

 65. See adelikat, “ How To make a Tool Assisted Speedrun. ”

 66. adelikat, “ FM2 Movie file format. ”

[388]

 67. See Mong (aka mmbossman), “ Submission #2486: mmbossman’s FDS Arumana

no Kiseki in 08:26.67. ”

 68. A literal analog to this setup process is the calibration necessary in magnetic

tape recording. Audio engineers who record analog must, for instance, carefully

align, clean, and bias their tape machines in order for the recording to play back

properly.

 69. Kraft (aka Gigafrost), “ Submission #690: Gigafrost’s NES Zelda 2: The Adven-

ture of Link ‘ glitched ’ in 06:16.93. ”

 70. Newman, Playing with Videogames , 123 – 148.

 71. Ibid., 124.

 72. adelikat, “ Submission #1324: adelikat’s NES Gradius in 10:52.35. ”

 73. Hayles, Electronic Literature , 45.

 74. TASVideos, “ Luck Manipulation. ”

 75. For example, see T.M. (aka knbnitkr), “ Submission #2836: knbnitkr’s GB Makai

Toushi SaGa in 01:47.17. ”

 76. Teti, “ As Fast as Impossible: 10 Insanely Thrilling Tool-Assisted Speedruns. ”

 77. adelikat, “ Submission #1324: adelikat’s NES Gradius in 10:52.35. ”

 78. W., Lennart (aka Baxter), “ Submission #1693: Baxter’s NES Arkanoid in

12:26.8. ”

 79. W., Lennart (aka Baxter) and AngerFist, “ NES Mega Man 3, 4, 5 & 6 (USA) in

39:06.92 by Baxter & AngerFist. ”

 80. Players in the U.S. only knew Final Fantasy II and III as Super Nintendo games,

since the series was renumbered for American release.

 Afterword

 1. Although Metacritic is a severely flawed metric for critical consensus, NES Remix

and its sequel ’ s respective 71 and 73 scores (as of May 2014) are appreciably

lower than most first-party Nintendo releases starring Mario and Link.

 2. Orland, “ Review: NES Remix is more evocative than transformative. ”

 3. Otero, “ How Mario 3D World ’ s Co-Director Gave NES Games a Second

Life. ”

 4. Ibid.

 5. The latter behavior actually relies upon the “ interaction between the sprite

priority bit and the OAM index ” described in chapter 4. Also see NesDev Wiki ,

 “ Tricky-to-emulate games. ”

 6. Orland, “ Review: NES Remix is more evocative than transformative. ”

 7. Not that this process is without precedent: Nintendo did their own bit of assem-

bly hacking, as described in chapter 2, to shoehorn the cement factory level into

the 2010 rerelease of Donkey Kong .

 Appendix A

 1. Greetham, Textual Scholarship: An Introduction , 1 – 12.

 2. Greetham, 7.

 3. Kirschenbaum, Mechanisms , 277.

 4. Newman, Videogames.

 5. Kline et al., Digital Play , 177.

Notes [389]

 6. Wolf, The Medium of the Video Game , 1.

 7. Montfort and Bogost, Racing the Beam , 165.

 8. Bogost, How to Do Things with Videogames , 177.

 9. Bateman, Imaginary Games, 295. Bateman mistakenly conflates the Famicom

console release date (1983) with the cartridge release date (1985).

 10. Wolf, 186.

 11. Montfort, “ Emulation as Game Facsimile (or Computer Edition?). ”

 12. My thanks to Neal Wyatt for her helpful suggestions for the model structure.

 Famicom / NES Cartridges, Disks, and ROMs

 (trans. Akumajou Densetsu). Family Computer (60-p. cart.), NTSC-J

[JP]. KON-RC845 (black). KONAMI-VRC-6 [VRC6 | 256KB PRG | 128KB CHR |

MC]. Konami: Konami, 22 Dec. 1989 .

 ア ル ゴ ス の は ち ゃ め ち ゃ (trans. Argos no Senshi: Hachamecha Daishingeki).

Family Computer (60-p. cart.), NTSC-J [JP]. TCF-AH (dark blue). HVC-UNROM

[128KB PRG | 8KB CHR-RAM | V]. Tecmo: Tecmo, 17 Apr. 1987 .

 Arkanoid . Nintendo Entertainment System (72-p. cart.), NTSC [US]. NES-AR-USA

(3-screw). NES-CNROM [32KB PRG | 16KB CHR | CIC 3193A | H]. Taito: Taito,

Aug. 1987 .

 バ ル ー ン フ ァ イ ト | Balloon Fight . Family Computer (60-p. cart.), NTSC-J [JP]. HVC-BF

(white). HVC-RROM [16KB PRG | 8KB CHR | H]. Nintendo: Nintendo, 22 Jan.

 1985 .

 Balloon Fight . Nintendo Entertainment System (72-p. cart.), NTSC [US]. NES-

BF-USA (5-screw). NES-NROM-128 [16KB PRG | 8KB CHR | CIC 3193A | H].

Nintendo: Nintendo, June 1986 .

 Balloon Fight . Nintendo Entertainment System (72-p. cart.), PAL-B [EUR]. NES-

BF-EEC (3-screw). NES-NROM-128 [16KB PRG | 8KB CHR | CIC 3195A | H].

Nintendo: Nintendo, 12 Mar. 1987 .

 Battletoads . Nintendo Entertainment System (72-p. cart.), NTSC [US]. NES-8T-USA

(3-screw). NES-AOROM [256KB PRG | 8KB CHR-RAM | CIC 6113 | MC]. Rare:

Tradewest, June 1991 .

 Bionic Commando . Nintendo Entertainment System (72-p. cart.), NTSC [US]. NES-

CM-USA (3-screw). NES-SGROM [MMC1B2 | 256KB PRG | 8KB CHR-RAM |

CIC 6113B1 | MC]. Capcom: Capcom, Dec. 1988 .

 Blaster Master . Nintendo Entertainment System (72-p. cart.), NTSC [US]. NES-VM-

USA (3-screw). NES-SLROM [MMC1B2 | 128KB PRG | 128KB CHR-RAM | CIC

6113B1 | MC]. Sunsoft: Sunsoft, Nov. 1988 .

 Sources

[392]

 Castlevania . Nintendo Entertainment System (72-p. cart.), NTSC [US]. NES-CV-USA

(3-screw). NES-UNROM [128KB PRG | 8KB CHR-RAM | CIC 6113 | V]. Konami:

Konami, May 1987 .

 Castlevania III: Dracula ’ s Curse . Nintendo Entertainment System (72-p. cart.), PAL-B

[Germany]. NES-VN-FRG (3-screw, DAS). NES-ELROM [MMC5 | 256KB PRG

| 128KB CHR | CIC 3195A | MC]. Palcom: Konami, Sept. 1990 .

 メ タ フ ァ イ ト (trans. Chou Wakusei Senki: Metafight). Family Computer

(60-p. cart.), NTSC-J [JP]. TEC-MF (white). HVC-SLROM [MMC1A | 128KB

PRG | 128KB CHR | MC]. Sunsoft: Sunsoft, 17 June 1988 .

 Cobra Triangle . Nintendo Entertainment System (72-p. cart.), NTSC [US]. NES-

CU-USA (3-screw). NES-ANROM [128KB PRG | 8KB CHR-RAM | CIC 6113 |

MC]. Rare: Nintendo, July 1989 .

 Contra . Nintendo Entertainment System (72-p. cart.), NTSC [US]. NES-CT-USA

(3-screw). NES-UNROM [128KB PRG | 8KB CHR-RAM | CIC 6113A | V]. Konami:

Konami, Feb. 1988 .

 Contra [ROM] . “ Contra.nes ” (131KB). iNES: 2. [4E45531A 08002100 00000000

00000000]. 19 March 2000 . Nintendulator v0.975.

 ド ラ キ ュ ラ (trans. Devil ’ s Castle Dracula). Family Computer Disk System (d.s.

QuickDisk, yellow), NTSC-J [JP]. KDS-AKM. Disk (one) [8KB PRG-ROM | 32KB

PRG-RAM | 8KB CHR-RAM | MC]. Konami: Konami, 26 Sept. 1986 .

 Devil World . Nintendo Entertainment System (72-p. cart.), PAL-B [EUR]. NES-

DD-EEC (5-screw). NES-NROM-128 [16KB PRG | 8KB CHR | CIC 3195A | H].

Nintendo: Nintendo, 15 Jul. 1987 .

 Devil World [ROM] . “ Devil World (E) [!].nes ” (25KB). iNES: 0. [4E45531A 01010000

00000000 00000000]. 19 Jan. 2003 . FCEUX v2.1.5, Macifom v0.16,

PowerPak.

 ド ン キ ー コ ン グ | Donkey Kong . Family Computer (60-p. cart.), NTSC-J [JP]. HVC-DK

(red). HVC-NROM-128 [16KB PRG | 8KB CHR | H]. Nintendo: Nintendo, 15 July

 1983 .

 Donkey Kong [ROM] . “ Donkey Kong.nes ” (25KB). iNES: 0. [4E45531A 01010000

00000000 00000000]. 19 Mar. 2000 . FCEUX v2.1.5, Macifom v0.16, NESticle

v0.2, Nestopia v1.4.1, Nintendulator v0.975.

 Donkey Kong [ROM] . “ dkoe.nes ” (66KB). iNES: 3. [4E45531A 02043000 00000000

00000000]. 29 Nov. 2010 . FCEUX v2.1.5, Macifom v0.16, Nestopia v1.4.1.

 < http://xkeeper.net/private/pacman/ > [Note: ROM originally appeared as a

pre-installed download for the red Super Mario Bros. 25 th Anniversary Wii,

exclusive to Europe.]

 Donkey Kong Classics . Nintendo Entertainment System (72-p. cart.), NTSC [US]. NES-

DJ-USA (3-screw). NES-CNROM [32KB PRG | 16KB CHR | CIC 6113B1 | V].

Nintendo: Nintendo, Oct. 1988 .

 ド ン キ ー コ ン グ Jr. | Donkey Kong Jr. Family Computer (60-p. cart.), NTSC-J [JP].

HVC-JR (white). HVC-HROM [16KB PRG | 8KB CHR | V]. Nintendo: Nintendo,

15 July 1983 .

 Donkey Kong Jr. Math . Nintendo Entertainment System (72-p. cart.), NTSC [US].

NES-CA-USA (5-screw). NES-NROM-128 [16KB PRG | 8KB CHR | CIC 3193A |

V]. Nintendo: Nintendo, Oct. 1985 .

 ド ア ド ア | Door Door . Family Computer (60-p. cart.), NTSC-J [JP]. EFC-DR (black).

HVC-NROM-128 [16KB PRG | 8KB CHR | H]. Chunsoft: Enix, 18 July 1985 .

Sources [393]

 ド ラ ゴ ン ク エ ス ト (Dragon Quest) . Family Computer (60-p. cart.), NTSC-J [JP].

EFC-DQ (black). HVC-CNROM [32KB PRG | 32KB CHR | V]. Chunsoft: Enix, 27

May 1986 .

 Dragon Warrior . Nintendo Entertainment System (72-p. cart.), NTSC [US]. NES-

DQ-USA (3-screw). NES-SAROM [64KB PRG | 16KB CHR | 8KB WRAM | Bat. |

CIC 6113 | MC]. Chunsoft: Nintendo, Aug. 1989 .

 え り か と さ と る の (Erika to Satoru no Yume Bouken) . Family Computer (60-

p. cart.), NTSC-J [JP]. NAM-YB-4900 (black). NAMCOT-163 [N163 | 128KB

PRG | 128KB CHR | MC]. Atlus: Namco, 27 Sept. 1988 .

 Excitebike. Nintendo Entertainment System (72-p. cart.), NTSC [US]. NES-EB-USA

(5-screw, NES-JOINT-01). NES-NROM-128 [16KB PRG | 8KB CHR | CIC 3193 |

V]. Nintendo: Nintendo, Oct. 1985 .

 フ ァ ミ リ ー ベ ー シ ッ ク | Family BASIC . Family Computer (60-p. cart.), NTSC-J [JP].

HVC-BS (extended cart., black, OFF/ON switch). HVC-FAMILYBASIC [16KB

PRG (A) | 16KB PRG (B) | 8KB CHR | 2KB WRAM | Bat. | V]. Hudson Soft: Nin-

tendo, 21 June 1984 .

 Final Fantasy. Nintendo Entertainment System (72-p. cart.), NTSC [US]. NES-

FF-USA (3-screw). NES-SNROM [MMC1B2 | 256KB PRG | 8KB CHR-RAM | 8KB

WRAM | Bat. CIC 6113B1 | MC]. Square: Nintendo, May 1990 .

 ギ ミ ッ ク ! (Gimmick!). Family Computer (60-p. cart.), NTSC-J [JP]. SUN-GMK-6200

(black). SUNSOFT-5B [Sunsoft-5B | 256KB PRG | 128KB CHR | MC]. Sunsoft:

Sunsoft, 31 Jan. 1992 .

 Gradius . Nintendo Entertainment System (72-p. cart.), NTSC [US]. NES-GR-USA

(5-screw). NES-CNROM [32KB PRG | 32KB CHR | CIC 3193A | V]. Konami:

Konami, Dec. 1986 .

 Gumshoe . Nintendo Entertainment System (72-p. cart.), NTSC [US]. NES-GS-USA

(5-screw). NES-GNROM [128KB PRG | 32KB CHR | CIC 3193 | V]. Nintendo:

Nintendo, June 1986 .

 Gyromite . Nintendo Entertainment System (72-p. cart.), NTSC [US]. NES-GY-USA

(5-screw). NES-NROM-256 [32KB PRG | 8KB CHR | CIC 3193 | V]. Nintendo:

Nintendo, Oct. 1985 .

 Gyromite [ROM] . “ Gyromite (JUE).nes ” (41KB). iNES: 0. [4E45531A 02010100

00000000 00000000]. 18 Oct. 2002 . FCEUX v2.1.5, Macifom v0.16.

 ヒ ッ ト ラ ー の | Top Secret . (trans. Hitler ’ s Resurrection: Top Secret) Family Computer

(60-p. cart.), NTSC-J [JP]. CAP-HF (black). HVC-SNROM [MMC1 | 256KB PRG

| 8KB CHR-RAM | 8KB WRAM | MC]. Capcom: Capcom, 20 July 1988 .

 Hogan ’ s Alley . Nintendo Entertainment System (72-p. cart.), NTSC [US]. NES-

HA-USA (5-screw). NES-NROM-128 [16KB PRG | 8KB CHR | CIC 3193 | V].

Nintendo: Nintendo, Oct. 1986 .

 The Hyrule Fantasy | ゼ ル ダ の (trans. The Hyrule Fantasy: Legend of Zelda). Family

Computer Disk System (d.s. QuickDisk, yellow), NTSC-J [JP]. FMC-ZEL. Disk

(one). Nintendo EAD: Nintendo, 21 Feb. 1986 .

 Ice Hockey . Nintendo Entertainment System (72-p. cart.), NTSC [US]. NES-HY-USA

(3-screw). NES-NROM-256 [32KB PRG | 8KB CHR | CIC 6113 | V]. Pax Softnica:

Nintendo, Mar. 1988 .

 Isolated Warrior . Nintendo Entertainment System (72-p. cart.), NTSC [US]. NES-

W6-USA (3-screw). NES-TLROM [128KB PRG | 128KB CHR | CIC 6113B1 | MC].

NTVIC: KID, Feb. 1991 .

[394]

 ジ ャ ス ト ブ リ ー ド (Just Breed). Family Computer (60-p. cart.), NTSC-J [JP]. EFC-I5

(white). HVC-EKROM [MMC5 | 512KB PRG | 256KB CHR | 8KB WRAM | Bat. |

MC]. Random House: Enix, 7 Sept. 1990 .

 の (trans. Kamen no Ninja: Akakage) Family Computer (60-p. cart.),

NTSC-J [JP]. TDF-AK (light yellow). HVC-UNROM [128KB PRG | 8KB CHR-RAM

| V]. Shouei System: Toei Animation, 20 May 1988 .

 Kid Icarus . Nintendo Entertainment System (72-p. cart.), NTSC [US]. NES-KI-USA

(3-screw). NES-SNROM [MMC1 | 128KB PRG | 8KB CHR-RAM | 8KB WRAM |

CIC 6113 | MC]. Nintendo: Nintendo, July 1987 .

 キ ン グ オ ブ キ ン グ ス (King of Kings) . Family Computer (60-p. cart.), NTSC-J [JP].

NAM-KK-5900 (black). NAMCOT-163 [N163 | 128KB PRG | 128KB CHR | 8KB

WRAM | Bat. | MC]. Atlus: Namco, 9 Dec. 1988 .

 ラ グ ラ ン ジ ュ ポ イ ン ト (Lagrange Point). Family Computer (60-p. cart.), NTSC-J [JP].

KON-RC851 (black). KONAMI-VRC-7 [VRC7 | 512KB PRG | 8KB CHR-RAM |

8KB WRAM | Bat. | MC]. Konami: Konami, 26 Apr. 1991 .

 The Legend of Zelda . Nintendo Entertainment System (72-p. cart.), NTSC [US]. NES-

ZL-USA (3-screw, gold). NES-SNROM [MMC1 | 128KB PRG | 8KB CHR-RAM |

8KB WRAM | Bat. | CIC 6113 | MC]. Nintendo: Nintendo, July 1987 .

 The Legend of Zelda 2 | リ ン ク の (trans. Link ’ s Adventure). Family Computer Disk

System (d.s. QuickDisk, yellow), NTSC-J [JP]. FMC-LNK. Disk (one) [8KB

PRG-ROM | 32KB PRG-RAM | 8KB CHR-RAM | MC]. Nintendo EAD: Nintendo,

14 Jan. 1987 .

 Life Force . Nintendo Entertainment System (72-p. cart.), NTSC [US]. NES-LF-USA

(3-screw). KONAMI-UNROM [128KB PRG | 8KB CHR-RAM | CIC 6113A | V].

Konami: Konami, Aug. 1988 .

 パ ル テ ナ の (trans. Light Mythology: Palutena ’ s Mirror). Family Computer

Disk System (d.s. QuickDisk, yellow), NTSC-J [JP]. FMC-PTM. Disk (one). Nin-

tendo R & D1: Nintendo, 19 Dec. 1986 .

 Mach Rider . Nintendo Entertainment System (72-p. cart.), NTSC [US]. NES-MR-USA

(5-screw). NES-NROM-256 [32KB PRG | 8KB CHR | CIC 3193A | V]. Nintendo:

Nintendo, Oct. 1985 .

 Mega Man [ROM] . “ Mega Man.nes ” (131KB). iNES: 2. [4E45531A 08002100 00000000

00000000]. 18 Oct. 2002 . FCEUX v2.1.5, Macifom v0.16, Nintendulator v0.975.

 Mega Man . Nintendo Entertainment System (72-p. cart.), NTSC [US]. NES-MN-USA

(3-screw). NES-UNROM [128KB PRG | 8KB CHR-RAM | CIC 6113 | V]. Capcom:

Capcom, Dec. 1987 .

 Mega Man 2 . Nintendo Entertainment System (72-p. cart.), NTSC [US]. NES-XR-USA

(3-screw). NES-SGROM [256KB PRG | 8KB CHR-RAM | CIC 6113 | MC]. Capcom:

Capcom, June 1989 .

 メ ト ロ イ ド (trans. Metroid). Family Computer Disk System (d.s. QuickDisk, yellow),

NTSC-J [JP]. FMC-MET. Disk (one). Nintendo R & D1/Intelligent Systems: Nin-

tendo, 6 Aug. 1986 .

 Might and Magic (trans. マ イ ト ・ ア ン ド ・ マ ジ ッ ク). Family Computer (60-p. cart.),

NTSC-J [JP]. GAT-MP (white). HVC-TKROM [MMC3 | 256KB PRG | 256KB CHR

| 8KB WRAM | Bat. | MC]. New World Computing {p. Gakken}: Gakken, 31 July

 1990 .

 Might & Magic: Secret of the Inner Sanctum . Nintendo Entertainment System (72-

p. cart.), NTSC [US]. NES-MP-USA (3-screw). NES-TKROM [MMC3 | 256KB

Sources [395]

PRG | 256KB CHR | 8KB WRAM | Bat. | CIC 6113 | MC]. New World Computing

{p. Gakken}: Sammy, Aug. 1992 .

 Ninja Gaiden . Nintendo Entertainment System (72-p. cart.), NTSC [US]. NES-

NG-USA (3-screw). NES-SLROM [MMC1 | 128KB PRG | 128KB CHR | CIC 6113

| MC]. Tecmo: Tecmo, Mar. 1989 .

 ナ ッ ツ & ミ ル ク | Nuts & Milk . Family Computer (60-p. cart.), NTSC-J [JP]. HFC-NM

(light blue). HVC-NROM-128 [16KB PRG | 8KB CHR | H]. Hudson Soft: Hudson

Soft, 28 July 1984 .

 オ ト ッ キ ー (Otocky) . Family Computer Disk System (d.s. QuickDisk, yellow), NTSC-J

[JP]. ASC-OTO. Disk (one). SEDIC: ASCII, 27 March 1987 .

 Pac-Man . Nintendo Entertainment System (72-p. cart.), NTSC [US]. NES-PQ-USA

(3-screw). NES-NROM-128 [16KB PRG | 8KB CHR | CIC 6113 | H]. Namco:

Tengen, 1989 .

 Pac-Man . Nintendo Entertainment System (72-p. cart.), NTSC [US]. TGN-003-PM

(unlic., Tengen shell, black). TENGEN-800003 [16KB PRG | 8KB CHR | CIC

337002 | H]. Namco: Tengen, 1989 .

 ポ パ イ | Popeye . Family Computer (60-p. cart.), NTSC-J [JP]. HVC-PP (green). HVC-

NROM-128 [16KB PRG | 8KB CHR | H]. Nintendo: Nintendo, 15 July 1983 .

 ポ ー ト ピ ア (trans. The Portopia Serial Murder Case). Family Computer

(60-p. cart.), NTSC-J [JP]. EFC-PR (black). HVC-NROM-256 [32KB PRG | 8KB

CHR | V]. Enix: Chunsoft, 29 Nov. 1985 .

 Pro Wrestling . Nintendo Entertainment System (72-p. cart.), NTSC [US]. NES-

PW-USA (5-screw). NES-UNROM [128KB PRG | 8KB CHR-RAM | CIC 6113 | V].

Human Entertainment: Nintendo, Mar. 1987 .

 レ リ ク ス (Relics: Ankoku Yousai) . Family Computer Disk System (d.s.

QuickDisk, yellow), NTSC-J [JP]. BTC-RLC. Disk (one). Bothtec: Bothtec,

 1987 .

 Rockman (trans. ロ ッ ク マ ン). Family Computer (60-p. cart.), NTSC-J [JP]. CAP-RX

(light blue). HVC-UNROM [128KB PRG | 8KB CHR-RAM | V]. Capcom: Capcom,

17 Dec. 1987 .

 Rygar . Nintendo Entertainment System (72-p. cart.), NTSC [US]. NES-RY-USA

(3-screw). NES-UNROM [128KB PRG | 8KB CHR-RAM | CIC 6113 | V]. Tecmo:

Tecmo, July 1987 .

 Snake Rattle N Roll . Nintendo Entertainment System (72-p. cart.), NTSC [US]. NES-

RJ-USA (3-screw). NES-SEROM [32KB PRG | 32KB CHR | CIC 6113 | MC]. Rare:

Nintendo, July 1990 .

 Solstice: The Quest for the Staff of Demnos . Nintendo Entertainment System (72-

p. cart.), NTSC [US]. NES-LX-USA (3-screw). NES-ANROM [128KB PRG | 8KB

CHR-RAM | CIC 6113 | MC]. Nintendo: Nintendo, Oct. 1985 .

 ス パ ル タ ン X (trans. Spartan X). Family Computer (60-p. cart.), NTSC-J [JP]. NES-

SM-USA (5-screw). HVC-SX (purple). HVC-NROM-256 [32KB PRG | 8KB CHR

| V]. Irem: Nintendo, 21 June 1985 .

 Stack-Up . Nintendo Entertainment System (72-p. cart.), NTSC [US]. NES-BL-USA

(5-screw, NES-JOINT-01). NES-NROM-256 [32KB PRG | 8KB CHR | CIC 3193

| H]. Nintendo: Nintendo, Oct. 1985 .

 Super C . Nintendo Entertainment System (72-p. cart.), NTSC [US]. NES-UE-USA

(3-screw). KONAMI-TLROM [MMC3B | 128KB PRG | 128KB CHR | CIC 6113B1

| MC]. Konami: Konami, April 1990 .

[396]

 ス ー パ ー マ リ オ ブ ラ ザ ー ズ (trans. Super Mario Bros.). Family Computer (60-p. cart.),

NTSC-J [JP]. HVC-SM (yellow). HVC-NROM-256 [32KB PRG | 8KB CHR | V].

Nintendo EAD: Nintendo, 13 Sept. 1985 .

 Super Mario Bros. Nintendo Entertainment System (72-p. cart.), NTSC [US]. NES-

SM-USA (5-screw). NES-NROM-256 [32KB PRG | 8KB CHR | CIC 3193 | V].

Nintendo EAD: Nintendo, Oct. 1985 .

 Super Mario Bros. [ROM] . “ Super Mario Bros.nes ” (41KB). iNES: 0. [4E45531A

02010100 00000000 00000000]. 10 Dec. 1999 . FCEUX v2.1.5, Macifom v0.16,

NESA v0.17, Nestopia v1.4.1, Nintendulator v0.975, RockNES v5.08.

 Super Mario Bros. / Duck Hunt. Nintendo Entertainment System (72-p. cart.), NTSC

[US]. NES-MH-USA (3-screw). NES-MHROM [64KB PRG | 16KB CHR | CIC

6113 | V]. Nintendo: Nintendo, Nov. 1988 .

 ス ー パ ー マ リ オ ブ ラ ザ ー ズ 2 (trans. Super Mario Bros. 2). Family Computer Disk System

(d-s. QuickDisk, yellow), NTSC-J [JP]. FMC-SMB. Disk (one). Nintendo EAD:

Nintendo, 3 May 1986 .

 Super Mario Bros. 2. Nintendo Entertainment System (72-p. cart.), NTSC [US]. NES-

MW-USA (3-screw). NES-TSROM [MMC3 | 128KB PRG | 128KB CHR | 8KB

WRAM | CIC 6113 | MC]. Nintendo: Nintendo, Oct. 1988 .

 Super Mario Bros. 3. Nintendo Entertainment System (72-p. cart.), NTSC [US]. NES-

UM-USA (3-screw). NES-TSROM [MMC3 | 256KB PRG | 128KB CHR | 8KB

WRAM | CIC 6113 | MC]. Nintendo: Nintendo, 12 Feb. 1990 .

 Super Mario Clouds [ROM]. BEIGE/Cory Arcangel. “ SuperMarioClouds.nes ” (40,976

bytes). iNES: 0. [4E45531A 02010100 00000000 00000000]. 18 Nov. 2002 .

Macifom v.0.16, FCEUX v2.1.5, Nintendulator v0.975. < http://web.archive.org/

web/20021118090831/http://www.beigerecords.com/cory/21c/21c.html >

 Super Mario Clouds v2k9 [ROM] . BEIGE/Cory Arcangel. “ clouds.nes ” (40,976 bytes).

iNES: 0. [4E45531A 02010100 00000000 00000000]. 10 Dec. 2012 . Macifom

v.0.16, FCEUX v2.1.5. < https://github.com/coryarcangel/Super-Mario-Clouds/

blob/master/clouds.nes >

 ス ー パ ー マ リ オ | Super Mario USA . Family Computer (60-p. cart.), NTSC-J [JP].

HVC-MT (pink). HVC-TSROM [128KB PRG | 128KB CHR | 8KB WRAM | MC].

Nintendo: Nintendo, 14 Sept. 1992 .

 Tennis . Nintendo Entertainment System (72-p. cart.), NTSC [US]. NES-TE-USA

(5-screw). NES-NROM-128 [16KB PRG | 8KB CHR | CIC 3193A | H]. Nintendo:

Nintendo, 18 Oct. 1986 .

 SDF (Uchuu Keibitai SDF). Family Computer (60-p. cart.), NTSC-J [JP].

HAL-UI (black). HVC-ELROM [MMC5 | 128KB PRG | 128KB CHR | MC]. HAL

Laboratory: HAL, 7 Sept. 1990 .

 Urban Champion . Nintendo Entertainment System (72-p. cart.), NTSC [US]. NES-

UC-USA (5-screw). NES-NROM-128 [16KB PRG | 8KB CHR | CIC 3193A | V].

Nintendo: Nintendo, June 1986 .

 Volleyball . Nintendo Entertainment System (72-p. cart.), NTSC [US]. NES-VB-USA

(5-screw). NES-NROM-256 [32KB PRG | 8KB CHR | CIC 3193 | V]. Pax Softnica:

Nintendo, Mar. 1987 .

 Wild Gunman . Nintendo Entertainment System (72-p. cart.), NTSC [US]. NES-

WG-USA (5-screw). NES-NROM-128 [16KB PRG | 8KB CHR | CIC 3193 | V].

Nintendo: Nintendo, Oct. 1985 .

Sources [397]

 Wild Gunman [ROM] . “ Wild Gunman.nes ” (25KB). iNES: 0. [4E45531A 01010100

00000000 00000000]. 17 June 2000 . FCEUX v2.1.5, Macifom v0.16.

 Yo! Noid . Nintendo Entertainment System (72-p. cart.), NTSC [US]. NES-YC-USA

(3-screw). NES-SLROM [MMC1 | 128KB PRG | 128KB CHR | CIC 6113 | MC]. Now

Production: Capcom, Nov. 1990 .

 ド キ ド キ パ ニ ッ ク (trans. Yume K ō j ō : Doki Doki Panikku or Dream Factory: Heart-

Pounding Panic). Family Computer Disk System (d-s. QuickDisk, yellow),

NTSC-J [JP]. FCG-DRM. Disk (one). Nintendo EAD: Nintendo, 10 July 1987 .

 Zelda II: The Adventure of Link. Nintendo Entertainment System (72-p. cart.),

NTSC [US]. NES-AL-USA (3-screw, gold). NES-SKROM [MMC1 | 128KB PRG |

128KB CHR | 8KB WRAM | Bat. | CIC 6113 | MC]. Nintendo EAD: Nintendo, Dec.

 1988 .

 Print and Online

 “ 2A03 Synth Status. ” Skrasoft Dev Blog . 4 Oct. 2008. Web. 19 April 2013 .

 “ 6502DecimalMode. ” visual6502.org . 9 Sept. 2012. Web. 19 Feb. 2013 .

 “ A Dream Walking: Popeye The Sailor #14. ” YouTube . Uploaded 16 Apr. 2011. Video.

4 July 2012 .

 adelikat. “ FM2 Movie file format. ” fceux.com . 2009 . Web. 13 July 2012. < http://www

.fceux.com/web/FM2.html >

 adelikat. “ How To make a Tool Assisted Speedrun. ” TASVideos . 8 Apr. 2012. Web. 13

July 2012 .

 adelikat. “ Submission #1324: adelikat’s NES Gradius in 10:52.35. ” TASVideos . 27 Oct.

 2006 .

 Aiken , Jim . 2004 . Power Tools for Synthesizer Programming . San Francisco : Backbeat .

 Albert , Ian . “ Legend of Zelda Maps. ” ian-albert.com . Web. 22 June 2012 .

 Albert , Ian . “ Super Mario Bros. Maps. ” ian-albert.com . Web. 22 June 2012 .

 Altice , Nathan . “ Dendy: The Unofficial Official Famicom of Russia. ” metopal.com .

Web. 15 June 2012 .

 Altice , Nathan . “ The Famicom Cart Swap Trick. ” metopal.com . Web. 12 Sept. 2012 .

 Altice , Nathan . “ Interview: Paul Robson, programmer of the NESA emulator. ”

 metopal.com . 6 Apr. 2012 . Web.

 Altice , Nathan . “ Porting the Kill Screen. ” metopal.com . 24 Mar. 2012 . Web.

 Analog Devices , Inc. A Technical Tutorial on Digital Signal Synthesis [PDF]. IEEE Long

Island Section. 1999. Web. 19 March 2013 .

 Anchordoguy , Marie . 2005 . Reprogramming Japan: The High Tech Crisis under Commu-

nitarian Capitalism . Ithaca : Cornell University Press .

 Andersson , Freddy . “ Contra_1017 [Contra in 10:17]. ” Speed Demos Archive . 19 May

 2008 . Video. < http://speeddemosarchive.com/Contra.html >

 Anthropy , Anna (aka Auntie Pixelante). “ level design lesson: to the right, hold on

tight. ” auntiepixelante.com . 8 July 2009. Web. 25 April 2013 .

 Aoyama , Yuko , and Hiro Izushi . 2003 . Hardware Gimmick or Cultural Innovation?

Technological, Cultural, and Social Foundations of the Japanese Video Game

Industry. Research Policy 32 (3): 423 – 444 .

 ArnoldRimmer83. “ Donkey Kong Original Edition. ” Lost Levels . 18 Nov. 2010 . Web.

 < http://forums.lostlevels.org/viewtopic.php?t=2460 >

 “ ASCII codes table - Format of standard characters. ” ascii.cl . 2009 . Web.

[398]

 Ashcraft , Brian . 2008 . Arcade Mania: The Turbo-charged World of Japan ’ s Game Centers .

 Tokyo : Kodansha .

 Ashcraft , Brian . “ Report: Why Does The Nintendo Famicom Have The Color Red? ”

 Kotaku . 11 Oct. 2010. Web. 12 June 2012 .

 Ass é nat , Rapha ë l . “ Modding a NES to run Unisystem VS arcade games. ” raphnet.net .

7 Mar. 2011 . Web. < http://raphnet.net/electronique/nes_vs/nes_vs_en.php >

 Associated Press. “ Nintendo Charged With Monopolizing Market. ” Schenectady

Gazette. 8 Dec. 1989 . Web.

 Associated Press. “ Nintendo revived sagging video game market. ” Daily News. 4 Aug.

 1989 . Web.

 Bagnall , Brian . 2006 . On the Edge: The Spectacular Rise and Fall of Commodore . Win-

nipeg : Variant .

 Barnholt , Ray . “ The Magic of FM Synth. ” 1up.com. 25 June 2012 . Web.

 Barton , Matt . 2008 . Dungeons and Desktops: The History of Computer Role-Playing

Games. Wellesley: A K Peters.

 Basto , Luis . “ CP/M Emulators for DOS. ” retroarchive.org . Feb. 1993. Web. 12 Mar.

 2012 .

 Bateman , Chris . 2011 . Imaginary Games . Winchester, UK : Zero Books .

 Benvenutti , Diogo Andrei . “ Nintendo 8 Bits Voice Samples (2A03). ” YouTube .

Uploaded 22 July 2010 .

 Benzene. “ NES Game Genie Code Format DOC v.0.71. ” NesDev . 10 July 1997. Web. 11

April 2013 .

 Bieniek , Chris . “ ARTICLE 33 — NINTENDO CES BROCHURE (1989). ” video-game-

ephemera.com . 2011. Web. 9 April 2013 .

 “ Bionic Command o (Nintendo Entertainment System). ” Wikipedia . 3 May 2012. Web.

9 May 2012 .

 “ The Bionic Commando Database. ” The Almighty Guru . 16 Mar. 2012. Web. 9 May 2012 .

 “ Bionic Commando Re-Armed: Exploding Hitler Head. ” poeTV . Uploaded 16 Aug.

2008. Video. 4 July 2012 .

 Bloodlust Software . “ Official Bloodlust Software NESticle Page. ” zophar.net . Web.

 < http://bloodlust.zophar.net/NESticle/nes.html >

 Bloodlust Software . “ NESticle Version 0.41 [README.TXT]. ” cd.textfiles.com .

26 Aug. 1997 . Web. < http://cd.textfiles.com/230/EMULATOR/NINTENDO/

NESTICLE/README.TXT >

 Bloom , Steve . 1982 . Video Invaders . New York : Arco .

 Bloom , Steve . 1985. “ Nintendo ’ s Final Solution. ” Electronic Games Magazine 3 (3): 8.

 BOCTOK Co . 2000 . Ltd. Bit Generation 2000 “ TV Games. ” . Kobe : Kobe Fashion Museum .

 Bogost , Ian . 2011 . How to Do Things with Videogames . Minneapolis : University of Min-

nesota Press .

 bootgod. NES Cart Database . Web. < http://bootgod.dyndns.org:7777/ >

 bootgod. “ Family BASIC (Revision A1). ” NES Cart Database . 30 July 2009 . Web.

 bootgod. “ Gemfire. ” NES Cart Database . 17 Sept. 2006 . Web.

 bootgod. “ Top 10 dumped games. ” NES Cart Database . Web. 4 July 2012. < http://

bootgod.dyndns.org:7777/stats.php?page=4 >

 bootgod. “ Top 10 PCBs & mappers. ” NES Cart Database. Web. 8 Nov. 2012. < http://

bootgod.dyndns.org:7777/stats.php?page=6 >

 Brandon , Alexander . “ Shooting from the Hip: An Interview with Hip Tanaka. ” Gama-

sutra . 25 Sept. 2002. Web. 30 Jan. 2013 .

Sources [399]

 Brend , Mark . 2005 . Strange Sounds: Offbeat Instruments and Sonic Experiments in Pop .

 San Francisco : Backbeat .

 Brown , Christa , and Kurt Sanner , et al. “ Delta Modulation. ” ADDA: CD Data Conver-

sion . 17 Nov. 1999 . Web. 16 April 2013. < http://www.clear.rice.edu/elec301/

Projects99/adda/dmod.html >

 bucky (aka explod2A03). “ NES Audio: Duty Cycle Modulation. ” Retro Game Audio. 11

March 2012. Web. 11 April 2013 .

 bucky (aka explod2A03). “ NES Audio: Sunsoft Bass and Melodic Samples. ” YouTube .

Uploaded 16 March 2012 .

 BuZz et al . “ Soundtracker History. ” exotica.org.uk . 8 July 2013. Web. 4 May 2014 .

 Calderon , Anthony . “ The Nintendo Development Structure. ” N-Sider . 25 July 2005.

Web. 8 May 2012 .

 Carless , Simon . “ Interview: Dragon Quest Creator Horii’s Talks Evolving Appeal With

 DQIX . ” Game Set Watch . 18 July 2010. Web. 10 April 2013 .

 Carstensen , Kevin . “ NinjaGaiden_1232 [Ninja Gaiden in 12:32]. ” Speed Demos Archive.

1 Aug. 2011 . Video. < http://speeddemosarchive.com/NinjaGaiden.html >

 Carter , Susan B. , Scott S. Gartner , Michael R. Haines , et al. eds. 2006. “ Radio and

Television. ” Historical Statistics of the United States . New York: Cambridge Uni-

versity Press.

 Celius. “ NTSC NES Square/Triangle Wave Note Values. ” Web. 26 Feb. 2013 .

 Celius. “ PAL NES Square/Triangle Wave Note Values. ” Web. 26 Feb. 2013 .

 Ceruzzi , Paul E. 1999 . A History of Modern Computing . Cambridge : MIT Press .

 Chadwick , Jeremy (aka JDC/koitsu/Y0SHi). “ Nintendo Entertainment System Docu-

mentation v0.40. ” GameFAQs . Web.

 Chadwick , Jeremy . “ Nintendo Entertainment System Documentation [rev. 1.00]. ”

Web. < http://tuxnes.sourceforge.net/nestech100.txt >

 Chadwick , Jeremy. “ Nintendo Entertainment System Documentation Version: 2.00. ”

 NesDev . 9 Oct. 1999. Web. 4 July 2012 .

 Chadwick , Jeremy. “ Y0SHi Leaves. ” Archaic Ruins . 5 Apr. 1997. Web. 16 Mar. 2012 .

 Chaplin , Heather , and Aaron Ruby . 2005 . Smartbomb . New York : Algonquin .

 Chatfield , Tom . 2010 . Fun Inc . London : Virgin .

 Chaudry , Gaby . Gaby ’ s Homepage for CP/M and Computer History . Web. 12 Mar.

 2012 .

 “ Chip Problems Strangle the Video Game Industry. ” 1988. Electronic Game Player 1

(4): 25.

 Cifaldi , Frank . 2010. “ In Their Words : Remembering the Launch of the Nintendo

Entertainment System. ” 1up.com : 21 Oct. 2010 . Web.

 Cifaldi , Frank. “ Nintendo Power: Remembering America ’ s Longest-Lasting Game

Magazine. ” Gamasutra . 11 Dec. 2012 . Web.

 Cifaldi , Frank. “ Sad But True: We Can’t Prove When Super Mario Bros. Came Out. ”

 Gamasutra . 28 Mar. 2012 . Web.

 Clan of the Gray Wolf . “ NES Zapper - The Way Games Work. ” YouTube . Uploaded 4

Sept. 2011. Video. 4 July 2012 .

 Cochems , Chuck . “ Marcel de Kogel. ” comp.emulators.misc . 3 Feb. 1997 . Web. 4 July

2012. < https://groups.google.com/group/comp.emulators.misc/browse_frm/

thread/26d83661f989725/599eb2a5531c6804?tvc=1 & q=pasofami#599eb2a55

31c6804 >

 “ Coleco Telstar 1976. ” YouTube . Uploaded 12 July 2009. Video. 4 July 2012 .

[400]

 Collins , Karen . 2008 . Game Sound: An Introduction to the History, Theory, and Practice

of Video Game Music and Sound Design . Cambridge : MIT Press .

 Commodore Computer . 1982 . Commodore 64 User ’ s Guide . Indianapolis : Howard W.

Sams & Co., Inc .

 “ Computer or Video Games. ” nytimes.com . 28 April 1983 . Web.

 Conte , Matt . “ cajoNES version 0.2. ” Snakeyes Gaming Corp. 20 July 1997 . Web. 23 Mar.

2012. < http://www.snakeyes.org/util/files/cajones.txt >

 Conte , Matt . “ cajoNES version 0.99b. ” cd.textfiles.com . 1997 . Web. < http://cd

.textfiles.com/230/EMULATOR/NINTENDO/DOSTOOLS/CAJONES/CAJONES

.TXT >

 Coox , Jerry . “ MML. ” woolyss.com. 27 April 2010 . Web.

 Cotter , Bill . “ Portopia ’ 81. ” World ’ s Fair Photos . Web. 1 Nov. 2012 .

 Covell , Chris . “ The Famicom Titler. ” I want my RGB: Chris Covell RGB Project . Web. 12

June 2012 .

 Covell , Chris. “ NES Music Ripping Guide. [Version 1.4] ” NesDev Wiki. 30 May 2000.

Web. 1 April 2013 .

 Covell , Chris. “ NES Technical/Emulation/Development FAQ [ver. 1.7]. ” 28 July 2008 .

Web.

 Covell , Chris . “ The Stars of Famicom Games. ” ChrisCovell ’ s Homepage. Web. 29 Feb.

2012. < http://www.chrismcovell.com/secret/weekly/Stars_of_the_Family_Com-

puter.html >

 Crigger , Lara . “ Searching for Gunpei Yokoi. ” The Escapist . 6 Mar. 2007 . Web.

 Crockford , Douglas . 1993 . “ The Untold Story of Maniac Mansion. ” Wired . 1.04. Web.

28 Feb. 2012.

 Crockford , Douglas. “ The Expurgation of Maniac Mansion for the Nintendo Enter-

tainment System. ” crockford.com . Web. 10 May 2012 .

 CSG Imagesoft Inc . The Making of Solstice . 1990 . Available online as “ The Making of

Solstice for NES. ” YouTube . Uploaded 1 May 2010. Video. < http://www.youtube

.com/watch?v=894_PNqBkx4 >

 The Cutting Room Floor . “ Castlevania (NES). ” tcrf.net. 7 Jan. 2013. Web. 1 May 2013 .

 The Cutting Room Floor . “ Galaxian (NES). ” tcrf.net. 7 Jan. 2013. Web. 1 May 2013 .

 The Cutting Room Floor . “ Gremlins 2 (NES). ” tcrf.net. 5 Apr. 2013. Web. 1 May 2013 .

 The Cutting Room Floor . “ Proto: The Legend of Zelda. ” tcrf.net . 21 Feb. 2013. Web. 9

April 2013 .

 D ’ Angelo , Henry . 1981 . Microcomputer Structures . BYTE Publications .

 Dahlberg , Mattias . “ Interview with Karsten Obarski. ” bitfellas.org. 5 June 2007 . Web.

 Daiker , Brandon . “ Mysterious curiosities of the Famicom Disk System. ” N-Sider . 8

July 2011 . Web.

 Dane. “ Help with Nester. ” Acmlm ’ s board . 27 Apr. 2005 . Web. < http://acmlm.kafuka

.org/archive2/thread.php?id=11813 >

 DahrkDaiz . “ Mario Adventure. ” ROMhacking.net. 1 Jan. 2004 . Web.

 Dean , Matt . 2012 . The Drum: A History . Lanham : Scarecrow .

 Demiforce. “ Final Fantasy 2j English Patch [139readme.txt]. ” romhacking.net . 18 Aug.

1998. Web. 13 July 2012 .

 Derrida , Jacques . 1991 . “ Letter to a Japanese Friend ” in A Derrida Reader: Between the

Blinds. Peggy Kamuf, ed. New York : Columbia University Press .

 Digital Press . “ Nintendo NES Manuals. ” Digitpress.com . 3 Mar. 2011 . Web. 26 Apr.

2012. < http://www.digitpress.com/library/manuals/nes/index.html >

Sources [401]

 Dillon , Roberto . 2011 . The Golden Age of Video Games: The Birth Of A Multibillon Dollar

Industry . Boca Raton: A K Peters.

 Dinsdale , Alfred . 1971 . First Principles of Television . New York : Arno .

 Dirty McDingus . “ Metroid Source Code Expanded. ” ROMhacking.net . 27 Sept. 2010.

Web. 10 April 2013 .

 Disch. “ FDS Sound. ” NesDev. 14 July 2004 . Web.

 Disch. “ NES Mapper List. ” ROMhacking.net . 7 Nov. 2007. Web. 11 April 2013 .

 Diskin , Patrick . Nintendo Entertainment System Documentation (version 1.0). Aug.

2004. Web. 27 Apr. 2012 .

 Dolan , Richard P. , ed. Hewlett-Packard Journal 31 Oct. 1980 .

 “ Donkey Kong 3. ” The Arcade Flyer Archive . 12 Aug. 2002 .

 “ Donkey Wrong. ” Snopes.com . 13 May 2011. Web. 28 Mar. 2012 .

 Donnelly , James B. , Gordon A. Greenley , and Milo E. Muterspaugh . 1980. “ Emulators

for Microprocessor System Development. ” Hewlett-Packard Journal 31 (10):

 13 – 20 .

 Donovan , Tristan . 2010 . Replay: The History of Video Games . East Sussex: Yellow Ant.

 doppelganger. “ SMB disassembly. ” Private message to author. 14 June 2012 .

 doppelganger. “ the minus world explained v2.0. ” romhacking.net . 19 Mar. 2007 . Web.

 doppelganger. “ SMBDIS.ASM - A Comprehensive Super Mario Bros. Disassembly. ”

 romhacking.net . 19 Mar. 2007 . Web.

 “ Dragon Quest. ” Dragon Quest Wikia . Web. 20 Oct. 2012 .

 Driscoll , Kevin , and Joshua Diaz . 2009 . Endless loop: A brief history of chiptunes . vol. 2 .

 Transformative Works and Cultures . Web

 DvD Translations . “ ReadMe-DvD_Translations-BodyConQuest_I-Girls_Exposed

-revA.txt. ” 21 Oct. 2012. Web. 12 Nov. 2012 .

 DvD Translations. “ ReadMe-DvD_Translations-The_Portopia_Serial_Murder_Case

-revB2.txt. ” 31 Oct. 2010. Web. 2 Nov. 2012 .

 Edge Staff . “ THE MAKING OF … Japan ’ s First RPG. ” Edge . 6 Mar. 2008. Web. 27 Aug.

 2012 .

 Editorial & Business Headquarters. 1976. “ Game Makers Plan Future. ” Weekly Televi-

sion Digest with Consumer Electronics 16 (2): 12.

 Edwards , Benj . “ Inside Nintendo ’ s Classic Game Console. ” PCWorld . 7 Aug. 2008.

Web. 3 July 2012 .

 Edwards , Benj. “ No More Blinkies: Replacing the NES ’ s 72-Pin Cartridge Connec-

tor. ” Vintage Computing and Gaming . 7 Nov. 2005. Web. 6 June 2012 .

 Edwards , Benj. “ VC & G Interview: Jerry Lawson, Black Video Game Pioneer. ” Vintage

Computing and Gaming . 24 Feb. 2009. Web. 29 June 2012 .

 Electronic Code of Federal Regulations . “ PART 1150 — MARKING OF TOY, LOOK-

ALIKE AND IMITATION FIREARMS. ” 1989 .

 Enix, Inc. “ The Portopia Serial Murder Case Suspense Adventure Game Instruction

Booklet (How to play). ” Trans. harmony7. DvD Translations. 15 Nov. 2010 .

Web. 24 Oct. 2012. < http://dvdtranslations.eludevisibility.org/portopia/manual.

html >

 “ Ensoniq Mirage. ” Vintage Synth Explorer . Web. 11 April 2013 .

 “ Fairchild Channel F Commercial [1976]. ” YouTube . Uploaded 10 Nov. 2011. Video. 4

July 2012 .

 Famicom Disk System. “ Disk Copy. ” Web. 9 April 2013 . < famicomdisksystem.com >

 Famicom Disk System. “ Disks. ” Web. 7 Mar. 2012 .

[402]

 “ Famicom Disc System CM (English). ” Trans. Clyde Mandelin (aka matotree).

 YouTube . Uploaded 14 May 2011. Video. 4 July 2012 .

 “ Famicom History Part 2: Japanese Famicom Slang 101. ” Famicomblog . 16 April 2011.

Web. 13 June 2012 .

 Famicom World. “ FDS Power Board Modifications. ” Famicom World. Web. 9 April 2013 .

 Famicom World. “ Holy Grails. ” Famicom World. Web. 9 April 2013 .

 Famicom World. “ Nintendo ’ s Development Disks. ” Famicom World . Web. 9 April 2013 .

 Famicom World. “ Product Codes: HVC. ” Famicom World . Web. 11 June 2012 .

 Famicom World. “ Pulse Line Cartridges. ” Famicom World . Web. 30 June 2012 .

 Famicom World. “ Topic: Famicom comic (1985) scanned ” (xan_racketboy_fan). 16

Sept. 2011. Web. 7 July 2012 .

 Fayzullin , Marat . “ iNES.doc (v 0.6). ” ai_lab . 1 Jan. 1997 . Web. 5 Apr. 2012.

 < http://147.91.177.212/extra/fileformat/emulator/nes/nes.txt >

 Fayzullin , Marat . “ iNES. ” Marat Fayzullin . 14 July 2011 . Web. 16 Mar. 2012. < http://

fms.komkon.org/iNES/ >

 Fayzullin , Marat . “ Nintendo Entertainment System Architecture (version 1.4). ”

 NESHQ.com . 9 Sept. 1996 . Web. 4 Apr. 2012. < http://www.neshq.com/hardgen/

nes-arc.txt >

 “ FCEUX. ” Zophar ’ s Domain . 5 June 2011 . Web. 13 July 2012. < http://www.zophar.net/

nes/fceux.html >

 Feldman , Vinny and Chett Walters . “ Box Art Disparity: FDS vs. NES. ” Time Warp

Gamer . 1 May 2011. Web. 7 June 2012 .

 Feldman , Vinny and Chett Walters. “ Box Art Disparity: Showdown Between Regions. ”

 Time Warp Gamer . 19 Sept. 2010. Web. 7 June 2012 .

 Feldman , Vinny and Chett Walters. “ Box Art Master: NES/Famicom. ” Time Warp

Gamer . 23 Apr. 2010. Web. 7 June 2012 .

 Feldman , Vinny and Chett Walters. “ Konami Box Art. ” Time Warp Gamer . 27 May 2012.

Web. 7 June 2012 .

 Feldman , Vinny and Chett Walters. “ NES Black Boxes. ” Time Warp Gamer . 28 Nov.

2010. Web. 7 June 2012 .

 Fieldsted , Jerry . (aka Wildcat). “ Category Archives: Cultural Anxiety. ” LVLs . Web.

9 May 2012. < http://lvls.wordpress.com/category/features/cultural-anxiety

-features/ >

 Firebug. “ Comprehensive NES Mapper Document v0.80. ” TuxNES . 1998 . Web.

 Firestone , Mary . 2011 . Nintendo: The Company and Its Founders . Edina: ABDO.

 “ First Nintendo Commercial. ” YouTube . Uploaded 23 Jan. 2007. Video. 4 July

 2012 .

 Fromm , Randy . 1993 . “ Troubleshooting Flow Charts for Monitors. ” RePlay . Print.

 Galoob. Game Genie Programming Manual and Codebook . Lewis Galoob Toys, 1991 .

 Game Developer Research Institute . “ Company:Ikegami Tsushinki. ” gdri . 20 May

2012. Web. 4 July 2012 .

 GameMakr24. “ Zelda Challenge: Outlands. ” ROMhacking.net. 15 May 2001 . Web.

 The Games Machine: Computer and Electronic Entertainment 1 (Oct./Nov. 1987).

 GameSpite Quarterly 5 (Fall 2010). Print-on-demand.

 Gardikis , Andrew . “ Mario1_458 [Super Mario Bros. in 4:58]. ” Speed Demos Archive . 15

Dec. 2011 . Video.

 Gibbons , William . 2009. “ Bip, Boop, Bach? Some Uses of Classical Music on the

Nintendo Entertainment System. ” Music and the Moving Image 2 (1): 2 – 14 .

Sources [403]

 Gifford , Kevin (aka tsr). “ Aqui se faz aqui se paga: The NES in Brazil. ” tsr ’ s NES archive .

Web. 30 May 2012 .

 Gifford , Kevin. “ Camerica ’ s Aladdin Deck Enhancer. ” tsr ’ s NES archive . Web. 26 Sept.

 2012 .

 Gifford , Kevin. “ Computer TV Game (Nintendo, April 1980). ” magweasel.com . 21

March 2011. Web. 29 June 2012 .

 Gifford , Kevin. “ Dragon Quest Composer Reflects on 24 Years of Games. ” 1up.com. 24

Feb. 2010. Web. 1 Jan. 2013 .

 Gifford , Kevin. “ Essential 50: Dragon Warrior. ” 1up.com. Web. 1 Jan. 2013 .

 Gifford , Kevin. “ Hacker International ’ s Head Speaks. ” magweasel.com. 29 June 2010.

Web. 12 Nov. 2012 .

 Gifford , Kevin. “ Hidden Messagin ’ . ” magweasel.com . 29 Aug. 2009. Web. 8 May

 2012 .

 Gifford , Kevin. “ Mario Mania I (1985-6). ” magweasel.com. 2 May 2011. Web. 12 Nov.

 2012 .

 Gifford , Kevin. “ Masayuki Uemura and the Family Computer project. ” magweasel.

com. 30 April 2013. Web. 1 May 2013 .

 Gifford , Kevin. “ More on Tokuma ’ s Mario Guide. ” magweasel.com. 4 May 2011. Web.

12 Nov. 2012 .

 Gifford , Kevin. “ The Road to Dragon Quest. ” tsr ’ s NES archive. Web. 13 Nov. 2012 .

 Gifford , Kevin. “ Super Mario Bros. ’ 25th: Miyamoto Reveals All. ” 1up.com . 20 Oct.

2010. Web. 28 June 2012 .

 Gifford , Kevin. “ Tetris … forever. ” tsr ’ s NES archive. 1999. Web. 30 May 2012 .

 Galad , Gil . “ NSF Ripper Guide. ” Gil Galad . 17 May 2007 . Web. 1 April 2013. < http://

gilgalad.arc-nova.org/intro.html >

 Galad , Gil . “ Video Game Source Code Repository. ” Gil Galad . Web. < http://gilgalad.

arc-nova.org/ >

 godslabrat. “ Any interest in NES ROB homebrews? ” Atari Age . 15 Feb. 2011 . Web.

 Goldberg , Harold . 2011 . All Your Base Are Belong To Us: How Fifty Years Of Video Games

Conquered Pop Culture . New York : Three Rivers .

 goroh. “ Nesticle(ver 0.42) stafile infomation. ” NesDev . 12 Dec. 1997 . Web.

 Green , Matthew . “ The Albatross on Parade. ” Press the Buttons . 18 May 2009. Web. 9

May 2012 .

 Greening , Chris . “ Interview with the Mega Man 1 & 2 Sound Team: Reunited 20 Years

On. ” Square Enix Music Online. Web. 18 Feb. 2013 .

 Greetham , D. C. 1994 . Textual Scholarship: An Introduction . New York : Garland .

 Gross , Doug . “ Nintendo seeks to trademark ‘ On like Donkey Kong ’ . ” CNN. 10 Nov.

2010. Web. 20 Mar. 2012 .

 “ Gunpei Yokoi talks Donkey Kong in ‘ Gunpei Yokoi’s House of Games ’ . ” The End of

Deep Layer . 5 Dec. 2010. Web. 23 Feb. 2012 .

 Haanstra , John W. , and Bob O. Evans , et al. 1983 . Processor Products — Final Report

of SPREAD Task Group, December 28, 1961. Annals of the History of Computing 5

(1) : 6 – 26 .

 Hamman , Shaun . “ The Tower of Druaga: Item Guide (v.1.11). ” GameFAQs . 29 Apr.

2009. Web. 27 Aug. 2012 .

 Hansen , Kent . (aka SnowBro). “ METROID MAP DATA FORMAT v1.0. ” Snakeyes

Gaming Corp. 1998 . Web. 19 Mar. 2012. < http://www.snakeyes.org/docs/files/

met_map.txt >

[404]

 “ [HD] TAS: NES Super Mario Bros 3 (JPN) in 11:03.95 by Morimoto. ” YouTube .

Uploaded 14 May 2011. Video. 4 July 2012 .

 Hayes , Michael , and Stuart Dinsey . 1995 . Games War . London : Bowerdean .

 Hayles , N. Katherine. 2008 . Electronic Literature . Notre Dame : U of Notre Dame .

 Hemnes , Thomas M. S. 1982 . The Adaptation of Copyright Law to Video Games .

 University of Pennsylvania Law Review 131 (1): 171 – 233 .

 Herman , Leonard . 2001 . Phoenix: The Fall & Rise of Home Videogames . 3rd ed. Spring-

field : Rolenta .

 Herrick , Clyde N. Television Theory and Servicing: Black/White and Color. 2 nd ed. Reston:

Reston, 1976 .

 Herz , J. C. 1997 . Joystick Nation . Boston : Little, Brown and Co .

 Hickman , Chris . “ Interview with Landy on LandyNES. ” Archaic Ruins . 23 Dec. 1996 .

Web. 16 Mar. 2012. < http://patpend.net/articles/ar/lndy1223.html >

 “ History of the Floppy Disk. ” Wikipedia. 26 Jan. 2012. Web. 7 Mar. 2012 .

 Hodges, Don. “ How High Can You Get? ” DonHodges.com . 28 July 2011. Web. 21 Mar.

 2012 .

 Holmes , Chris . “ The Top 10 Chiptune Artists. ” theNPCs . 9 April 2010. Web. 11 April

 2013 .

 Horton , Kevin (aka kevtris). “ The FPGA Videogame Console. ” kevtris.org. 16 May

2005. Web. 20 March 2013 .

 Horton , Kevin. “ HardNES. ” kevtris.org. Web.

 Horton , Kevin. “ NES Music Format Spec. ” kevtris.org . 27 June 2000 . Web.

 Horton , Kevin. “ NES Video Voltage Levels. ” NesDev . 22 Sept. 2006 . Web.

 Horton , Kevin . “ VRCVI CHIP INFO. ” NesDev . 31 Aug. 1999 . Web.

 Horton , Kevin. “ VRCVII CHIP INFO. ” kevtris.org . 15 Nov. 1999 . Web.

 Hosokawa , Shuhei . 1984 . The Walkman Effect. Popular Music 4 : 165 – 180 .

 “ How ‘ Adventure Mario ’ became The Legend Of Zelda. ” CVG . 18 Nov. 2011. Web. 4

Oct. 2012 .

 “ HP 64000. ” Wikipedia. 15 Jan. 2012. Web. 29 Feb. 2012 .

 Hubbard , Rob . “ Rob Hubbard - Golden Days of Computer Game Music. ” YouTube .

Uploaded 5 Sept. 2007 . Video.

 Hughes , F. “ ‘Super Mario Bros NES ’ R.Eng project. ” ROMhacking.net . 14 May 2008.

Web. 11 April 2013 .

 Humble , Rod . “ Game Rules as Art. ” The Escapist . 18 Apr. 2006. Web. 2 July 2012 .

 hydro (RiGaMoRTiS PRoDuCTioNZ). “ TetaNES Program Documentation. ” Snakeyes

Gaming Corp. 17 Sept. 1998 . Web. 19 Mar. 2012. < http://www.snakeyes.org/util/

files/tetanes.txt >

 iFixit. “ Nintendo Family Computer (Famicom) Teardown. ” ifixit.com. 01 July 2010.

Web. 30 March 2014 .

 IKA . “ Rockman No Constancy. ” ROMhacking.net. 21 Oct. 2007 . Web.

 Inoue , Osamu . 2010 . Nintendo Magic: Winning the Videogame Wars . New York :

 Vertical .

 Intellivision Productions , Inc. “ 1983 Intellivision/M Network Catalog. ” intellivision-

lives.com . 1983 . Web.

 Intellivision Productions. “ Intellivoice. ” Intellivision Lives! 10 Sept. 2011. Web. 16

April 2013 .

 Intellivision Productions. “ M Network Colecovision. ” Intellivision Lives! Web. 16 April

 2013 .

Sources [405]

 Iwamoto , Yoshiyuki . 2006 . Japan on the Upswing: Why the Bubble Burst and Japan ’ s

Economic Renewal . New York : Algora .

 “ Iwata Asks: Dragon Quest IX - Part 1: The History of Dragon Quest. ” YouTube.

Uploaded 9 July 2010. Web. 10 April 2013 .

 Iz-Tavares , Gregg , and Dan Chang . “ Programming M.C. Kids [1992]. ” games

.greggman.com . 12 June 2003 . Web.

 Japan Industrial Designers ’ Association (JIDA) . 1983 . Structure of Dexterity: Industrial

Design Works in Japan . Tokyo : Rikuyo-sha .

 “ Japanese Flock to Exhibit Focusing on the Future. ” nytimes.com. 30 March 1981.

Web. 2 Nov. 2012 .

 Johnstone , Bob . 1999 . We Were Burning: Japanese Entrepreneurs and the Forging of the

Electronic Age . Boulder : Basic .

 Jones , Steven E. , and George K. Thiruvathukal . 2012 . Codename Revolution: The

Nintendo Wii Platform . Cambridge : MIT Press .

 Kageyama , Masashi , and Naoki Kodaka . 2011. Rom Cassette Disc in SUNSOFT. Japan:

City Connection. Compact Disc Set.

 Kalata , Kurt . “ American Dream. ” Hardcore Gaming 101 . Web. 5 June 2012 .

 Kalata , Kurt. “ The History of Dragon Quest. ” Gamasutra . 4 Feb. 2008. Web. 20 Oct.

 2012 .

 Kaluszka , Aaron (aka MEGA ß ¥ TE). “ Computer Emulation. ” kaluszka.com . 14 Dec.

 2001 . Web. 14 Mar. 2012. < http://kaluszka.com/vt/emulation/ >

 Kaluszka , Aaron. “ How the Super Mario Bros. extra lives system works (I think). ” The

Mushroom Kingdom . 24 May 2000 . Web.

 Kamermans , Michiel (aka Pomax). “ The giongo/gitaigo dictionary. ” Nihongoresources.

com . Web. 10 April 2013 .

 Kaneoka , Yukio . “ Electronic Sound Synthesizer. ” Patent 4,783,812. 8 Nov. 1988 .

 Katayama , Osamu . 1996 . Japanese Business into the 21st Century . London : Athlone .

 Kean , Roger , ed. 1984. Crash No. 1: 51 – 2.

 Kemps , Heidi . “ Europe gets exclusive ‘ perfect version ’ of NES Donkey Kong in its

Mario 25th Anniversary Wiis. ” gamesradar . 16 Nov. 2012 . Web.

 Kennedy , Sam . “ We Track Down The Composer of Contra NES. ” 1up.com. 20 Jan.

2009. Web. 30 Jan. 2013 .

 Kennedy , Sam and Thomas Puha . “ Mario Maestro. ” 1up.com . 19 Oct. 2007. Web. 28

June 2012 .

 Kent , Steven L. 2001 . The Ultimate History of Video Games . Roseville : Prima .

 Kerr , Alex . 2001 . Dogs and Demons: Tales from the Dark Side of Japan . New York : Hill

and Wang .

 Kessler , Scott . “ Super Mario Bros Tricks! ” Dman ’ s Game Domain . 21 Aug. 1999 . Web.

 < http://www.elitecoder.com/smbtrick.html >

 Kidder , Tracy . 1981 . The Soul of a New Machine . Boston : Little, Brown and Co .

 Kirn , Peter . “ Prototype Nintendo Music Keyboard from 1984. ” Create Digital Music .

14 Sept. 2005. Web. 18 Apr. 2012 .

 Kirschenbaum , Matthew G. 2008 . Mechanisms: New Media and the Forensic Imagina-

tion . Cambridge : MIT Press .

 Kline , Stephen , Nick Dyer-Witheford , and Greig De Peuter . 2003 . Digital Play:

The Interaction of Technology, Culture, and Marketing . London : McGill-Queen ’ s

University Press .

 Kodansha Ltd . 1987 . Best of Japan . Tokyo : Kodansha .

[406]

 Kodansha Ltd . 1980 . Japan Style . Tokyo : Kodansha .

 Kohler , Chris . 2005 . Power-Up: How Japanese Video Games Gave The World An Extra Life .

 Bradygames .

 Kohler , Chris. “ The Secret History of Super Mario Bros. 2 . ” Wired Game|Life . 1 Apr. 2011.

Web. 8 May 2012 .

 Kohler , Chris. “ Q & A: Metroid Creator ’ s Early 8-Bit Days at Nintendo. ” Wired Game|Life .

7 Apr. 2010. Web. 10 May 2012 .

 Korth , Martin . (aka Nocash). “ Everynes: Everything about NES and Famicom. ” 2004 .

Web. < http://nocash.emubase.de/everynes.htm >

 Kowalski , John (aka Sock Master). “ Sock Master’s Donkey Kong Emulator for CoCo

3. ” Sock Master ’ s Web Page . 31 Mar. 2007 . Web.

 Kraft , Emmitt R. (aka Gigafrost). “ Submission #690: Gigafrost’s NES Zelda 2: The

Adventure of Link ‘ glitched ’ in 06:16.93. ” TASVideos . 28 May 2005 . Web.

 Kulczycki , Jeff . “ Technical: What ’ s with the Kill Screen. ” Jeff ’ s ROMHACK . Web. 21 Mar.

 2012 .

 Kulczycki , Jeff. “ Donkey Kong Arcade Disassembly. ” Email to author. 29 Jan. 2012 .

 Kun , Ma Lam . “ Funny Fantasy. ” Algo ’ s Home Page . 20 Feb. 1996 . Web. 4 July 2012.

 < http://www.ee.ust.hk/~algoma/music.html >

 Kuntz , Jason (aka x_loto). “ DRAGON QUEST Japanese Game Script and Mini Playing

Guide v5.11. ” GameFAQs . 10 July 2010. Web. 14 Dec. 2012 .

 Lacey , Eugene . 1983. “ Novelty Games - Cute is Crucial. ” Computer & Video Games Book

of Reviews 10.

 Laing , Gordon . 2004 . Digital Retro . Cambridge : Ilex .

 Lee , O-Young . 1982 . The Compact Culture: The Japanese Tradition of “ Smaller is Better ” .

 Huey , Robert N. , (trans.). Tokyo : Kodansha .

 Leventhal , Lance A. 1979 . 6502: Assembly Language Programming . Berkeley : Osborne .

 Levi , Antonia . 1996 . Samurai from Outer Space: Understanding Japanese Animation .

 Chicago : Open Court .

 Lewis , Peter H. “ Commodore Introduces New Amiga. ” nytimes.com. 30 July 1985.

Web. 13 Mar. 2012 .

 “ List of Enix home computer games. ” Wikipedia . 9 May 2012. Web. 23 Oct. 2012 .

 Loguidice , Bill , and Matt Barton . 2009 . Vintage Games: An Insider Look at the History

of Grand Theft Auto, Super Mario, and the Most Influential Games of All Time .

 Amsterdam : Focal .

 Loogaroo1. “ Dragon Warrior: Enemy Territory Map. ” GameFAQs . 14 March 2010 . Web.

 < http://www.gamefaqs.com/nes/563408-dragon-warrior/faqs/55534 >

 Lowood , Henry . 2006 . “ High-performance play: The making of machinima. ”

 Journal of Media Practice 7 (1): 25 – 42 .

 “ Magnavox Odyssey TV Commercial - February 1973. ” YouTube . Uploaded 15 Dec.

2007. Video. 4 July 2012 .

 Maher , Jimmy . 2012 . The Future Was Here: The Commodore Amiga . Cambridge : MIT

Press .

 Manbow-J. “ MCKC: MML > MCK Converter Ver 0.14. ” Trans. virt. 1 Aug. 2002 . Web.

 Mandelin , Clyde (aka Mato). “ A Look at the Metroid Series ’ Varia Suit. ” legendsoflo-

calization.com. 28 July 2013 . Web.

 Mandelin , Clyde. “ Legends of Localization: Super Mario Bros. ” matotree.com . 28 Oct.

 2011 . Web.

 “ The Manual Project. ” Vimm ’ s Lair . 4 May 2012. Web. 9 May 2012 .

Sources [407]

 “ Marionaire. ” 23 Aug. 2008 . Web. < http://1st.geocities.jp/bysonshome/smb1/index

.html >

 Margetts , Chad and M. Noah Ward . “ Lance Barr Interview. ” Nintendojo . Web. 16 Apr.

 2012 .

 Markoff , John . “ Making Computers Compatible. ” nytimes.com . 11 May 1988. Web. 13

Mar. 2012 .

 Marsland , T. A. , and J. C. Demco . 1978 . A Case Study of Computer Emulation. INFOR

 16 (2): 112 – 131 .

 Maru-Chang . “ Nintendo Hard Number: HVC. ” maru-chang.com . Web. 11 June

 2012 .

 Matsuoka , Claudio . “ Tracker History Graphing Project. ” helllabs.org . 4 Nov. 2007.

Web. 23 Jan. 2013 .

 McCallum , John . “ Memory Prices (1957-2013). ” jcmit.com . 27 Feb. 2013. Web. 24 July

 2013 .

 McCullough , J. J. “ Nintendo ’ s Era of Censorship. ” Filibuster Cartoons . Web. 28 Feb.

 2012 .

 McFerran , Damien . “ Slipped Disk - The History of the Famicom Disk System. ”

 Nintendo Life . 20 Nov. 2010. Web. 9 April 2013 .

 McGill , Douglas . “ The ultimate video game: Nintendo vs Atari. ” New Straits Times. 23

March 1989 . Web.

 Memblers. “ NES Music Authors List v3.8. ” NesDev . Nov. 2002. Web. 22 Feb. 2013 .

 Mentzer , Frank . 1983. Dungeons & Dragons Dungeon Masters Rulebook . Lake Geneva:

TSR Hobbies, Inc.

 MeteorStrike . “ Dragon Warrior Hacking Analysis FAQ. ” IGN Walkthroughs . 20 May

2007. Web. 17 Dec. 2012 .

 Michael , Chris . “ Videogame facts that blow your mind (SuperMarioBros. SHOCKING

SECRET INSIDE p #70). ” NeoGAF . Jan. 2008 . Web. < http://www.neogaf.com/

forum/showthread.php?p=9490699#post9490699 >

 “ Microcode. ” Wikipedia . 16 Feb. 2012. Web. 27 Feb. 2012 .

 “ Might and Magic: Oddities, Theories, and Unused Content. ” Flying Omelette .

Web.

 The Mighty Mike Master . “ NES Game Genie Technical Notes. ” TuxNES . Web. 11 April

 2013 .

 Mong , Nick (aka mmbossman). “ Submission #2486: mmbossman’s FDS Arumana no

Kiseki in 08:26.67. ” TASVideos . 9 Dec. 2009 . Web.

 Montfort , Nick . “ Continuous Paper: The Early Materiality and Workings of Electronic

Literature. ” nickm.com . 28 Dec. 2004 . Web.

 Montfort , Nick. “ Emulation as Game Facsimile (or Computer Edition?). ” post posi-

tion . 14 May 2011. Web. 18 June 2012 .

 Montfort , Nick , and Ian Bogost . 2009 . Racing The Beam: The Atari Video Computer

System . Cambridge : MIT Press .

 More Strategies for Nintendo Games . 1989 . New York : Beekman House .

 Morimoto. “ NES Super Mario Bros. 3 (JPN) in 11:03.95. ” TASVideos . 20 Nov. 2003 .

Web.

 Morris-Suzuki , Tessa . 1988 . Beyond Computopia: Information, Automation and Democ-

racy in Japan . London : Kegan Paul International .

 Nakagawa , Katsuya . “ External memory having an authenticating processor and

method of operating same. ” Patent 5,070,479. 3 Dec 1991 .

[408]

 Nakagawa , Katsuya . “ Recordable Data Device Having Identification Symbols Formed

Thereon and Cooperating Data Processing System Having Registering Symbols. ”

Patent 4,860,128. 22 Aug. 1989 .

 Nakagawa , Katsuya . “ System for determining authenticity of an external memory used

in an information processing apparatus. ” Patent 4,799,635. 24 Jan. 1989 .

 Nakagawa , Katsuya , and Yoshiaki Nakanishi . “ Memory cartridge having a

multi-memory controller with memory bank switching capabilities and data

processing apparatus. ” Patent 4,949,298. 14 Aug. 1990 .

 “ Naohisa Morota. ” Videogame Music Preservation Foundation. 23 Jan. 2013. Web. 1 April

 2013 .

 Napier , Susan J. 2007 . From Impressionism to Anime: Japan as Fantasy and Fan Cult in

the Mind of the West . New York : Palgrave Macmillan .

 “ Narpas Sword. ” Wikitroid . 11 April 2012. Web. 8 Nov. 2012 .

 National Programme on Technology Enhanced Learning . “ Lecture - 3 Quantization,

PCM and Delta Modulation. ” YouTube . Uploaded 27 Aug. 2008 .

 Nelson , Rob . “ Nintendo Redivivus: how to resuscitate an old friend. ” Ars Technica . 12

Feb. 2003. Web. 6 June 2012 .

 Newman , James . 2008 . Playing with Videogames . London : Routledge .

 Newman , James . 2004 . Videogames . London : Routledge .

 NesDev . “ $2001 8-pixel mask ” (noattack). NesDev Forums. 5 March 2013. Web. 25

April 2013 .

 NesDev . “ Big Bird’s Hide and Speak sample compression ” (rainwarrior). NesDev

Forums. 3 March 2012 . Web.

 NesDev . “ Cartridge and mappers ’ history. ” NesDev Wiki. 9 Nov. 2011. Web. 26 April

 2014 .

 NesDev . “ CIC lockout chip. ” NesDev Wiki . 13 July 2011. Web. 4 July 2012 .

 NesDev . “ CIC lockout chip pinout. ” NesDev Wiki . 5 Apr. 2011. Web. 4 July 2012 .

 NesDev . “ Clarification on OAM and palette locations ” (noattack). NesDev Forums. 7

July 2012 . Web.

 NesDev . “ Clock Rate. ” NesDev Wiki . 10 Jan. 2012. Web. 4 July 2012 .

 NesDev . “ Composite out of a french PAL NES ” (alex). NesDev Forums. 15 Oct. 2007 .

Web.

 NesDev . “ Docs on game genie hardware? ” (jwdonal). NesDev Forums. 30 May 2010 .

Web.

 NesDev . “ How do I create a enhanced VDP/PPU? ” (Hamtaro126). NesDev Forums. 25

Sept. 2011 . Web.

 NesDev . “ NES expansion port pinout. ” NesDev Wiki . 7 Sept. 2011. Web. 4 July 2012 .

 NesDev . “ Overscan. ” NesDev Wiki . 28 May 2012. Web. 7 July 2012 .

 NesDev . “ PPU memory map. ” NesDev Wiki. 21 March 2014. Web. 7 May 2014 .

 NesDev . “ PPU OAM. ” NesDev Wiki . 28 May 2012. Web. 4 July 2012 .

 NesDev . “ PPU palettes. ” NesDev Wiki . 19 Oct. 2011. Web. 9 July 2012 .

 NesDev . “ Question about coding for NES zapper ” (kalzone). NesDev Forums. 4 July

 2010 . Web.

 NesDev . “ Tracker history ” (noattack). NesDev Forums. 23 Jan. 2013. Web. 29 Jan. 2013 .

 NesDev . “ Zelda dungeons ” (cpow). NesDev Forums. 15 April 2009. Web. 9 April

 2013 .

 NesDev . “ Zelda FDS (and general disk-related questions) ” (noattack). NesDev Forums.

24 Aug. 2012 . Web.

Sources [409]

 NEVERMIND8 . “ The NESticle Movie Archive. ” Emulation Zone . 11 Feb. 2001 . Web. 15

Mar. 2012. < http://www.emulationzone.org/savestates/nesticle/ >

 “ NFG Games Presents: Nintendo Famicom Disk System Manual. ” Trans. Zumi and

NFG. NFG Games . Web. < http://nfggames.com/games/famicomdisksystem/0 >

 “ Nibble. ” Wikipedia. 31 May 2012. Web. 6 July 2012 .

 Nielson , Martin (aka NES World). “ Aladdin Deck Enhancer. ” NES World . Web. 26

Sept. 2012 .

 Nielson , Martin. “ Jon Valesh Interview. ” NES World . 1 Dec. 2007. Web. 29 May

 2012 .

 Nielson , Martin . “ The Nintendo Entertainment System (NES) FAQ v.1.12. ” 13 Oct.

 1996 . Web. 28 Mar. 2012. < http://nescene.tripod.com/articles/nes_art.txt >

 Nielson , Martin. “ The Nintendo Entertainment System. ” NES World. 19 Aug. 2005 .

Web.

 “ Nintendo Family Computer (Famicom) Teardown. ” ifixit . 2 Sept. 2010. Web. 11 June

 2012 .

 Nintendo Ltd . 1985 . This is Family Computer! Family Computer Compilation .

 Nintendo Ltd . 1985 . This is Family Computer! Disk System Guide .

 Nintendo of America Inc . 1988 . “ Classified Information - Explore the mysterious

minus world. ” Nintendo Power 3 : 55 .

 Nintendo of America Inc . 1988 . “ Counselor ’ s Corner - Super Mario Bros. ” Nintendo

Power 1 : 52 .

 Nintendo of America Inc. “ Donkey Kong Operation Manual [Model No: TKG4-UP]

(1981). ” Basement Arcade Classics . 2 Oct. 2005 . Web [PDF].

 Nintendo of America Inc. Dragon Warrior Instruction Booklet . 1989 .

 Nintendo of America Inc . 1991 . “ Inside the NES. ” Nintendo Power 22 : 60 – 62 .

 Nintendo of America Inc. “ Iwata Asks - Club Nintendo: Game & Watch. ” Nintendo.

com . 2011 . Web.

 Nintendo of America Inc. “ Iwata Asks - New Super Mario Bros: Volume 1. ”

 Nintendo.com . 2011 . Web.

 Nintendo of America Inc. “ Iwata Asks - New Super Mario Bros: Volume 2. ” Nintendo.

com . 2011 . Web.

 Nintendo of America Inc. “ Iwata Asks - Volume 1: Shigesato Itoi Asks in Place of

Iwata. ” Nintendo.com . 2011 . Web.

 Nintendo of America Inc. “ Iwata Asks - Volume 2: NES & Mario. ” Nintendo.com . 2011 .

Web.

 Nintendo of America Inc. The Legend of Zelda Instruction Booklet . 1987 .

 Nintendo of America Inc. Nintendo Fun Club News 1.4 (Winter 1987).

 Nintendo of America Inc . 1991 . NES Game Atlas . Japan : Tokuma Shoten .

 Nintendo of America Inc. Nintendo Power 6 (May/June 1989).

 Nintendo of America Inc. Nintendo Power 7 (July/Aug. 1989).

 Nintendo of America Inc. Nintendo Power 50 (July 1993).

 Nintendo of America Inc . 1995 . “ Nintendo Times: Ten Years of NES History. ”

 Nintendo Power 77 : 20 – 23 .

 Nintendo of America Inc. Super Mario 64 Instruction Booklet. 1996 .

 Nintendo of America Inc. Super Mario Bros. / Duck Hunt Instruction Booklet . 1988 .

 Nintendo of America Inc . 1989 . Super Mario Bros. 2 Inside out Part I . Japan : Tokuma

Shoten .

 Nintendo of America Inc. Super Mario Bros. 2 Instruction Booklet . 1988 .

[410]

 Nintendo of America Inc . 1987 . The Official Nintendo Player ’ s Guide . Japan : Tokuma

Shoten .

 Nintendo of America Inc . 1992 . Top Secret Passwords Player ’ s Guide . Japan :

 Tokuma Shoten .

 Nintendo of America Inc . “ VIDEO ROBOTS. ” (Advertisement). New York Times

(17 Nov. 1985): A29.

 Nintendo of America Inc . 1991 . “ Why Your Game Paks Never Forget. ” Nintendo Power

 20 : 28 – 31 .

 Nintendo of Europe GmbH. 2010 . Iwata Asks . vol. 8 . “ Flipnote Studio - An Animation

Class . ” Web

 Nintendo of Europe GmbH. “ Iwata Asks: Zelda Handheld History. ” 2010 . Web.

 “ Nintendo Online Magazine Shigeru Miyamoto Interview - August, 1998. ” ZeldaDun-

geon.net. Web. 9 April 2013 .

 “ Nintendo Vs. Unisystem. ” John ’ s Arcade . 3 Feb. 2013. Web. 9 April 2013 .

 Nisan , Noam , and Shimon Schocken . 2005 . The Elements of Computing Systems .

 Cambridge : MIT Press .

 nullsleep. “ MCK/MML BEGINNERS GUIDE. ” nullsleep.com. 2003 . Web.

 “ Object-oriented programming. ” Wikipedia . 5 July 2012. Web. 6 July 2012 .

 O ’ Donnell , Casey . 2010 . “ The Nintendo Entertainment System and the 10NES Chip:

Carving the Video Game Industry in Silicon. ” Games and Culture 6 (1): 83 – 100 .

 O ’ Donnell , Casey . 2009 . “ Production Protection to Copy(right) Protection: From the

10NES to DVDs. ” IEEE Annals of the History of Computing 31 (3): 54 – 63 .

 Okada , Satoru . “ Video Target Control and Sensing Circuit for Photosensitive Gun. ”

Patent 4,813,682. 21 Mar. 1989 .

 Olmos , Davis . “ Chip Shortage Strains Computer Makers. ” latimes.com. 3 Mar. 1988 .

Web.

 OptimusPriNe . “ Dragon Warrior Run. ” Speed Demos Archive Forum. 7 May 2009 . Web.

 Opulent. “ The Doomed Speed Demos Archive. ” Doomworld . Web. 13 Mar. 2012.

 < http://www.doomworld.com/sda/doom_sda.htm >

 Orland , Kyle . “ Review: NES Remix is more evocative than transformative. ” arstech-

nica.com . 18 Dec. 2013 . Web.

 Osborne , Adam . 1980 . An Introduction to Microcomputers , Volume 1 : Basic Concepts . 2 nd

ed. Berkeley : Osborne .

 Ostermayer , Markus . The Radar Scope Pages . Web. 24 Feb. 2012. < http://www

.ostermayer.ch/ >

 Otero , Jose . “ How Mario 3D World ’ s Co-Director Gave NES Games a Second Life. ”

 ign.com . 23 April 2014 . Web.

 Owen , Patrick . “ PC Ditto. ” 1988 . Page 6 32: 38. Web. 13 Mar. 2012. < http://www

.page6.org/archive/issue_32/page_38.htm >

 Papp , Zilia . 2010 . Anime and its Roots in Early Japanese Monster Art . Kent : Global

Oriental .

 Parish , Jeremy . “ An interview with Konami’s Hidenori Maezawa. ” 1up.com . 13 Jan.

2009. Web. 30 Jan. 2013 .

 Parkin , Simon . “ The Dragon Invasion: How the role-playing game came to Japan. ”

 The Magazine. 26 Sept. 2013 . Web.

 Patten , Fred . 2004 . Watching Anime, Reading Manga . Berkeley : Stone Bridge .

 Paumgarten , Nick . “ Master of Play. ” The New Yorker. 20 Dec. 2010. Web. 12 April

 2013 .

Sources [411]

 Paumgarten , Nick . “ Spelunking in Sonobe. ” The New Yorker . 13 Dec. 2010. Web. 12

April 2013 .

 pditincho. “ Donkey Kong Disassembly Revision 4. ” 10 Mar. 2012 . Web. 21 Mar. 2012.

 < http://www.romhacking.net/documents/540/ >

 pditincho. “ Donkey Kong Disassembly Revision 5. ” 26 Mar. 2012 . Web. 6 July

2012. < http://www.romhacking.net/documents/540/ >

 Peddle , Charles I. , Wilbur Mathys , William Mensch , Jr ., and Rodney Orgill .

 “ Integrated circuit microprocessor with parallel binary adder having on-the-fly

correction to provide decimal results. ” Patent 3,991,307. 9 Nov. 1976 .

 “ Personal Computers: Fujitsu FM R Series. ” Historical Computers in Japan . IPSJ

Computer Museum. Web. 29 Feb 2012 .

 Peterson , Jon . 2012 . Playing at the World . San Diego : Unreason .

 Phillips , George . 2010 . “ Simplicity Betrayed. ” Communications of the ACM 53 (6):

 52 – 58 .

 Picard , Martin . 2013 . “ The Foundation of Geemu : A Brief History of Early Japanese

video games. ” Game Studies. 13: 2. Web.

 Pichugan , Igor . (И г о р ь П и ч у г и н). “ Steepler н а ч а л п р о д а в а т ь Dendy (Steepler

starts sales of Dendy). ” Trans. Vera Brown. kommersant.ru. 18 De с . 1992 . Web.

 < http://www.kommersant.ru/doc/33856 >

 Pickford , Ste . “ Ironsword Dragon King concept art. ” The Pickford Bros ’ Website . 20 Feb.

2009. Web. 10 April 2013 .

 Pickford , Ste “ Ironsword Eagle working. ” The Pickford Bros ’ Website . 8 Jan. 2009. Web.

10 April 2013 .

 Pickford , Ste “ Ironsword title screen working. ” The Pickford Bros ’ Website . 26 Feb.

2009. Web. 10 April 2013 .

 Pinch , Trevor , and Frank Trocco . 2002 . Analog Days: The Invention and Impact of the

Moog Synthesizer . Cambridge : Harvard University Press .

 Pioneer4x4. “ I got my Atari to control my Nintendo R.O.B. Robot! ” Atari Age . 13 Nov.

 2011 . Web. 26 Apr. 2012. < http://www.atariage.com/forums/topic/190214-i-got

-my-atari-to-control-my-nintendo-rob-robot/ >

 “ Platform game. ” Wikipedia . 28 June 2012. Web. 4 July 2012 .

 Pollack , Andrew . “ Shortage of Memory Chips Has Industry Scrambling. ” nytimes.com.

12 March 1988 . Web.

 Polsson , Ken . “ Chronology of Nintendo Video Games. ” 18 May 2012 . Web. 3 July 2012.

 < http://vidgame.info/nintendo/ >

 Ponce , Tony . “ Untapped Potential: A true family computer. ” Destructoid . 26 June

 2009 . Web.

 “ Popeye. ” Wikipedia . 28 Feb. 2012. Web. 2 Mar. 2012 .

 “ Popeye - You’re A Sap, Mr Jap (1942). ” YouTube . Uploaded 17 Mar. 2012 . Video.

 Provenzo , Eugene . 1991 . Video Kids: Making Sense of Nintendo . Cambridge : Harvard .

 Pugh , Emerson W. , Lyle R. Johnson , and John H. Palmer . 1991 . IBM ’ s 360 and Early

370 Systems . Cambridge : MIT .

 Quartermann . 1989. “ Gaming Gossip. Electronic Gaming Monthly 3 : 28 .

 Quietust. “ Chip Images. ” QMT Productions . 28 Oct. 2012. Web. 19 Feb. 2013 .

 “ Radar Scope (1980). ” The Arcade Flyer Archive. 6 Apr. 2003 . Web.

 RaEJaE . “ Translations. ” Emulation Zone. 24 Dec. 1998 . Web. 15 Mar. 2012. < http://

www.emulationzone.org/consoles/nes/translate.htm >

 Rard , Joseph . “ The Battle of Donkey Kong. ” KAMINARIYA . 11 Jan. 2011 . Web.

[412]

 Reckhard , Tobias (aka jester). “ FREQUENTLY ASKED QUESTIONS (FAQ) LIST

FOR ALT.BINARIES.SOUNDS.MODS. ” 25 Aug. 1997 . Web. < http://www.koeln.

netsurf.de/~michael.mey/faq1.txt >

 Retro Synth Ads . “ Yamaha GS1 (GS-1) and GS2 (GS-2), Keyboard 1982. ” 7 June 2010.

Web. 17 March 2013 .

 “ The Rise and Fall of Weekly Shonen Jump: A Look at the Circulation of Weekly Jump. ”

 ComiPress . 6 May 2007. Web. 12 April 2013 .

 Roach , Adam . “ comp.emulators.misc Frequently Asked Questions (FAQ) [3/3]. ”

 Faqs.org . 25 Apr. 1997 . Web. 5 Apr. 2012. < http://www.faqs.org/faqs/emulators-

faq/part3/ >

 Roberts , R. S. 1981 . Dictionary of Audio, Radio and Video . London : Butterworths .

 Rosin , Robert F. 1969 . “ Contemporary Concepts of Microprogramming and Emula-

tion. ” Computing Surveys 1 (4): 197 – 212 .

 Rosin , Robert F. , and Richard H. Eckhouse , Jr . 1972 . “ An Environment for Research

in Microprogramming and Emulation. ” Communications of the ACM 15 (8):

 748 – 760 .

 Ryan , Jeff . 2011 . Super Mario: How Nintendo Conquered America . New York : Portfolio/

Penguin .

 Ryan8bit. “ Dragon Warrior (NES) Formulas v1.0. ” GameFAQs . 10 Jan. 2011 . Web.

 Sample , Mark . “ What Comes before the Platform: The Refuse of Videogames. ” Play

the Past. 17 Jan. 2012. Web. 11 Feb. 2013 .

 Sandberg-Diment , Ereik . “ Competing for the Business Mind. ” Nytimes.com . 3 Nov.

1985. Web. 13 Mar. 2012 .

 Sandifer , Philip . “ Am Error. ” The Nintendo Project: An 8-Bit Psychochronography . 7 Apr.

2011. Web. 10 Feb 2012 .

 Saponas , Thomas A. and Brian W. Kerr . 1980 . “ Logic Development System Acceler-

ates Microcomputer System Design. ” Hewlett-Packard Journal 31 (10): 3 – 13 .

 Sarkeesian , Anita . “ Damsel in Distress: Tropes vs Women in Video Games. ” Feminist

Frequency. 7 March 2013 . Video.

 Scanlon , Leo J. 1980 . 6502 Software Design . Indianapolis : Howard W. Sams & Co .

 Schottstaedt , Bill . “ An Introduction to FM. ” Center for Computer Research in Music and

Acoustics. Web. 17 March 2013. < https://ccrma.stanford.edu/software/snd/snd/

fm.html >

 Scott , Dean . “ Miyamoto: ‘ I am lazy. ’ ” CVG. 9 Feb. 2004. Web. 9 April 2013 .

 Segher . “ The weird and wonderful CIC. ” HackMii . 17 Jan. 2010. Web. 30 May 2012 .

 Sellers , John . 2001 . Arcade Fever: The Fan ’ s Guide to the Golden Age of Video Games .

 Philadelphia : Running Press .

 Semrad , Edward J. “ New Nintendo system way ahead of the field. ” Milwaukee Journal .

5 Oct. 1985. Web. 17 Apr. 2012 .

 Semrad , Edward J. “ Nintendo fails to get its action together. ” Milwaukee Journal . 9

Aug. 1986. Web. 17 Apr. 2012 .

 SeRiAlKLR . “ THE ROM HACKERS BIBLE v0.2. ” GameFAQs . 1997 . Web.

 Sheff , David . 1993 . Game Over: How Nintendo Zapped an American Industry, Captured

Your Dollars, and Enslaved Your Children . New York : Random House .

 Shirai , Ichiro . “ Multi-Directional Switch. ” Patent 4,687,200. 18 Aug. 1987 .

 Sir-Tech Software Inc . 1981 . Wizardry (Instruction Manual) . New York : Sir-Tech .

 SKETCZ . “ French NES - with RGB ouput. ” Hardcore Gaming 101 Blog . 11 Dec. 2009.

Web. 12 June 2012 .

Sources [413]

 Slade , Giles . 2006 . Made to Break: Technology and Obsolescence in America . Cambridge :

 Harvard University Press .

 Sliver X. “ Hacking The Legend of Zelda NESticle save states. ” Romhacking dot net. 14

May 2008. Web. 15 Mar. 2012 .

 Sloan , Daniel . 2011 . Playing to Wiin: Nintendo and the Video Game Industry ’ s Greatest

Comeback . Singapore : Wiley .

 Slocum , Paul . “ Atari 2600 Music And Sound Programming Guide. ” qotile.net . 19 Feb.

2003. Web. 29 Jan. 2013 .

 Smith , David . “ Feature: What ’ s in a Name? ” 1UP.com. 13 June 2005. Web. 13 Nov.

 2012 .

 Smith , Patrick . 1997 . Japan: A Reinterpretation . New York : Pantheon .

 Snider , Mike . “ Q & A: ‘ Mario ’ creator Shigeru Miyamoto. ” USA Today . 8 Nov. 2010.

Web. 28 June 2012 .

 snowcon3. “ RetroSnow: The Nintendo Famicom (Overview). ” YouTube . Uploaded 20

Aug. 2011. Video. 4 July 2012 .

 Sopalin. “ Miyamoto, la Wii U et le secret de la Triforce. ” Gamekult . 1 Nov. 2012. Web.

25 Jan. 2013 .

 Sparke , Penny . 1987 . Modern Japanese Design . New York : E.P. Dutton .

 Speirs , Akira (aka akira slime). “ Dragon Warrior: Names/Stats/Levels FAQ. ” Game-

FAQs . 20 July 2002 . Web.

 Stanlaw , James . 1994 . “ ‘ For Beautiful Human Life ’ : The Use of English in Japan. ”

 Re-Made in Japan. Tobin, Joseph (ed.) New Haven: Yale University Press.

 “ Static RAM in the SNES carts ” (FistOfFury). ZSNES Board. 19 Dec. 2004. Web. 10

April 2013 .

 Stengel , Steven . “ Old Computer Ads [Amiga] ” The Obsolete Technology Website . Web.

13 Mar. 2012. < http://oldcomputers.net/oldads/old-computer-ads.html >

 Stern , Richard H. 1982 . “ Unloading ROMs: illegal piracy, an unfair trick, or free

competition? ” IEEE Micro 2 (2): 85 – 87 .

 “ Strafgesetzbuch section 86a. ” Wikipedia . 17 June 2012. Web. 4 July 2012 .

 Stuart , Keith . “ The game of art: a profile of digital artist Cory Arcangel. ” The Guardian

Games Blog. 4 Dec. 2009 . Web.

 Swink , Steve . 2009 . Game Feel: A Game Designer ’ s Guide to Virtual Sensation . Burling-

ton : Morgan Kaufmann .

 T.M. (aka knbnitkr). “ Submission #2836: knbnitkr’s GB Makai Toushi SaGa in

01:47.17. ” TASVideos . 16 Sept. 2010 . Web.

 Takano , Masaharu . “ How the Famicom was Born. ” Nikkei Electronics (1994 – 95).

Reprinted at Nikkei Trendy Net . 2008 . Web. < http://trendy.nikkeibp.co.jp/

article/special/20080922/1018969/ >

 Takano , Masaharu. “ Part 1 - The Dawn of Video Games. ” Trans. Aria Tanner. Glitter-

Berri ’ s Game Translations . 14 Feb. 2012 . Web.

 Takano , Masaharu. “ Part 6 - Making the Famicom a Reality. ” Trans. Aria Tanner.

 GlitterBerri ’ s Game Translations . 28 Mar. 2012 . Web.

 Takano , Masaharu. “ Part 7 – Deciding on the Specs. ” Trans. Aria Tanner. GlitterBerri ’ s

Game Translations . 21 Apr. 2012 . Web.

 Takano , Masaharu. “ Part 8 – Synonymous With the Domestic Game Console. ” Trans.

Aria Tanner. GlitterBerri ’ s Game Translations . 21 Apr. 2012 . Web.

 Takano , Masaharu. “ Part 9 – The Short-Lived Disk System. ” Trans. Aria Tanner. Glit-

terBerri ’ s Game Translations . 12 June 2012 . Web.

[414]

 Takano , Masaharu. “ Part 10 – Developing the Famicom Modem. ” Trans. Aria Tanner.

 GlitterBerri ’ s Game Translations . 29 June 2012 . Web.

 Tanner , Aria (aka GlitterBerri). “ Adventure of Link: Retranslation. ” GlitterBerri ’ s

Game Translations . 10 May 2011 . Web.

 Tanner , Aria. “ Discussion Between Miyamoto & Horii. ” GlitterBerri ’ s Game Transla-

tions. 20 Dec. 2011 .

 Tanner , Aria. “ Konami: The Nintendo Era. ” GlitterBerri ’ s Game Translations. 1 Jan.

2012. Web. 23 April 2013 .

 Tanner , Aria. “ Making Mr. Gimmick! ” GlitterBerri ’ s Game Translations. 30 March

 2012 . Web.

 Tanner , Aria. “ The Music of Mr. Gimmick. ” GlitterBerri ’ s Game Translations. 14 Aug.

 2012 . Web.

 Tanner , Aria. Personal correspondence. 16 Aug. 2012 .

 TASVideos . “ Emulator Resources. ” TASVideos . 7 June 2012. Web. 13 July 2012 .

 TASVideos. “ Guidelines. ” TASVideos . 28 Mar. 2012. Web. 4 July 2012 .

 TASVideos. “ Luck Manipulation. ” TASVideos . 13 Mar. 2011. Web. 13 July 2012 .

 Taylor , Brad . “ 2A03 Technical Reference. ” NesDev . 23 April 2004. Web. 19 Nov.

 2012 .

 Taylor , Brad. “ Delta modulation channel tutorial 1.0. ” textfiles.com . 20 Aug. 2000.

Web. 8 March 2013 .

 Taylor , Brad. “ Famicom Disk System Disk Drive/RAM Adaptor Technical Briefing. ”

 NesDev . Web. 23 Aug. 2012 .

 Taylor , Brad. “ Famicom Disk System technical reference. ” NesDev . 23 Apr. 2004.

Web. 6 Mar. 2012 .

 Taylor , Brad. “ NTSC Delta Modulation Channel Documentation. ” NesDev . 19 Feb.

2003. Web. 15 Jan. 2013 .

 Teiser, Don. “ Atari - Nintendo 1983 Deal. ” Interoffice memo. The Atari Museum . Web.

28 Feb. 2012 .

 Television Bureau of Advertising . “ TV Basics. ” TVB.org . Dec. 2011 . Web [PDF].

 Texas Instruments . “ TMS9918A/TMS9928A/TMS9929A Video Display Processors.

(Microprocessor Series). ” Houston: Texas Instruments Inc., Nov. 1982 .

 Tersigni , Dean . “ Uncensored Religion in NES Games. ” TheAlmightyGuru . 2009. Web.

8 May 2012 .

 Teti , John . “ As Fast as Impossible: 10 Insanely Thrilling Tool-Assisted Speedruns. ”

 Crispy Gamer . 20 Apr. 2009. Web. 6 Mar. 2012 .

 Th é berge , Paul . 1997 . Any Sound You Can Imagine . Hanover : Wesleyan University

Press .

 Thorpe , Patrick , ed. 2013. The Legend of Zelda: Hyrule Historia . Milwaukie: Dark Horse

Comics.

 “ Tools-Assisted Speedruns. ” Doomworld . Web. 13 Mar. 2012. < www.doomworld.com/

tas/ >

 Touvell , Dave . “ Microsoft Softcard. ” Apple2Info.Net . 2006. Web. 9 Mar. 2012 .

 “ Traditional colors of Japan. ” Wikipedia . 15 May 2012. Web. 12 June 2012 .

 Tran , Albert . “ Game Genie: Video Game Enhancer FAQ [ver. 1]. ” GameFAQs . 28 Jan.

 2003 . Web.

 “ Transformer. ” Personal Computer Museum . Web. 13 Mar. 2012. < www.pcmuseum.ca >

 Tucker , S. G. 1965 . “ Emulation of Large Systems. ” Communications of the ACM 8 (12):

 753 – 761 .

Sources [415]

 Turner , Benjamin and Christian Nutt . “ Nintendo Famicom: 20 Years of Fun! ”

 gamespy . 2003 . Web.

 United States Court of Appeals. “ 16 F. 3d 1032 - Nintendo of America Inc v. Lewis

Galoob Toys Inc. ” OpenJurist . 17 Feb. 1994. Web. 11 April 2013.

 United States Court of Appeals. “ 746 F.2d 112: Universal City Studios, Inc., Plaintiff-

appellant, v. Nintendo Co., Ltd., Nintendo of America, Inc., Defendants-

appellees. ” Justia . 4 Oct. 1984. Web.

 United States Court of Appeals. “ Atari Games Corp. v. Nintendo of America Inc. ”

 Digital Law Online . 10 Sept. 1992. Web.

 United States District Court. “ Lewis Galoob Toys, Inc. v. Nintendo of America,

Inc. ” Google Scholar. 12 July 1991. Web. 11 April 2013.

 United States District Court. “ Nintendo of America, Inc. v. Elcon Industries, Inc. ”

 Google Scholar . 4 Oct. 1982. Web. 4 July 2012.

 Unseen64staff. “ The Legend Of Zelda [NES - Beta / Concept]. ” unseen64.net . 14 April

2008. Web. 9 April 2013 .

 V., Eric. “ Label: Gunpei Yokoi. ” beforemario: Nintendo Toys & Games 1965 − 1983 . Web.

 < http://blog.beforemario.com/search/label/Gunpei%20Yokoi >

 V., Eric. “ Nintendo Kousenjuu Duck Hunt (ダ ッ ク ハ ン ト , 1976). ” beforemario:

Nintendo Toys & Games 1965 − 1983 . 23 Sept. 2012 . Web.

 V., Eric. “ Nintendo Ultra Hand (ウ ル ト ラ ハ ン ド , 1966). ” beforemario: Nintendo Toys &

Games 1965 − 1983 . 12 March 2011. Web. 13 June 2012 .

 Valesh , John . “ Nintendo, America! ” valesh.com . 1998. Web. 29 May 2012 . URL only

accessible via archive.org Wayback Machine. < http://www.valesh.com/~jon/

computers/nintendo.html >

 VmprHntrD . “ iNES Header/Format Information File [ver. 2.0]. ” EMU-DOCS . 31 Jan

 1998 . Web.

 VmprHntrD . “ iNES Header/Format Information File [ver. 2.2]. ” GameFAQs . 4 Jan.

 1999 . Web.

 Vreeland , Rich . (aka Disasterpeace). Tweet to author. 11 Apr. 2013 . < https://twitter

.com/Disasterpeace/status/322460562980212737 >

 W., Dan et al. “ Exclusive Interview with Donkey Kong Creator Shigeru Miyamoto. ”

[Reprinted from Nintendo Online Magazine #18 . Feb. 2000.] The Mushroom

Kingdom . 25 June 2012. Web. 29 June 2012 .

 W., Dan et al. “ Interview with Shigeru Miyamoto Volumes 1 and 2. ” [Reprinted from

 Nintendo Channel . Dec. 2010]. The Mushroom Kingdom . 11 Apr. 2012. Web. 4 July

 2012 .

 W., Dan et al. “ Mario in Japan. ” The Mushroom Kingdom. 27 May 2012. Web. 4 July

 2012 .

 W., Dan et al. “ Reference - Oops! ” The Mushroom Kingdom . 3 Jan. 2012. Web. 28 June

 2012 .

 W., Dan et al. “ Super Mario Bros. - From Japanese to English. ” The Mushroom Kingdom .

4 Mar. 2012. Web. 4 July 2012 .

 W., Lennart (aka Baxter). “ Submission #1693: Baxter’s NES Arkanoid in 12:26.8. ”

 TASVideos . 11 Sept. 2007 . Web.

 W., Lennart (aka Baxter) and AngerFist. “ NES Mega Man 3, 4, 5 & 6 (USA) in 39:06.92

by Baxter & AngerFist. ” TASVideos . 23 May 2007 . Web.

 Warren , Richard M. 1999 . Auditory Perception: A New Analysis and Synthesis. New York:

Cambridge University Press.

[416]

 Watanabe , Masao . 1975 . “ The Conception of Nature in Japanese Culture . ” Project

Physics Reader: Readings in Classical and Modern Physics . New York : Holt, Rinehart

and Winston .

 Watkinson , John . 1996 . Television Fundamentals . Oxford : Focal Press .

 Webster , Andrew . “ Mega Man 9 to feature intentional, optional glitches. ” arstechnica.

com. 5 Aug 2008. Web. 21 May 2012 .

 Weil , Rachel Simone . “ No Bad Memories (Or, Video-game nostalgia and the

academic and popular discourses that shape it). ” Critical Proximity. 16 March

 2014 . Video.

 Wen , Howard . “ Why emulators make video game makers quake. ” Salon.com . 4 June

1999. Web. 15 Mar. 2012 .

 Whalen , Zach . 2012 . “ Channel F for Forgotten. ” Before the Crash: Early Video Game

History , ed. Mark J.P. Wolf. Detroit: Wayne State University Press.

 “ Why DO you have to hold reset while turning power off? ” (Protoman). Famicom

World . 30 Aug. 2011. Web. 10 April 2013 .

 “ Why was the Famicom ‘ maroon ’ ? ” (フ ァ ミ コ ン カ ラ ー が ア ズ キ だ っ た

 と は — — ?). ITmedia Gamez . 7 Oct. 2010 . Web. 12 June 2012. < http://gamez.

itmedia.co.jp/games/articles/1010/07/news098.html >

 “ Wild Gunman (1974). ” Internet Arcade Museum . 2012. Web. 4 July 2012 .

 Williams , Dmitri . 2006 . “ A (Brief) Social History of Video Games . ” In Playing Com-

puter Games: Motives, Responses, and Consequences , ed. P. Vorderer and J. Bryant .

 Mahwah : Lawrence Erlbaum .

 Wizards of the Coast . “ The History of TSR. ” wizards.com . 2003. Web. 11 April 2013 .

 Wirth , Jonathan . “ Spotlight: Earthbound. ” Lost Levels . July 2004. Web. 10 May

 2012 .

 Wolf , Mark J.P. , ed. 2001 . The Medium of the Video Game . Austin : University of Texas

Press .

 Wolf , Mark J.P. , ed. 2008 . The Video Game Explosion: A History from PONG to PlayStation

and Beyond . Westport : Greenwood .

 Wong , John J. , and Paul S. Lui . “ Computer Game Cartridge Security Circuit. ” Patent

5,004,232. 2 Apr. 1991 .

 Yamagishi , Takeshi . 1992 . “ Landscape and the human being. ” Human Studies 15 :

 95 – 115 .

 Yamaha Corporation of America . Yamaha DX7 Digital Programmable Algorithm Synthe-

sizer Operation Manual. Buena Park: Yamaha, 1999 .

 “ Yoshihiro Sakaguchi. ” Videogame Music Preservation Foundation . 15 Jan. 2013. Web. 1

April 2013 .

 Young , Sean . “ Texas Instruments TMS9918A VDP: Almost complete description

including undocumented features (Version 0.4.2). ” msxnet . Sept. 2002 . Web. 28

May 2012. < http://bifi.msxnet.org/msxnet/tech/tms9918a.txt >

 Young , Sean “ The Undocumented Z80 Documented (Version 0.91). ” Myquest . 18 Sept.

2005. Web (PDF). 28 May 2012 .

 “ YTMD - OMG, Hitler ’ s Exploding on Bionic Commando! ” ytmnd. Web. 4 July

 2012 .

 Yukawa , Masayuki . 1987 . “ Cartridge for Game Machine. ” Patent Des. 292 , 399 .

 Yukawa , Masayuki . “ Front Loading Apparatus for a Memory Cartridge Utilized for a

Data Processing Machine. ” Patent 4,763,300. 9 Aug. 1988 .

 Zaks , Rodnay . 1983 . Programming The 6502 . 4th ed. Berkeley : Sybex .

Sources [417]

 Zazulak , Michael A. “ NES SEALED GAME CONTENTS FAQ. ” GameFAQs . 20 July 2010 .

Web.

 “ Zelda no Video History of Zelda Documentary. ” YouTube . Uploaded 8 Jan. 2012.

Video. 9 April 2013 .

 “ Zoo Keeper. ” The Arcade Flyer Archive . 14 Feb. 2002 .

 Zophar. “ NESticle: One Year Anniversary. ” Patent Pending . 3 Apr. 1998 . Web. 15 Mar.

2012. < http://patpend.net/articles/zd/article1.html >

 .NES, 304, 306 – 311, 315, 317. See also

iNES

 10NES program, 89 – 91, 365n34. See

also Checking Integrated Circuit

(CIC)

 60-pin card edge connector, 94, 109,

307, 367n70

 72-pin card edge connector, 88 – 89,

238, 307, 367n70

 Advanced Video System (AVS), 85 – 87,

100, 102, 364n15

 Adventure , 174, 372n34

 Akumajou Densetsu , 272, 384n43

 Aladdin Deck Enhancer, 241 – 242

 Amstrad CPC, 66, 236, 243, 275,

357n60

 Andou, Nobuaki, 303 – 304

 Anime, 59 – 62, 112 – 114, 120

 Application-specifi c integrated circuit

(or ASIC), 164, 232, 244 – 245, 248,

380n107

 Arakawa, Minoru, 54, 231, 232, 360n7

 Arcade,

 controller design, 24 – 27

 conversion kits, 54 – 55

 display technology, 36 – 37, 45, 67 – 68

 game design, 43 – 44, 57 – 58, 152, 175,

187, 207

 Index

 NES series, 105

 ports, 63 – 67, 211

 social context, 19 – 20, 173

 Assembly hacking, 316, 328

 Assembly language, 50 – 51, 65, 119, 283,

296, 328 – 329

 6502, 50, 65, 128, 159, 279

 Atari, 11, 13, 16 – 17, 28, 29 – 30, 66 – 67,

83 – 85, 87, 92 – 93, 104 – 107, 160, 289,

299, 300 – 302, 360n25, 365n42

 2800, 62, 200

 5200, 16, 65, 300

 7800, 16, 27, 65, 67, 84

 VCS, 6 – 7, 11, 13, 16, 28, 30, 62, 66 – 67,

70, 83 – 84, 119, 239, 300 – 301

 VCS, joystick, 24, 65

 VCS, TIA, 30, 36, 253

 Attribute tables, 9, 30, 32, 37 – 42, 119,

126, 245, 247, 312, 358n73

 clashes, 39 – 40, 44, 126, 222 – 224, 245,

327, 377n58

 Audio Processing Unit (APU), 27 – 28,

30, 249 – 259, 263 – 264, 266 – 268,

270, 275 – 280, 284 – 285, 287, 302,

313, 327

 Balloon Fight , 72, 367n72

 Bank switching, 210 – 212, 240, 244, 247,

271, 275, 315, 324

[420]

 Barr, Lance, 85 – 88, 94 – 95, 102

 Battery-backed saves, 185 – 187, 225,

247, 308, 373n46

 Binary math, 27, 50 – 51, 78 – 79, 321

 Bionic Commando , 114 – 115

 Black box games, 104 – 106

 Blaster Master , 124 – 125, 235 – 236

 Blinking screens. See Nintendo

Entertainment System, Zero

insertion force (ZIF)

 Bloodlust Software, 310, 313 – 314

 Bootleg software. See Unlicensed

software

 Boss fi ghts, 114, 232 – 237, 312, 323

 Capcom, 107, 113 – 114, 209 – 210, 230,

273, 279, 327, 383n35

 Card edge connector, 18, 87, 89, 94,

108, 164, 238, 268, 330, 364n19

 Cart swap trick, 32 – 33

 Casio, 23, 198

 Cassettes, 17 – 19, 106, 200, 243

 Castlevania , 6, 185, 233, 250, 280

 Castlevania III . See Akumajou

Densetsu

 Cathode ray tube (CRT), 45 – 49, 89, 98,

104, 161

 overscan, 42 – 43, 49, 223, 359n86

 Checking Integrated Circuit (CIC),

90 – 94, 109, 167, 186, 194 – 195, 239,

242, 365n34. See also 10NES

 Chiptunes, 250, 255, 277, 281, 285 – 288,

385n79

 Choreographic play, 323

 CHR-RAM, 210, 212, 376n36

 CHR-ROM, 31 – 34, 36, 70, 160,

212 – 213, 228, 246 – 247, 308

 Clipping mask. See Picture Processing

Unit (PPU), mask

 Coleco, 13 – 14, 16, 30, 66 – 68, 87, 300,

383n32

 ColecoVision, 13 – 14, 16 – 17, 30, 66 – 68,

70, 84, 105

 controller, 24 – 25

 TMS9918 VDP, 30, 70, 357 – 358n69

 Collision detection, 99, 149, 157 – 158,

320

 Commodore, 28 – 30

 Commodore 64 (C64), 6, 28 – 30, 76,

243, 252, 277, 280, 382n17

 SID chip, 252 – 253, 285, 381n6,

382n17, 383n42

 Commodore Amiga, 281

 Compression, 47 – 48, 123 – 124, 137, 178,

209, 316, 324

 Contra , 40 – 41, 147 – 149, 151, 223, 233,

250, 253, 259 – 260, 263 – 264, 289,

317

 D-pad, See Family Computer, D-pad

 Delta modulation channel (DMC),

256 – 261, 263 – 264, 267 – 268, 276,

279,

 Dendy, 90, 308, 330

 Derrida, Jacques, 3 – 4

 Devil World , 110 – 111, 117, 221, 254, 317,

 Digital rights management (DRM), 91

 Discrete logic mappers, 209 – 213, 232,

244

 Disk cards, 89, 163 – 170, 181, 194 – 195,

280, 371n4

 data layout, 165 – 166

 piracy, 167 – 170

 DiskDude, 309 – 310

 Domestic space, 3, 11 – 12, 16, 20 – 21

 Donkey Kong ,

 clones, 65 – 67, 361n35

 kill screen, 77 – 79, 115, 155 – 156

 Donkey Kong (arcade), 3, 5, 11 – 14, 16 – 17,

24, 37, 53 – 79, 122, 155, 161, 201, 210,

232, 250, 298, 330

 Donkey Kong (Famicom/NES), 105, 115,

117 – 120, 238, 247 – 248, 252, 254, 311,

315, 326, 328 – 329

 cement factory omission, 75 – 77

 Donkey Kong (Game & Watch), 22, 24

 Donkey Kong Jr. , 14, 16, 105, 117, 254,

299, 326 – 327, 363n58

 Door Door , 70, 201 – 202, 247

 Dragon Quest , 170, 172, 212 – 232

 Japanese idiom, 226 – 229

 localization, 187, 229 – 232

 menu system, 219 – 220

 password design, 224 – 226

 random encounters, 217 – 218, 322

 scrolling engine, 221 – 224

 Index [421]

 Dragon Warrior . See Dragon Quest ,

localization

 Duck Hunt , 24, 87, 94 – 95, 102, 170,

 Dungeons & Dragons , 172, 204, 213,

216 – 217, 219, 224, 226, 229

 Duty cycle, 255, 265, 266 – 267, 381n12,

382n14, 382n17

 Emulation, 7, 42, 76, 199, 280,

285 – 286, 292 – 293, 322 – 323,

327 – 331, 335 – 336

 in computer history, 293 – 299

 movie fi les, 314, 318 – 321, 324

 save states, 290, 312 – 313, 318 – 319,

327 – 329

 of videogame consoles, 300 – 310, 312,

314 – 316

 Enix, 201 – 202, 204, 207 – 209, 212 – 214,

224, 228 – 229, 232, 245

 Epoch Cassette Vision, 198, 200

 Error (character), 1 – 2, 5

 European game industry, 65, 92, 236,

242 – 244, 367n72

 Excitebike , 100 – 101, 105, 109, 124, 170,

194, 264 – 268, 314, 326

 Fairchild Channel F, 7, 20, 31, 300,

364n19

 Famicom. See Family Computer

 Famicom Disk System (FDS), 4, 89 – 90,

163 – 170, 173, 181, 194, 199, 209, 211,

317

 audio channel, 268 – 271

 RAM adapter, 94, 164 – 165, 168,

178 – 179, 210,

 Famicom Remix , 325 – 331

 Famicom-to-NES converter. See

NES-JOINT

 Family Computer,

 color scheme, 19, 355n33, 356n34,

365n45

 D-pad, 24 – 27

 eject lever, 355n27

 expansion port, 19, 90, 94, 102,

374n70

 industrial design, 17 – 19

 memory map, 31 – 33, 37, 143, 279

 microphone, 19, 25 – 26, 356n52

 origin of name, 11 – 12

 processor design, 27 – 30

 prototype, 16, 25, 299. See also

GAMECOM

 pulse line, 106, 355n33

 split architecture, 30 – 33, 44, 242, 306

 wired controllers, 19 – 20, 356n36

 Family Computer Data Recorder,

372n33

 FamiTracker, 249, 285

 Fayzullin, Marat, 304 – 308

 Final Fantasy , 126, 172, 187, 220, 232

 Final Fantasy II , 316, 388n80

 Final Fantasy VII , 248

 Fujitsu, 200 – 201, 242, 299, 372n29

 Fukushima, Yasuhiro, 201 – 202

 Game & Watch, 3, 11, 14, 16, 21 – 25, 55,

100, 330

 Game engine, 126

 Game Genie, 129, 237 – 242, 302, 314,

327, 379n96

 Game paks,

 industrial design, 82, 107 – 110

 blowing into, 4, 89, 115

 GAMECOM, 11 – 12

 Generational metaphors, 197 – 199

 Gimmick! , 260, 275 – 276, 279 – 280

 Graphical adventures, 202 – 204, 208,

219, 316

 Gyromite , 94, 97 – 101, 103, 365n49

 HardNES, 278, 280

 Hexadecimal notation, 50 – 51, 240, 308

 Homebrew development, 110, 284, 308,

330

 Horii, Yuji, 202, 204, 207 – 209, 212,

215 – 216, 220, 224 – 229

 Horizontal blank (HBLANK), 48 – 49,

104, 313

 Horton, Kevin, 278, 280

 Hue Saturation Value (HSV), 25

 IBM, 293 – 298

 Ikegami Tshushinki, 53 – 54, 363n58

 iNES, 278, 305 – 309

 Isolated Warrior , 235 – 236

 Iwata, Satoru, 15, 21, 144 – 145

[422]

 Japan,

 animation. See Anime

 comics. See Manga

 ecological crisis, 188 – 193

 folklore, 60, 120 – 121, 171

 PC industry, 16, 21, 28, 172, 194,

200 – 202, 206 – 209, 227, 274,

299

 Jumpman, 5, 24, 55 – 57, 67 – 69,

71 – 74, 78 – 79, 105, 120, 232, 315,

326 – 328

 Kageyama, Masashi, 275 – 276

 Kerr, Alex, 191 – 192, 375n19

 Kid Icarus , 106, 181, 185, 194, 221, 329,

356n52, 373n46

 King Kong , 63 – 64

 Kinoko Kingdom, 6, 33, 120 – 123, 126,

128, 130, 141, 144, 154, 157, 160 – 161,

172, 189, 192 – 193, 209, 222, 315

 Kohler, Chris, 58 – 59, 62, 113

 Konami, 106, 147 – 148, 169, 185, 211,

233, 236, 255, 259, 261, 263, 272,

274 – 276, 366n68

 Kondo, Koji, 117, 123, 170, 175, 225,

262 – 263, 268, 270 – 271

 Krasivsky, Alex, 304 – 305, 317

 The Legend of Zelda , 2, 35, 39, 46,

100 – 101, 109, 117, 122, 138, 163 – 164,

194, 209, 214 – 215, 228 – 230, 236,

328 – 329, 356n52

 audio, 253, 263, 268 – 270, 287, 327

 design inspirations, 172 – 175

 development, 170 – 172

 disk access, 178 – 180

 engine design, 175 – 178, 324

 as miniature garden, 189, 193

 ROM hacks, 312, 315 – 316, 325

 save system, 185 – 188

 scrolling, 181 – 184, 221

 Life Force , 235 – 236

 Localization, 2, 113 – 114, 120, 215, 280,

316, 368n88. See also Dragon Quest ,

localization

 Lockout chip. See Checking Integrated

Circuit (CIC)

 Lord of the Rings , 172, 224

 Maezawa, Hidenori, 259 – 260, 272

 Magnavox Odyssey, 20, 31, 366n55

 Manga, 57, 59 – 62, 112 – 114, 120, 122,

154, 188, 202, 213, 219, 224 – 227, 229

 Mapper, 149, 209 – 212, 232, 242,

244 – 248, 250, 268, 279 – 280,

305 – 306, 308 – 309, 311, 313, 315 – 316

 CNROM, 77, 211 – 213, 221, 225, 229,

308, 375n27, 380n109

 FME-7, 212, 276

 MMC3, 141, 212, 244, 247, 250, 308,

380n107, 380n109

 MMC5, 108, 245 – 248, 272, 274,

285 – 286, 308, 313

 N163, 274 – 275, 285 – 286, 384n53

 NROM, 70, 79, 123, 134, 142, 161, 164,

178, 181, 209 – 213, 240, 279, 308,

315, 329, 380n107

 Sunsoft-5B, 275 – 276, 279

 UNROM, 209 – 211, 223, 250, 308,

375n27, 380n109

 VRC6, 272, 285, 383n42

 VRC7, 272, 274 – 275, 286, 383n42

 Mario Bros. , 22, 43, 70, 105, 118, 122,

161, 224

 Masking. See Picture Processing Unit

(PPU), mask

 Matsumae, Manami, 261

 Mattel Intellivision, 24, 67, 261, 301

 Mega Man , 6, 107, 126, 148 – 151, 253,

277, 279, 287, 322, 368n88

 Mega Man 2 , 35 – 36, 107, 230 – 235, 238,

316, 383n35

 Mega Man 3 , 322, 324

 Metal Gear , 2, 115, 200

 Meta-metatile, 124 – 125, 129

 Metatile, 69, 119, 123 – 134, 136 – 137,

139 – 142, 144 – 145, 148 – 149, 152 – 154,

157 – 159, 175 – 177, 221 – 224, 234

 Metroid , 2, 6, 35, 40, 106, 181, 185, 194,

221, 271, 292, 315, 318, 326 – 327, 329

 Mike Tyson ’ s Punch-Out!! , 244, 258, 265,

313, 382n22, 383n34

 Miyamoto, Shigeru, 17, 110 – 111,

228 – 229, 317

 on Donkey Kong , 54 – 57, 64

 on The Legend of Zelda , 170, 172 – 73,

175, 178

 Index [423]

 on miniature gardens, 188 – 190,

192 – 193

 on Super Mario Bros. , 117, 120 – 122, 132,

156, 161

 Module (MOD) format, 283

 Morota, Naohisa, 279

 Moss, Larry, 296

 MOS Technology,

 6502 processor, 13 – 16, 27 – 31, 36, 243,

251 – 252, 298 – 299, 336

 6507 processor, 28. See also Atari VCS

 MSX, 16, 28, 30, 85, 200, 273, 357n60

 Multi-memory controller (MMC). See

Mapper

 Mushroom Kingdom. See Kinoko

Kingdom

 Music Macro Language (MML), 385n79

 Nakago, Toshihiko, 117, 123, 144 – 145,

170, 175, 177 – 178

 Nakamura, Koichi, 201 – 202, 204 – 207,

209, 212, 216, 220, 225, 240

 Nakatsuka, Akito, 265 – 268

 Namco, 53 – 55, 119, 172, 274 – 276

 Name table, 36 – 38, 42, 73, 76, 99,

123 – 124, 126, 130, 141, 234 – 235, 247

 mirroring, 31 – 32, 38, 119, 143,

181 – 182, 221 – 224, 245 – 246, 306,

308, 311 – 312

 NEC, 107, 172, 194, 200 – 201, 206, 211,

242, 273, 299, 301

 NEC PC-Engine/TurboGrafx 16, 200,

275

 NerdTracker 2, 283 – 284

 NES. See Nintendo Entertainment

System

 NES Remix . See Famicom Remix

 NES-001. See Nintendo Entertainment

System, industrial design

 NES-101. See Nintendo Entertainment

System, redesign

 NES-JOINT, 109

 NESticle, 310 – 314, 317 – 319, 328, 330

 Ninja Gaiden , 6, 100 – 101, 252, 289, 324

 Nintendo,

 censorship, 7, 62, 110 – 112, 114 – 115

 licensing practices, 91 – 94, 105 – 107,

110, 115, 211, 241, 243, 302 – 303

 R & D1, 22, 25, 53 – 54, 95, 211, 264

 R & D2, 11 – 12, 15, 53, 79

 R & D3, 211

 seal of quality, 105, 110, 367n72

 Nintendo Color TV Game consoles, 14,

17, 62, 200

 Nintendo Entertainment System,

 cartridges. See Game paks

 in Europe, 92, 115, 198 – 199, 242 – 244,

316 – 318, 367n72

 expansion port, 90, 94, 195, 364n26,

367n70, 383n37

 holding reset during power-down,

185 – 188

 industrial design, 85 – 89

 light gun, 94 – 95, 100 – 104

 PAL version, 49, 90, 252, 280, 330,

357n59, 381n3, 382n23

 prototype. See Advanced Video System

(AVS)

 redesign, 94, 364n26, 379n96

 toaster nickname, 364n23

 zero insertion force (ZIF) mechanism,

88 – 89, 91, 94, 108, 186, 239

 Nintendo Power , 157, 215, 230 – 232

 Nintendo Service Center, 109

 NSF (NES Sound Format), 277 – 281,

284 – 285

 NSF player, 266, 280

 nullsleep, 287

 Nuts & Milk , 31, 70

 Obarski, Karsten, 281, 283

 Object Attribute Memory (OAM),

30, 40 – 45, 99, 130, 145 – 146,

357n69

 cycling, 4, 71, 148 – 151, 223, 233, 235,

327

 Otocky , 270 – 271

 Overscan, See Cathode ray tube (CRT),

overscan

 Pac-Man , 13, 43, 54, 62, 64 – 65, 67, 83,

93, 110, 201

 Palette swapping, 124, 144, 149, 313,

358n77

 PasoFamicom (PasoFami), 303 – 304,

306 – 307, 309, 340

[424]

 Pattern table, 30, 32 – 38, 41 – 42, 68, 71,

73 – 75, 79, 115, 144, 155, 178 – 179,

205 – 206, 210, 212 – 213, 234, 237,

239, 311 – 313, 318, 327, 378n70

 PCM (pulse-code modulation), 257,

259, 267, 272, 279, 283

 Picture Processing Unit (PPU), 27,

30 – 47, 49 – 51, 68, 70 – 71, 79,

99 – 100, 105, 124, 126 – 127, 130, 132,

141, 145 – 147, 170, 181, 207, 236, 299,

302, 327 – 328

 color emphasis bits, 358n79

 mask, 44, 223 – 224, 245, 358n79,

362n49

 palette, 33, 35 – 36, 38, 40, 50 – 51, 99,

105, 126, 170, 245, 358n79

 Piracy, 4, 66, 115, 185, 243, 248,

303 – 304, 377n55. See also Disk cards,

piracy

 Platform studies, 6 – 7, 192 – 193, 288,

329, 331

 Platformer, 5 – 7, 44, 117 – 119, 123, 126,

151, 154, 160 – 161, 174 – 175, 203 – 204,

221, 232, 249

 PlayChoice-10, 317, 371n20

 Plus controller. See Famicom, D-pad

 Pong , 13, 20, 31, 62, 105, 152, 200, 288

 Popeye (character), 55 – 56

 Popeye (videogame), 14, 16, 55, 105,

299, 360n8

 Porting, 64 – 67

 PORTOPIA ‘81, 203 – 204

 The Portopia Serial Murder Case ,

202 – 209, 212 – 213, 218, 225, 240,

378n70

 PRG-ROM, 30 – 31, 33, 70, 79, 159 – 160,

187, 210 – 211, 213, 228, 240, 242,

246 – 247, 308

 Programmable sound generator (PSG),

252 – 253

 Pseudo Audio Processing Unit (pAPU).

 See Audio Processing Unit (APU)

 Quick Disk, 164 – 167, 194, 210. See also

Disk cards

 Radar Scope , 14, 24, 53 – 55, 82, 232, 330,

362n53

 Raster effects, 145, 236, 313, 357n69,

361n44

 Raster graphics, 36, 45, 47, 67, 104, 192

 Registers, 51, 90, 128, 170, 181, 192,

245, 247, 295, 298, 312, 318, 328,

357n69, 358n79, 362n49, 373n45

 audio, 251, 254, 258, 267, 274, 382n23,

382n26

 joypad, 102 – 103

 scrolling, 37, 99, 132, 143, 182

 Relics: Dark Fortress , 180

 RGB (Red Green Blue), 35, 68, 311,

359n92

 Ricoh 2A03 processor, 27 – 28, 31 – 33,

49, 70, 159, 161, 210, 300

 integrated APU, 249 – 253, 256 – 257,

261, 264, 267 – 268, 270, 272,

277 – 278, 280, 283 – 287. See also

Audio Processing Unit (APU)

 Ricoh 2A07 processor, 49, 381n3. See

also Nintendo Entertainment System

(NES), PAL version

 Ricoh 2C02 processor, 27, 33, 161. See

also Picture Processing Unit (PPU)

 Robotic Operating Buddy (R.O.B.),

94 – 100, 102, 140

 Robson, Paul, 304 – 306

 Rockman . See Mega Man

 Rockman 2 . See Mega Man 2

 Role-playing games (RPGs), 44, 126,

151, 171 – 172, 174, 187, 199 – 200, 204,

209, 212 – 220, 224, 226, 229 – 232,

245, 247, 274, 312, 316

 ROM (emulation), 76 – 77, 209, 281, 297,

305 – 319, 321, 327 – 329

 ROM (read-only memory), 3, 6, 30 – 34,

50, 55, 64, 70, 75, 89, 126 – 127, 178,

192, 210 – 211, 278, 299

 ROM hacking, 307, 315 – 316

 Rygar , 114

 Sakaguchi, Yoshihiro, 279

 Sakai, Tomomi, 275 – 276

 Sampling, 256 – 261, 280

 Sawano, Takao, 25

 SECAM, 47 – 48

 Sega Genesis, 198, 301

 Sega Master System, 27, 301, 357n60

 Index [425]

 Sega Mega Drive, 273 – 274

 Sega SG-1000, 16, 253, 357n60

 Sharp, 14, 23, 164, 200 – 201, 211, 242,

273, 354n7, 374n70

 Sharp Twin Famicom, 330, 354n13,

374n70

 Sinclair ZX Spectrum, 66, 236, 243, 275

 Slowdown, 4, 149, 233, 327, 370n38

 Sony Walkman, 19, 106, 191

 Sound prioritization, 261 – 264

 Speedruns,

 tool-assisted, 291 – 293, 302, 312,

318 – 324, 329

 traditional, 291 – 293, 326

 Sprite 0, 99 – 101, 119, 145 – 149, 157, 244,

357 – 358n69, 366n52, 373n44. See

also Object Attribute Memory (OAM)

 Sprite fl icker. See Object Attribute

Memory (OAM), cycling

 Sprite mirroring, 144 – 145

 Sprite stacking, 35 – 36, 43, 223, 377n59

 Sprite-per-scanline limit, 36, 71 – 73,

76 – 77, 79, 147 – 149, 233, 236 – 237,

327, 357n69

 Status bar, 99, 101, 145 – 151, 176, 221,

234, 270, 313, 359n86

 Sugiyama, Koichi, 224 – 225

 Sunsoft, 212, 236, 249, 260, 275 – 276,

279

 Super C , 247, 259, 272

 Super Famicom/Nintendo, 94, 245,

247, 276, 300

 Super Mario Bros., 2, 4, 17, 26, 32, 35, 39,

111 – 112, 117 – 120, 160 – 161, 164, 170,

174, 193, 208 – 209, 229, 233,

240 – 241, 250, 262, 290, 325 – 326,

329

 architecture, 123 – 126, 205

 camera, 151 – 154

 engine design, 126 – 141

 life counter, 154 – 157

 minus world, 4, 9, 32, 157 – 160

 ROM hacks, 315 – 316

 scrolling, 141 – 145, 316

 setting, 120 – 123

 sprite 0 placement, 145 – 147

 Super Mario Bros. 2 (FDS), 111, 262, 315,

329, 369n33

 Super Mario Bros. 2 (NES), 141, 329,

367n82

 Super Mario Bros. 3 , 141, 223, 236 – 237,

316, 324, 326 – 327, 376n38

 Synthesis, 250 – 253, 285 – 286

 analog, 251 – 252, 272 – 274

 direct digital, 381n8

 frequency modulation (FM), 272 – 273

 speech, 259 – 261

 wave, 268 – 271, 275

 Takeda, Genyo, 211

 Tanaka, Hirokazu, 225, 271

 Television,

 display technology, 45 – 49, 67 – 68

 HDTV, 45, 47, 191

 NTSC standard, 35, 47 – 49, 62, 70,

252, 317, 328, 359n80

 PAL standard, 47 – 49. See also

Nintendo Entertainment Syste, PAL

support

 social context, 20

 Tennis , 32 – 33

 Text adventure games, 194, 200,

202 – 204, 207 – 209, 220, 378n76

 Tezuka, Osamu, 61 – 62

 Tezuka, Takashi, 110 – 111, 117, 120,

122 – 123, 144 – 145, 170, 177 – 178,

189 – 190, 192 – 193

 Tilden, Gail, 100, 104, 230

 Tile-based graphics, 6, 30 – 40, 44,

68 – 69, 74 – 75, 123 – 126, 206, 239,

248, 311

 Toriyama, Akira, 224 – 225, 229 – 230,

377n54

 Tower of Druaga , 172 – 173

 Tracker software, 281 – 285

 Translation, 1 – 3, 7, 59, 62, 102, 112 – 115,

120, 208 – 209, 225, 227, 303 – 304,

316 – 317, 329

 Translation patch, 316

 Tucker, Stuart, 296 – 299, 301

 U-Force, 237

 Uemura, Masayuki, 11 – 15, 17 – 19, 21,

25 – 26, 53, 210, 224

 Ultima , 172, 187, 212 – 213, 224, 231,

377n46

[426]

 Ultimate SoundTracker, 281 – 284

 Unlicensed software, 4, 66, 90 – 91,

93 – 94, 107, 110, 168, 239, 248, 308,

317

 VCR, 60, 82

 Vector graphics, 36, 84, 361n44

 Vectrex, 36, 84, 275, 361n44

 Vertical blank (VBLANK), 48 – 49, 90,

222, 252, 313, 357n69

 VHS, 89, 108 – 109, 167, 314

 Videogame crash, 82 – 84

 Virtual machine, 298

 VS. UniSystem, 170

 Wii Virtual Console, 76, 292, 297, 301,

325, 330

 Wild Gunman , 102 – 103, 366n59

 Wizardry , 207, 212 – 213, 217, 220,

224

 Yamaha DX-7, 274

 Yamauchi, Hiroshi, 11 – 12, 14 – 16, 19, 23,

54, 66, 211,

 Yo! Noid , 112 – 113

 Yokoi, Gunpei, 22 – 25, 54 – 56, 95, 100,

103, 211, 330, 355n27

 Zapper, See Nintendo Entertainment

System, light gun

 Zelda II: The Adventure of Link , 1, 92, 194,

223, 265, 320, 329, 382n22

 Zilog Z80, 13 – 16, 65, 67, 70, 200,

298 – 299, 301, 357n60

